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Abstract 
The Bag-of-Words (BoW) approach has been successfully applied in the context of category-level 

image classification. To incorporate spatial image information in the BoW model, Spatial Pyramids 

(SPs) are used. However, spa-tial pyramids are rigid in nature and are based on pre-defined grid 

configurations. As a consequence, they often fail to coincide with the underlying spatial structure of 

images from different categories which may negatively affect the classification accuracy. 

The aim of the paper is to use the 3D scene geometry to steer the layout of spatial pyramids for 

category-level image classification (object recognition). The proposed approach provides an image 

representation by inferring the constituent geometrical parts of a scene. As a result, the image 

representation retains the de-scriptive spatial information to yield a structural description of the 

image. 

From large scale experiments on the Pascal VOC2007 and Caltech101, it can be derived that SPs 

which are obtained by selective search outperforms the stand-ard SPs. The use of 3D scene geometry, 

to select the proper SP configuration, provides an even higher improvement. 

 

Keywords: Big Data Analytics, Machine Vision, Image Classification and Ob-ject Recognition Tasks, 

Bag of Words, Spatial Pyramids 
 

Introduction 

For category-level image classification and object recognition, the Bag-of-Words (BoW) 

approach has been successfully applied [1], [2], [3], [4]. The BoW is based on the 

occurrences of image features. Hence, it treats the image as an order-less collection of local 

features completely ignoring the spatial image layout. Hence, it treats the image as an order-

less collection of local features completely ignoring the spatial image lay-out. 

Extending the BoW with spatial information has therefore received considerable at-tention. 

Recently, several approaches consider the success of the Spatial Pyramid (SP) approach 

proposed by Lazebnik et al. [5]. It is shown that the use of SP outperforms the 1×1 image 

representation on challenging image classification tasks [5], due to the inclusion of image-to-

image geometric correspondences. However, in general, SPs are based on rigid image 

subdivisions (e.g., grids). These rigid spatial configurations are not well suited for freely 

shaped objects and scenes. In Figure 1(a), some examples are shown taken from different 

image categories together with their standard SP sub-divi-sion. Sub-regions divide objects 

into two separate parts increasing the probability of dissimilar image features within cells 

and similar image features across cells. Hence, a rigid division may a negative equivalence-

class configuration of image features. 

Our aim is to use 3D scene geometry to steer the layout of spatial pyramids for category-

level image classification. Images within a category usually share similar scene geometries. 

We exploit correspondences between categories by a scene geometry matching scheme. For 

example, Figure 1(b) shows the geometrical (depth) layers of some example images. The 

cow example corresponds to scene geometry style consist-ing of 3 segments: (1) ground, (2) 

background and (3) sky. The “ground” part depicts different objects than the background and 

sky. Each segment contains similar features and features across segments are more 

dissimilar. Therefore, the BoW should be applied separately to each geometrical scene sub-

region. 
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In this paper, we propose a method to obtain a holistic 

image representation by in-ferring the constituent 

geometrical parts of a scene. The method steers the image 

layout on the basis of 3D scene geometry (i.e., “Stages”) 

computed from a single image. We propose three 

alternative approaches to obtain structural image 

representations from 3D scene geometries: 

1. Generic SPs: by exploiting the 3D scene geometry of 

images. The 13 stages of [7] are used as 3D priors. 

After the image scene geometry is estimated, the most 

appro-priate stage per object category is selected as the 

spatial pyramid. 

2. Adaptive spatial pyramids: by learning the spatial 

image subdivision per object cat-egory using class 

specific binary masks. Hence, the corresponding 

geometrical rep-resentation is used as spatial pyramids. 

3. Selective SPs: by obtaining the spatial subdivision 

representation based on selective search guided by the 

Agglomerative Information Bottleneck (AIB) theory 

[8], [9]. The models are used to select the spatial 

geometry that best suits each category at hand. 

 

The three methods to generate SPs will be compared to 

existing rigid SP for object recognition tasks. To this end, 

two benchmark data sets are used in the experiments: 

Pascal VOC 2007 [6] and Caltech-101 [10]. Furthermore, a 

large data set is provided (denoted as “stage data set”) to 

learn each stage. 

This paper is organized as follows. First, in section 2 and 3, 

we give the motivation of our approach and discuss related 

work on rigid spatial pyramids. In section 4, the method is 

proposed to generate dynamic spatial pyramids. In section 

5, the experi-mental setup is discussed and the results are 

given. Finally, we give the conclusion in Sec. 6. 

 

 
 

Fig. 1: Show example images from different categories. (a) shows 

the standard SP proposed by Lazebnik et al. [5]. (b) shows the 

proposed flexible spatial partitionings which best suit each 

category. Images are from the Pascal dataset [6]. 
 

Motivation 

The subdivision scheme should consider the trade-off 

between two important design properties invariance and 

descriptiveness. Larger subregions are preferred to gain in-

variance to viewpoint changes (translation, orientation and 

scale) and object occlusion. Sub-regions should cover the 

range of possible positions of occurring objects. For ex-

ample, the entire image is invariant to all possible object 

positions. Smaller sub-regions are required to obtain more 

descriptive regions and spatial layout. Sub-regions should 

depict similar object/background augmenting the 

descriptive ability of the SP. Finally, regions should not be 

constrained in shape allowing for a natural division of the 

image into its constituent parts. 

In this paper, we propose a strategy to divide the image into 

its constituent scene geometry parts to obtain an invariant 

and descriptive image representation. The aim is to split the 

image into sub-regions corresponding to generic scene 

(depth) layers. These layers provide a middle ground 

between low-level features and high-level object cate-

gories. A number of methods have been proposed to 

estimate the rough scene geometry from single images [11], 

[12], [13]. We use the scheme which derives scene 

information for a wider range of generic scene categories 

by using stages [7]. Stages are defined as a set of 

prototypes of often recurring scene configurations. They 

can be seen as discrete classes of scene geometries. Typical 

classes of discrete 3D scene geometries include single-side 

backgrounds (e.g. walls and buildings) or three sides (e.g. 

corridor and nar-row streets). A number of stage models are 

shown in Figure 2. These models are de-pendent on the 

inherent geometrical structure of images. In this paper, 13 

different stages are used excluding noDepth or 

tab+pers+bkg, as these stages are specific char-acteristics 

of the data set used in [7]. 

As shown in Figure 2, the scene structures of the stage 

models are shown in different colors. The stage models are 

used to determine how the image is divided in subregions. 

For instance, images of stage sky+backgnd+gnd are 

divided into three layers: sky (in blue), background (in 

yellow) and ground (in brown). In Fig. 3(a), it is shown that 

the example images from Fig. 1 are instantiations of the 

“sky+backgnd+gnd”, “person” and “gnd+diagonal” 

stages, respectively. Each scene (depth) layer is equivalent 

to an image segment. Hence, SPs are constructed based on 

3D scene geometries in which each geometry layer (e.g., 

ground, background and sky) is represented by a different 

sub-region. 

 

 
Fig. 2: Stage models and their corresponding instantiations. Top 

row, from left to right: “sky+backgnd+gnd”, “backgnd+gnd”, 

“sky + gnd”, “gnd + diagalBackgndLR”. Bottom row: 

“diagalBackgndLR”, “box”, “1side-wallLR”, “corner”. This 

figure is taken from [14]. 

 

 
Fig. 3: Example depth images with their corresponding 3D 

geometries. 

 

Preliminaries 

In this section, we briefly discuss the method for obtaining 

standard spatial pyramids [5] and for determining scene 

geometries (stages) for obtaining Generic pyramids [31]. 
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Rigid Spatial Pyramids 

The spatial pyramid scheme proposed by [5] is a simple 

and computationally efficient extension of an order-less 

bag-of-words image representation. This approach 

represents an image by using weighted multi-resolution 

histograms which are obtained by repeatedly sub-dividing 

an image into increasingly finer sub-regions. Histograms 

are computed over the resulting sub-regions. For each 

resolution level, the image is subdivided into the cells of a 

grid. At resolution l, the grid has 22𝑙 cells. The number of 

points in each grid cell is then recorded.  

Marszalek et al.[15] evaluate both regular and irregular 

grids. Further, they consider a broader set of coarse 

subdivisions for each dimension, such as a 1×1 grid 

corresponding to the standard representation of the bagof-

words, a 2×2 grid (i.e. four blocks), a horizontal 3×1 grid 

as well as a vertical 1×3 one. They show that dividing the 

image plane in three horizontal (i.e. 3 × 1 grid) regions, 

provides the highest recognition performance. Further, this 

approach reduces the dimensionality of the conventional 4 

× 4 (i.e. sixteen blocks) structure; from vocabularysize × 

21 to vocabularysize × 8.  

The use of various image layouts shows the influence of the 

image configuration and spatial image representation. 

However, unconstrained spatial image representations have 

not been studied [16]. Moreover, pyramids commonly 

applied to BoW are not designed for the specific task of 

categorization, due to the assumption of having fixed rigid 

grid representation that suits all the dataset categories. The 

proposed approach resolves the use of rigid spatial 

pyramids. The aim is to generate more natural spatial 

pyramids based on the underlying image geometry. 

 

Image Segmentation to Obtain Depth Layers 

For each scene geometry, the different image segments 

correspond to a scene part at a certain depth (layer). Each 

segment represents geometrical entities like walls, ground, 

and sky. The image divisions provided by the scene 

geometry models will be used to learn the best geometry 

that suits each category of concern. Segmentation is based 

on the occurrence probability in the training set. Ground 

truth is obtained by manual annotation, thereby dividing the 

training set according to the scene geometry patterns, and 

fitting the parameters of each geometry model (horizon, 

vanishing points) such as to visually best fit the underlying 

data. For this purpose, the stages data set described in 

section 5.1 will be used for obtaining the segmentation 

masks used to represent each scene geometry.  

More precisely, suppose that an image belongs to stage S, 

which is composed of N layers, correspondingly there will 

be N mask maps. The mask map for the 𝑖𝑡ℎ partition 𝑇𝑖  is 

obtained by taking the average of the mask maps for each 

image:  

 
where n is the total number of images in the training data 

set, and 𝑀𝑗,𝑖(𝑥) is the mask map of the 𝑗𝑡ℎ image for 

𝑖𝑡ℎ partition. Note that 𝑀𝑗,𝑖(𝑥) is an indicator function: 

𝑀𝑗,𝑖(𝑥) =1, if 𝒙 belongs to the 𝑖𝑡ℎ partition and 0 otherwise.  

 

Segmentation: mask maps are used to automatically divide 

the images. Assuming that the images of a stage can be 

partitioned into N layers, there exist N mask maps 

corresponding to the partitions in the training data set. 

Then, the binary mask map is defined as follows: 

 
 

As a consequence, the values in the mask map are either 0 

or 1, as shown in Figure 4. In the next section, scene 

geometry (i.e. scene depth) maps will be used in order to 

achieve a proper selection of the spatial partitionings that 

suit each object category of concern. 

 

 
 

Fig. 4: An example of segmentation binary mask maps. Top row 

image belongs to sky+ground scene geometry. Bottom row image 

belongs to ground+DiagBkgLR scene geometry. The mask maps 

are of the same size as the original image. 

 

Spatial Layouts Derived From 3d Scene Geometry 

The SP scheme proposed by [5] represents an image by 

using weighted multi-resolution histograms which are 

obtained by repeatedly sub-dividing an image into 

increasingly finer sub-regions, where the spatial pyramid at 

level 𝑙 Є {0, … , 𝐿} has 𝑅(𝑙) =  22𝑙 sub-regions. For image 

𝑋, all features are assigned to their best visual word 𝑣 

selected from a vocabulary 𝑉. The frequency of 𝑣 inside 

sub-region 𝑖 of image 𝑋 is given by the histogram bin 

𝐻𝑋
𝑖  (𝑣). The similarity or matching rate between images 𝑋 

and 𝑌 at level 𝑙, is given by the histogram intersection 

function [17]:  

 
Matches found at finer resolutions are closer to each other 

in the image space and are therefore more heavily 

weighted. To accomplish this, each level is weighted to 
1

2⁄ 𝐿 − 𝑙 which results in the final SP:  

 
For the geometry-driven pyramid we use the same 

approach, only for geometric equivalent classes. Formally, 

for each scene geometry or stage 𝑠 of 𝑛 stage types, let 

𝑅(𝑠) denote the number of sub-regions of 𝑠. Instead of 

using a fixed pyramid, we propose that a spatial stage 

pyramid is created by computing the similarity between 

images 𝑋 and 𝑌 for stage 𝑠 by 

 
Where the different sub-regions 𝑖𝑠 for stage 𝑠 correspond to 

a scene part at a certain depth (layer). For each stage 𝑠 there 

are 𝑅(𝑠) sub-regions. 

We propose two alternative approaches for selecting the 

appropriate spatial image representation for each category. 

This is achieved by learning a proper class-specific spatial 

model. These models encode the proper spatial partitioning 
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for each category; which is used further to obtain class-

specific spatial models. To this end, we first exploit the use 

of the standard 3D geometry model as a prior for learning 

the best candidate template for each category. Then, we 

introduce an adaptive approach to generate spatial image 

representation that suits each category based on the ground-

truth (GT) information of its training images. Lastly, we 

propose a learning approach for learning the most suitable 

category-model based on information theory. 

 

Generic Spatial Pyramids sets 

In this section, the 13 different scene geometries 

{𝑆1, . . . , 𝑆13} proposed by [7] are used. It has been shown 

that these geometries cover most of the image partitionings 

encountered in real-world scenarios. Hence, 3D geometry 

structures are used to determine how the image should be 

divided; where each geometry depth corresponds to a 

pyramid region 𝑖𝑠. Therefore, the 13 prior stages are 

considered as generic models. Images of each category are 

classified into one of these stages in order to select the most 

appropriate spatial representation. More formally, the 

proposed method consists of the following steps: first, 

training images are spatially represented according to each 

of the 13 binary mask maps. We use the stage data set to 

obtain the binary mask maps. The training set is manually 

annotated and divided into scene geometries as in [18]. 

The parameters of each geometry (horizon, vanishing 

points) are computed to fit the underlying data. Image 

segmentation is based on the occurrence probability in the 

training set, see [18] for details. For each category, we 

then train 13 geometry models and learn on the validation 

set which geometry or even the combination of 

geometries that best suits each category. The whole 

process is demonstrated by the block diagram in Figure 5.  

For a new image, it is represented using the 13 binary maps 

(off-line step). We evaluate the learned geometry model of 

each category w.r.t. its appropriate representation. 

Consequently, the test image will have a score towards 

each category and is assigned to the category with the 

highest score. We summarize the whole procedure in 

Algorithm 1. 

 

 

 
 

Fig. 5: Outline of the spatial representation using 3D scene geometry. Note that the codebook models and the stage models are obtained off-

line. For each category, the proper stage model is obtained. 

 

 
Fig. 6: Examples Adaptive Template maps obtained for different data set categories: person (top row), tv monitor (middle row) and bird 

(bottom row). Adaptive Template maps are learned on the dataset beforehand. 
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Adaptive Spatial Pyramids 

In this section, an adaptive approach to generate spatial 

image representation that suits each category is proposed. 

In particular, a spatial template map for each object 

category c is learned based on the segmentation ground-tr 

uth (GT) of its training images. This template map (TM) is 

obtained by summing up the existence of each pixel 

location belonging to category c from its ground truth 

images:  

 
Where n is the total number of images in the training 

dataset of the 𝑐𝑡ℎ category, and 𝐺𝑇𝑗(𝑥) is the groundtruth 

map of the  𝑗𝑡ℎ  image. Note that 𝐺𝑇𝑗(𝑥) is an indicator 

function: 𝐺𝑇𝑗(𝑥) = 1, if 𝑥 belongs to the 𝑐𝑡ℎ category and 

0 otherwise. We then apply a weighting scheme upon the 

generated TM in order to assign high weightings to higher 

frequency pixel positions, while suppressing other positions 

based on a Gaussian fitting function. Then, the binary mask 

map 𝑇𝑀′(𝑥) is defined as follows: 

 
The resulting class-specific binary maps, allow us to 

encode the spatial geometrical shape of each category. In 

Figure 6, we show example template maps obtained for 

different data set categories, together with their 

corresponding scene geometry instantiation.  

For unknown test image, we spatially represent it using 

each of those class-specific binary maps. We then evaluate 

its performance towards each data set category using the 

appropriate class-specific spatial representation and the 

learned class-models. The whole process is demonstrated 

by the block diagram shown in Figure 7. We summarize the 

whole procedure in Algorithm 2. 

 

 

 
Fig.7: Outline of class-specific spatial template learning using Ground-truth. Note that the codebook models and the class-specific models 

are obtained off-line. For a test image, we evaluate its performance using the learned class-specific models. 

 

Selective Spatial Pyramids 

In this section, we propose an approach for learning the 

spatial partitioning based on the Agglomerative 

Information Bottleneck theory (AIB) [8], [9]. In fact, the 

main goal of AIB is to reduce the dictionary of visual 

words V required for representing the categories Z. This 

means generating a compact set of words 𝑉2 from the 

original dictionary V so that the loss of mutual information 

to the categories Z is minimal:  

 
The functional 𝐷𝐾𝐿  [𝑝(𝑣, 𝑧)||𝑝(𝑣)𝑝(𝑧)] is the Kullback-

Leiber divergence. The joint distribution 𝑝(𝑣, 𝑧) is 

estimated from the training set by counting the number of 

occurrences of each visual word in each category. The 

information about 𝑣 captured by 𝑧 can be measured by the 

mutual information. , 

 

 

measuring the discriminative power 𝐼 that one random 

variable carries about the other. The merging of visual 

words is achieved by iteratively applying AIB for fusing 

those two visual words 𝑣𝑘 and 𝑣𝑗 into �̂� that causes the 

smallest decrease I(�̂� ; Z)in the original mutual 

information𝐼(𝑉; 𝑍): 

 
At each step, AIB performs the best possible merge 

𝑎𝑟𝑔𝑚𝑖𝑛𝑉 = ᵟ 𝐼𝑍(𝑉;�̂�). We extend the original AIB to learn 

the most appropriate class-specific spatial structure. 

Concretely, we first over-segment the images as [19]. For 

each category, we learn on the validation set the most 

suitable split-up by pruning the least informative image 

segments based on AIB. Hence, we relate each image 

segment ((𝑖𝑠) with the data set categories 𝑍, such that the 

probabilities of each segment 𝑝(𝑖𝑠) is calculated by 

summing up the probabilities of the vocabularies (𝑣𝑢) it 
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contains as: 

 
 

where 𝑖𝑠  is the segment index, 𝑅 is the total number of 

image segments, 𝑢 is vocabulary index within segment 𝑖𝑠. 

To evaluate the Discriminative Power (𝐷𝑃) of the 

generated segments w.r.t. the categories, we use the 

information content criteria: 

 

 
 

where 𝑐 is the category index, and 𝐶 is the total number of 

data set categories. Finally, the loss in 𝐷𝑃 is then obtained 

by: 

 
 

Formally, for each category the best spatial split-up 

(partitioning) 𝑠 Є 𝑆 is learned. Each split-up 𝑠 has a number 

of subregions 𝑅(𝑠). We propose that that the spatial 

partitioning matching function is created by computing the 

similarity between images 𝑋 and 𝑌 for partitioning 𝑠 by: 

 

 
where the different sub-regions 𝑖𝑠 for the partitioning s 

correspond to a different image segment, such as sky, 

ground, etc. The whole process is demonstrated by the 

block diagram in Figure 8. We summarize the procedure of 

the selective search in Algorithm 3. 

 
 

 
 

Fig. 8: Outline of class-specific spatial template learning using Ground-truth. Note that the codebook models and the class-specific models 

are obtained off-line. For a test image, we evaluate its performance using the learned class specific models. 

 

In Figure 10, we visualize our Selective SP approach [32]. 

The Decision Tree (DT) shown in Fig. 10(b) represents the 

input image in Fig. 10(a). Each node in DT is equivalent to 

an image block (segment), while arrows indicate 

neighboring blocks that are candidates for fusion. Each 

block can be merged with either its right or its bottom 

neighboring block (if any). Initially, all possible block 

fusions indicated by arrows are considered for fusion. 

However, the actual fusion occurred is between 𝑏3, and 𝑏6 

as it caused the minimum loss in discriminative power, see 

Fig. 10(c). As a result, 𝑏3 is updated to 𝑏(3,6), and the 

neighbors of both 𝑏3 and 𝑏6 are inherited (i.e. 𝑏2, 𝑏5, 𝑏9). 

This iterative procedure results in generating various spatial 

configurations, and it terminates when all blocks are 

merged. Hence, it converges when it reaches the standard 

BoW representation. 

 
 

Fig. 9: The Selective SP Example. (a) Given an input (3𝑋3) 

segmented image. (b) Each segment is represented by a node in a 

decision tree. (c) We calculate the discriminative power of each 

possible merging. See text for details. 

 

Experiments 

In this section, the proposed methods to generate flexible 

spatial pyramids will be compared to the existing state-of 

art rigid based pyramids in the context of object 

recognition. In Sec. 5.1, the data sets used in all 

experiments are given. The experimental setup used is 

shown in Sec. 5.2. 
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Data Sets 

Three independent data sets are used in the experiments. 

The first data set is a large dataset consisting of 3589 

images classified as 15 different categories representing the 

standard generic scene geometries. 151 “sky+ background 

+ ground”, 333 “background + ground”, 81 “sky + 

ground”, 212 “ground”, 139 “ground + Diag-BkgLR”, 132 

“ground + DiagBkgRL”, 75 “diagBkgLR”, 71 

“diagBkgRL”, 84 “box”, 57 “1sidewallLR”, 69 

“1sidewallRL”, 266 “corner”, 960 “persBkg”, 833 

“noDepth”, and 126 “tabPersBkg”. Images are take are 

under large variety of lighting conditions and imaging 

conditions (including indoor, outdoor, desert, cityscape, 

and other settings). We refer to this data set as “stages data 

set”. This data set is used to generate the binary mask maps 

(Sec. 3.2) used by the Generic Spatial Pyramids approach. 

Some example of images that are in this dataset are shown 

in figure 10.  

 

 
 

Fig. 10: Example images of stages data set. 

 

We also use Caltech-101 [10] and Pascal 2007 [6] datasets 

as benchmark data sets for evaluating our approach. The 

Pascal VOC 2007 data set [6] which consists of 9963 

images of 20 different classes with 5011training images 

and 4952 testing images. The Caltech-101 data set which 

contains 9144 images of 102 different categories. Some 

example of images that are in Caltech and Pascal data sets 

are shown in figure 11(a) and figure 11(b), respectively.  
 

 
 

Fig. 11: Example images of Caltech and Pascal data sets 

Experimental Setup 

To compare the different spatial pyramids, a standard BoW 

image classification approach is used. SIFT features [20] of 

16 × 16 pixel patches are used.  

For Caltech-101, we use 30 images per category for the 

training and 50 for testing. The general architecture follows 

[5]. The SIFT descriptors are extracted on a dense grid 

rather than interest points, as this procedure has been 

shown to yield superior performance for scene 

classification [3]. We use a codebook of size 300. 

Experiments are conducted over 10 random splits of the 

data, and the average per-class recognition rates are 

recorded for each run. The final result is reported as the 

mean accuracy and its standard deviation from the 

individual runs. 

For Pascal 2007, a standard multi-scale grid detector is 

taken together with a Harris-Laplace point detector [2], and 

a blob detector. SIFT descriptors are computed for all 

regions in the feature descriptor step, which are then 

quantized to a codebook of size 1000 visual-words. We 

used the standard average precision (AP) criteria to validate 

the performance on the object recognition task. The 

average precision is equivalent to the area under a 

precision-recall curve. Mean average precision (MAP) is 

used to evaluate the performance of the features over all the 

data set categories, which is obtained by averaging the AP 

over all categories. In our experiment, we compare our 

method with the standard three-levels Spatial Pyramid SP 

proposed by Lazebnik et al.[5] as the baseline. 

 

Generic Spatial Pyramids (Generic SP) 

In this section, the “Generic SP” approach proposed in Sec. 

4.1 is evaluated using 3D scene geometries. For each 

category, the geometry with the highest score is selected for 

representing it. In table 1, we show the obtained scores 

compared with the standard SP. It is demonstrated that the 

Generic SP improves the results by 8.5% and 9.0% 

(relative to the baseline) on the Pascal and Caltech data 

sets, respectively. We attribute this to, (i) the generic 3D 

geometries contains a wide range of spatial partitionings 

which cover most of the “real-world” object categories; (ii) 

the obtained representations of our approach, are tailored 

for each category, and therefore can efficiently capture the 

variabilities that exists within each category. 

 
 

 

 

 

 

Table. 1: Results obtained on Pascal (MAP score) and Caltech (Average per-class recognition rates) data sets using Generic SP. The 

proposed approach improves the scores over the standard SP proposed by Lazebnik et al.[5]. The best geometric split-up learned over 

multiple kernels MKL improves the overall performance significantly (see text). 
 

 
 

In Figure 12, we show some example images for various 

data set categories together with their most appropriate 3D 

scene geometries. These quantitative results illustrate that 

different 3D scene geometries are selected for representing 
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the various data set categories. For instance, the plane 

category is instantiated from the sky+gnd scene geometry. 

While, the bird category is instantiated from the box 

geometry. Hence, using 3D scene geometries is important 

for efficiently capturing the spatial layout per category.  
 

 
 

Fig. 12: Pascal data set examples with their learned geometries. 

Plane instantiated from sky+gnd, Bird from box geometry, TV 

monitor from gnd+DiagBkgLR and Cow from sky+backgnd+gnd 

 

Another advantage of the “Generic SP” scheme is its ability 

of reducing the dimensionality of the generated histograms. 

The maximum number of partitions that exist for 

representing a category is 6 (i.e., “box geometry”+ BoW). 

This leads to a final representation of size 6×|V |, where |V | 

is the size of the vocabulary. On the other hand, the number 

of partitions of the standard “SP” is 21. This leads to a final 

representation of size 21 × |V |. Finally, we investigate the 

use of “Multiple Kernels Learning (MKL)” proposed by 

Gehler et al. [21], for the selection of the most appropriate 

geometry or the combination of geometries per category 

among multiple kernels. The results, in table1, demonstrate 

the importance of using multiple kernels for our approach. 

This improves the performance significantly by 16.0% and 

19.7% (relative to the baseline) on Pascal and Caltech data 

sets, respectively. 

 

Adaptive Spatial Pyramids (Adaptive-SP) 

In this section, we evaluate the “Adaptive pyramid” method 

proposed in Sec. 4.2 which makes use of the Ground-Truth 

(GT) information of each category for learning its 

representative mask map. In table 2, we show the 

performance scores obtained on the Pascal data set based 

on the adaptive SP scheme w.r.t the standard three-levels 

Spatial Pyramid SP proposed by Lazebnik et al.[5] as the 

baseline. It is demonstrated that the “Adaptive SP” 

approach improves over the baseline SP. An improvement 

of 6.4% (relative to the baseline) is achieved. The main 

advantages of this method is the computational complexity 

of the learning approach as it is simple and fast to compute. 

However, it needs the GT, in order to obtain the mask maps 

needed for this approach. For this reason, we do not peruse 

this experiment on Caltech data set; as it does not contain 

the required GT.  
 

Table. 2: MAP obtained on Pascal data set and Average 

Recognition Rate obtained on Caltech data set based on the 

Adaptive SP, the GenericSP and the Selective SP schemes. 
 

 
 

In the first column of Fig. 13, we show some example 

images from a number of object categories together with 

their selected partitioning based on the Adaptive SP 

approach. Interestingly, these quantitative results illustrated 

that the learned adaptive SP split-ups converge to one of 

the Generic 3D geometries. For instance, for the Cow 

category it is derived that its TM shape is an instantiation of 

its best performing Generic shape (i.e., SkyBkgGnd). They 

share similar characteristics: the sky is located in the upper 

part of the image, the main foreground object is located 

within the middle part, while the lowest image part contains 

ground information. 
 

 
 

Fig. 13: Pascal data set examples for the spatial split-up learned 

based on (a)Adaptive, (b) Selective and (c) Generic SP 

approaches, respectively. Top row, shows the results on the “Cow 

category”. Bottom row, shows the results on the “Bird category”. 

The Adaptive generates coarser representations, Selective learns 

finer representations, Adaptive learns coarser representations, and 

Generic SP learns in-between representations. This justifies why 

improves over both the Adaptive and the Generic SP methods. 

Moreover, Selective and Adaptive partitions are instantiated from 

3D scene geometries (see text). 

 

Table. 3: Average-Precision Results for all classes of the PASCAL VOC 2007 database. Comparison on the average accuracy of the original 

three level pyramid representation. The second and the third rows show the novel pyramid representations results using our Generic SP and 

Selective SP approaches, respectively. 
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Selective Spatial Pyramids (Selective SPs) 

In this experiment, we evaluate the Selective SP proposed 

in Section 4.3, in which the most appropriate “partitioning” 

is learned by eliminating the least informative partitions. 

The quantitative results, in table 1, show an improvement 

of 12.4% and 14% on Pascal and Caltech data sets, 

respectively. The main advantage of this method, is the 

ability to learn a compact yet discriminative partitioning 

(from its initially over-segmented images) which can 

efficiently fits each category.  

The performance difference between the standard spatial 

pyramid and our proposed Generic and Selective pyramids 

using a vocabulary of size 1000 words. Table 3 shows a 

relative performance improvement of 8.7% and 12.2% on 

the Mean Average-Precision for having dynamic pyramid 

representations based on our approaches compared to those 

obtained using the standard three-level spatial pyramid on 

object recognition.  

In Fig. 13, we show some example categories with their 

learned spatial partitioning based on the selective, the 

adaptive, and the generative SP approaches. These 

quantitative results demonstrate that the adaptive SP 

approach learns coarser spatial image representations, 

while the selective SP learns the finest representation. On 

the other hand, the Generic-SP approach captures an in-

between spatial partitioning. This justifies the performance 

improvement obtained based on the selective-SP approach 

over the adaptive-SP, and the generative-SP approaches. It 

should also be noticed from these results that the generated 

spatial split-ups of both the selective, and the adaptive SP 

approaches are instantiations from the standard generic 3D 

geometries. For instance, the adaptive-SP (coarser shape) 

and the selective-SP (finer shape) partitionings learned for 

representing the “cow” and the “bird” categories; are 

instantiations from the “skyBkgGnd” and “box” 

geometries, respectively. We also show (in table 2) that our 

best results are based on “Generic SP + MKL” (a relative 

improvement of 16% vs. 12.4% for Selective SP to state-

of-the-art SP results). 

Finally, we compare the computational complexity between 

the proposed methods with respect to the standard SP in 

terms (i) SP levels, (ii) dimensionality and (iii) speed. The 

standard Lazebnik SP has 3 levels (i.e., BoW + 4+16) and a 

dimensionality of 21 × 𝑉. On the other hand, the Generic, 

Adaptive, and Selective SPs have an average of 2 levels 

(i.e., BoW + 2). This leads to a dimensionality of 3 × 𝑉 and 

6×V for the average and worst case, respectively. 

Regarding the speed, experimentally a typical run using a 

vocabulary of size 1000 words on pascal 2007 data set, the 

classification time based on Lazebnik SP takes 220 

seconds, while it takes around 72 seconds with our 

Selective SP or Generic SP approaches. Selective SP has 

the highest computational complexity, although it generates 

compact yet efficient spatial partitioning for each category. 

On the other hand, Generic SP approach balances between 

accuracy, dimensionality, and speed on both training and 

testing phases.  

To summarize, there is a trade-off between the complexity 

of the learning algorithm, and the required accuracy. We 

conclude that the Generic SP approach balances between 

the accuracy and the computational complexity. Therefore, 

we consider it as our baseline approach. In the next section 

we compare this method with state-of-the-art methods. 

 

Comparison with State-of-the-Art 

In this section, we first compare the Selective SP with 

several recent related state-of-the-art approaches which do 

some implicit segmentation and build the representation of 

the image using these segmentations. We then investigate 

the Generic SP performance under varying vocabulary 

sizes. Finally, we compare our approach to state-of-the-art 

methods based on a single type of descriptor.  

 

Comparison: Related Approaches 

Comparison is done with several recent related state-of-the-

art approaches of [22], [24], which incorporate some 

implicit segmentation and build the representation of the 

image using these segmentations. Concretely, [22] aims to 

recognize the scene type within image regions rather than 

the entire image, which is consistent with object detection 

more than object classification. On the other hand, the work 

of [23, 24] addresses the problem of the ambiguity of visual 

words which is partly caused by discarding spatial 

information. In particular, [23] aims to use category-

specific color attention maps (using two different color 

descriptors, Color Name and HUE) to weight local shape 

features (e.g., SIFT features with 1000 visual words), 

obtaining a MAP score of 50.2% using three different 

features vs. 59.7% with SIFT features only (of 1000 visual 

words) using our approach (table 1). [24] also uses the idea 

of weighting local features. However, they adopt semantic 

contexts (rather than color) to generate attention maps and 

preserve the most discriminative context for visual word.  

The method in [24] obtains an absolute improvement of 

5.3% compared with the standard SP approach. While, our 

proposed method obtains an absolute improvement of 8.2% 

compared with the standard SP approach, see table 1. 

Moreover, the method in [24] obtains an accuracy 64.5% 

MAP using four different features with the standard SP 

representation. However, we obtain 63.6% MAP based on 

our proposed method with C-SIFT features only (see table 

5). In summary, we demonstrated that our proposed 

approach outperforms the state-of-the-art methods using 

only one type of feature. 

 Further comparison, is done between the proposed 

approaches in this paper with recent work of [25], which 

also aims at addressing the fixed pre-defined partitioning 

assumption of the standard spatial pyramid that suits all the 

dataset categories. However, minor gain is obtained on 

Pascal VOC 2007 dataset compared to our approach 

(50.8% vs. 57.9% using 1000 visual words, see table 1). In 

particular, the learning approach of [25] recursively learn a 

space of grids starting with the full image as a grid of one 

cell. The finest grid possibly separates every pixel the 

image. They iteratively execute Gradient-descent to find 

the best grid at a certain depth. The resulting partitions are 

grids with pronounced boundaries. The learned grids 

outperform the standard SP at lower depths (i.e., depth 4: 

“5 partitions”). The algorithm tends to learn finer partitions 

(on average 5 partitions, not including BoW 

representation), and, hence having higher dimensionality. 

 

Discussion: We attribute the better performance of our 

approach due to the fact that it tends to learn coarser spatial 

image partitions with smoother boundaries. This enables to 

capture the variations (scale, translation) that exist within 

each class. The use of the BoW representation helps in 

handling the background clutter and occlusions. In 
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particular, the learning algorithm of our Selective SP 

approach is initially based on an over-segmentation step. 

Hence, the boundaries of the generated segments are 

smooth in nature. The algorithm exploits the information 

theory in order to iteratively fuse the least informative 

segments. Moreover, we directly optimize over the 

Average Precision (AP) criteria till we reach the BoW 

image representation. Consequently, the spatial partitions 

are selected which give the highest AP score on the 

validation set. The resulting partitions tend to be coarse (on 

average 2 partitions + BoW representation) and, hence, 

having lower dimensionality. In conclusion, our approach 

has the ability to balance efficiently between invariance 

(not too fine) and discrimination power (not too coarse). 

Comparison: Multiple Vocabulary Sizes 

In Figure 14, we compare the performance of our approach 

to the state-of-art SP using various vocabulary sizes (i.e., 

1k, 2k, 4k and 6k) on the Pascal data set. The results show 

that our approach outperforms the standard state-of-art SP 

over all the examined vocabularies. Similar results are 

obtained on Caltech datasets under various sizes. 

Moreover, our results confirm the experimental findings of 

the work of [21], where the use of MKL improves the 

overall performance for various vocabulary sizes. 

 
 

 

 

 
 

Fig. 14: Comparison between our Generic SP and Generic SP + MKL approaches with standard SP (denoted as LZ) using the SIFT 

descriptor under different vocabulary sizes on Pascal (left) and Caltech (right) data sets, (see text). 

 

Comparison: State-of-the-Art 

Comparison with previously published results obtained 

using one type of descriptor are shown in Table 4 and 

Table 5 for the Caltech and the Pascal data sets, 

respectively. 

 

Caltech. A performance improvement of 4.5% is obtained 

based on our Selective SP approach w.r.t. the best 

performing method as shown in table 5. Moreover, an 

improvement of 9.8% is obtained based on our Generic SP 

+ MKL approach.  

Furthermore, we compare our approach with other recent 

work described in [29,26] which achieves comparable 

results with our approach using the standard spatial 

partitioning. The main difference between our work and the 

work in [29], [26] is that we use the classical bag-of-words 

approach with the standard K-means vector quantization 

within our novel spatial pooling approach. In contrast, they 

use an alternative coding scheme called Linear Coordinate 

Coding (based on sparse code and max pooling), which is 

shown recently to significantly outperforms the standard 

vector quantization scheme, leading to state-of-the-art 

performance on several benchmark datasets using a single 

type of descriptor. Therefore, we investigate the extension 

our proposed approach with the aforementioned new 

coding schemes. We show that the performance of our 

approach increases by using better coding (i.e., sparse 

codes) scheme. A relative performance improvement of 

13.4% is obtained based on our Selective SP approach with 

respect to the best performing method as shown in table 5. 

Moreover, an improvement of 18.2% is obtained based on 

our Generic SP + MKL approach.  

Pascal. Compared to the work of Van de Sande et al. [30] 

using the SIFT descriptor and a vocabulary of size 4k, an 

improvement of 7.9% is obtained based on our Generic SP. 

We obtain an improvement of 10.4% based on the Selective 

SP approach. An improvement of 15.0% is obtained based 

on our Generic SP + MKL approach using the SIFT 

features.  

Compared with the best performing method using the C-

SIFT descriptor (i.e., 𝝌𝟐 with a 2 kernel) in [30], we obtain 

a performance improvement of 3.0% based on our 

Adaptive SP approach. We also obtain an improvement of 

5.5% and 8.3% based on our Generic SP and Selective SP 

approaches, respectively. Finally, an improvement of 

12.4% is obtained based on the Generic SP + MKL 

approach. Note that again better performance has been 

reported with multiple descriptor types (e.g., SIFT, 

opponentSIFT, rgSIFT, C-SIFT, RGB-SIFT with 𝝌𝟐 kernel 

achieved 60.5% [30]). For this purpose, we evaluate our 

proposed approach using multiple descriptors (see table 5). 

We show that the final performance of our approach 

benefits from using multiple descriptors as demonstrated in 

[30]. In summary, we demonstrated that our proposed 

approach outperforms the state-of-the-art methods on both 

Caltech-101 and Pascal 2007 data sets using only one type 

of feature.We also show that the final performance of our 

approach increases by using multiple descriptors, and better 

coding (i.e., sparse codes) schemes. 
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Table 4: Results obtained by several recognition schemes using a single type descriptor and intersection kernel on Caltech data set, see text 

for details. The numbers shown inside brackets in [26] are the codebook sizes used in this work. 
 

 
 

 

Table 5: Comparison of our approach with state-of-art methods reported in literature on PASCAL VOC 2007 using a vocabulary of size 

$4000$ (see text). 
 

 
 

Conclusion 

Spatial Pyramids have been proposed which are steered by 

the 3D scene geometry. The geometry of a scene is 

measured based on image statistics taken from a single 

image. After the estimation of the scene geometry, the 

corresponding SP is selected as the geometrical 

representation. From large scale experiments on the Pascal 

VOC2007 and Caltech101, it can be derived that SPs which 

by selective search outperforms the standard SPs with 

12.4% and 14.0% for Pascal VOC 2007 and Caltech101 

respectively. The use of 3D scene geometry, to select the 

proper SP configuration, provides an even higher 

improvement of 16.0% and 19.7% respectively. 

For future work, the proposed system will be extended to 

automatically learn a hierarchal class-specific adaptive 

shape model, where the highest levels will incorporate the 

important localization and/or segmentation knowledge for 

efficiently capturing the ROI, for restricting the objects 

spatial location to work with. 
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