

WWJMRD 2017; 3(8): 194-197 www.wwjmrd.com International Journal Peer Reviewed Journal Refereed Journal $Indexed\ Journal$ UGC Approved Journal Impact Factor MJIF: 4.25 e-ISSN: 2454-6615

Prof. Ali Hassan Mohammed

University of Kufa, Faculty of Education for Girls, Department of Mathematics, Iraq

Noora Ali Habeeb

University of Kufa, Faculty of Education for Girls. Department of Mathematics, Iraq

Solving New Type of Linear Partial Differential Equations by Using New Transformation

Ali Hassan Mohammed, Noora Ali Habeeb

Abstract

Our aim in this paper is to introduce a new transform is known Al-Zughair transform for a function and how to use it to solve ODEs and PDEs.

Keywords: Linear Partial Differential Equations, a new transform, Al-Zughair transform

Introduction

Al-Zughair transform plays an important role to solve ODE and PDE with variable coefficients and this transformation appeared for the first time at 2017 [2].

Preliminaries

Definition (1) [1]:

Let f is defined function at period (a, b) then the integral transformation for f who's its symbol F(s) is defined as:

$$F(s) = \int_{a}^{b} k(s, x) f(x) dx$$

Where k is a fixed function of two variables, called the kernel of the transformation and a, b are real numbers or $\mp \infty$, such that the above integral is convergent.

Definition (2) [2]: Al-Zughair transformation [Z(f(x))] for the function f(x) where $x \in$ [1, e] is defined by the following integral:

$$Z(f(x)) = \int_{1}^{e} \frac{(\ln x)^{s}}{x} f(x) dx = F(s)$$

Such that this integral is convergent, s is positive constant. From the above definition we can write:

$$Z(u(x,t)) = \int_{a}^{e} \frac{(\ln t)^{s}}{t} u(x,t)dt = v(x,s)$$

Such that u(x,t) is a function of x and t.

Property (1): (Linear property)

This transformation is characterized by the linear property, that is

$$Z[Au_1(x,t) \pm Bu_2(x,t)] = AZ[u_1(x,t)] \pm BZ[u_2(x,t)]$$

Correspondence:

Prof. Ali Hassan Mohammed University of Kufa, Faculty of Education for Girls, Department of Mathematics, Iraq

Where A and B are constants while, the functions $u_1(x,t)$, $u_2(x,t)$ are defined when $t \in [1,e]$.

Proof:

$$Z[Au_{1}(x,t) \pm Bu_{2}(x,t)] = \int_{1}^{e} \frac{(\ln t)^{s}}{t} (Au_{1}(x,t) \pm Bu_{2}(x,t)) dt$$
$$= \int_{1}^{e} \frac{(\ln t)^{s}}{t} Au_{1}(x,t) dt$$
$$\pm \int_{1}^{e} \frac{(\ln t)^{s}}{t} Bu_{2}(x,t) dt$$

$$= A \int_{1}^{e} \frac{(\ln t)^{s}}{t} u_{1}(x,t) dt$$

$$\pm B \int_{1}^{e} \frac{(\ln t)^{s}}{t} u_{2}(x,t) dt$$

$$= AZ[u_{1}(x,t)] \pm BZ[u_{2}(x,t)]$$

Al-Zughair transformation for some fundamental functions is given in table (1) [2]:

ID	Function, $f(x)$	$F(s) = \int_{1}^{e} \frac{(\ln x)^{s}}{x} f(x) dx = Z(f(x))$	Regional of convergence
1	k ; k = constant	$\frac{k}{(s+1)}$	s > -1
2	$(\ln x)^n$, $n \in R$	$\frac{1}{(s+(n+1))}$	s > -(n+1)
3	$\ln(\ln x)$	$\frac{-1}{(s+1)^2}$	s > -1
4	$(\ln(\ln x))^n$, $n \in z^+$	$\frac{(-1)^n n!}{(s+1)^{n+1}}$	s > -1
5	sin(a ln(ln x))	$\frac{-a}{(s+1)^2+a^2}$	s > -1 a is constant
6	cos(a ln(ln x))	$\frac{s+1}{(s+1)^2+a^2}$	s > -1 a is constant
7	sinh(a ln(ln x))	$\frac{-a}{(s+1)^2-a^2}$	s+1 > a a is constant
8	cosh(a ln(ln x))	$\frac{s+1}{(s+1)^2 - a^2}$	s+1 > a a is constant

From Al-Zughair transform definition and the above table, we get:

Theorem (1):

If Z(u(x,t)) = v(x,s) and a is constant, $Z((\ln t)^a u(x,t)) = v(x,s+a).$

$$Z((\ln t)^a u(x,t)) = \int_1^e \frac{(\ln t)^s}{t} (\ln t)^a u(x,t) dt$$
$$= \int_1^e \frac{(\ln t)^{s+a}}{t} u(x,t) dt = v(x,s+a) \blacksquare$$

Example (1): By using the table (1) of Al-Zughair transformation we will consider that:

Example (1): By using the table (1) of Al-Zughair transformation we will consider that:
$$f(x,t) = 4x^2 \ln t + x^3$$

$$Z(f(x,t)) = \int_{1}^{e} \frac{(\ln t)^{s}}{t} f(x,t) dt$$

$$= \int_{1}^{e} \frac{(\ln t)^{s}}{t} (4x^{2} \ln t + x^{3}) dt$$

$$= 4x^{2} \int_{1}^{e} \frac{(\ln t)^{s+1}}{t} dt + x^{3} \int_{1}^{e} \frac{(\ln t)^{s}}{t} dt$$

$$= 4x^{2} \frac{(\ln t)^{s+2}}{s+2} \Big|_{1}^{e} + x^{3} \frac{(\ln t)^{s+1}}{s+1} \Big|_{1}^{e} = \frac{4x^{2}}{s+2} + \frac{x^{3}}{s+1}$$

Example (2): To find Al-zughair transform of $f(x,t) = \ln x (\ln t)^3 + x \sin \ln(\ln t)$ $Z(f(x,t)) = Z(\ln x (\ln t)^3 + x \sin \ln(\ln t))$ $= Z(\ln x (\ln t)^3) + Z(x \sin \ln(\ln t))$

Definition (3) [2]:

Let u(x,t) be a function where $t \in [1,e]$ Z(u(x,t)) = v(x,s), u(x,t) is said to be an inverse for the Al-Zughair transformation and Z^{-1} $\mathcal{T}^{-1}(v(x,s)) = u(x,t)$, where returns the transformation to the original function. For example

1)
$$Z^{-1} \left[\frac{-\sin x}{(s+1)^2} \right] = \ln(\ln t) \sin x$$
 , $s > -1$.
2) $Z^{-1} \left[\frac{x}{(s+1)^2} \right] = x(\ln t)^4$, $s > -5$.

2)
$$Z^{-1}\left[\frac{x}{s+5}\right] = x(\ln t)^4$$
 , $s > -5$.

3)
$$Z^{-1} \left[\frac{\sin x (s+1)}{(s+1)^2 - 4} \right] = \sin x \cosh(2 \ln(\ln t))$$
, $|s+1| > 2$.

 $Z^{-1}(v_1(x,s)) = u_1(x,t),$ **Property (2)**: $Z^{-1}(v_2(x,s)) = u_2(x,s),$..., $Z^{-1}(v_n(x,t)) = u_n(x,s)$ and $a_1, a_1, ..., a_n$ constants then,

$$Z^{-1}[a_1v_1(x,s) + a_2v_2(x,s) + \dots + a_nv_n(x,s)]$$

$$= a_1u_1(x,t) + a_2u_2(x,t) + \dots$$

$$+ a_nu_n(x,t)$$

Solving New Type of Linear Partial Differential **Equations by Using New Transformation Definition (4):**

The equation

$$\begin{aligned} a_o(\ln t)^n u_t^{(n)}(x,t) + a_1(\ln t)^{n-1} u_t^{(n-1)}(x,t) + \cdots \\ &+ a_{n-1}(\ln t) u_t(x,t) \\ + a_n u(x,t) = f(x,t) \end{aligned}$$

Where a_0 , a_1 , ..., a_n are constants and f(x,t) is a function of x and t, we will call it Ali's Equation in partial Differential equation.

Theorem (2):

If the function $u(x, \ln t)$ is defined for $t \in [1, e]$ and its derivatives $u_t(x, \ln t), u_{tt}(x, \ln t), \dots, u_t^{(n)}(x, \ln t)$

$$\begin{split} Z\big[(\ln t)^n u_t^{(n)}(x,\ln t)\big] &= u_t^{(n-1)}(x,1) + (-1)^n (s+n) u_t^{(n-2)}(x,1) + (-1)^{n-1} (s+n) \big(s+(n-1)\big) u_t^{(n-3)}(x,1) + \dots + (s+n) \big(s+(n-1)\big) \dots \big(s+2\big) u_t(x,1) + (-1)^n (s+n) \big(s+(n-1)\big) \dots \big(s+2\big) (s+1) v(x,s). \end{split}$$

Proof:

If n = 1

If
$$n = 1$$

$$Z(\ln t \, u_t(x, \ln t)) = \int_{1}^{e} \frac{(\ln t)^s}{t} (\ln t) u_t(x, \ln t) dt$$

$$= \int_{1}^{e} \frac{(\ln t)^{s+1}}{t} u_t(x, \ln t) dt$$
Let $y = (\ln t)^{s+1} \Rightarrow dy = (s+1) \frac{(\ln t)^s}{t} dt$

$$dh = \frac{u_t(x, \ln t)}{t} dt \Rightarrow h = u(x, \ln t)$$

$$\int_{1}^{e} \frac{(\ln t)^{s+1}}{t} u_t(x, \ln t) dt$$

$$= (\ln t)^{s+1} u(x, \ln t) dt$$

$$= (\ln t)^{s+1} u(x, \ln t) dt$$

$$= (s+1) \int_{1}^{e} \frac{(\ln t)^s}{t} u(x, \ln t) dt$$

$$= u(x, 1) - (s+1) Z(u(x, \ln t))$$

If
$$n = 2$$

$$Z((\ln t)^{2}u_{tt}(x, \ln t)) = \int_{1}^{e} \frac{(\ln t)^{s+2}}{t} u_{tt}(x, \ln t) dt$$
Let $y = (\ln t)^{s+2} \Rightarrow dy = (s+2) \frac{(\ln t)^{s+1}}{t} dt$

$$dh = \frac{u_{tt}(x, \ln t)}{t} dt \Rightarrow h = u_{t}(x, \ln t)$$

$$\int_{1}^{e} \frac{(\ln t)^{s+2}}{t} u_{tt}(x, \ln t) dt$$

$$= (\ln t)^{s+2} u_{t}(x, \ln t) dt$$

$$= (\ln t)^{s+2} u_{t}(x, \ln t) dt$$

$$= (\ln t)^{s+2} u_{t}(x, \ln t) dt$$

$$= u_{t}(x, 1) - (s+2) Z(\ln t u_{t}(x, \ln t))$$

$$= u_{t}(x, 1) - (s+2) Z(\ln t u_{t}(x, \ln t))$$

$$= u_{t}(x, 1) - (s+2) U(x, 1)$$

$$+ (s+2)(s+1) Z(u(x, \ln t))$$
If $n = 3$

 $Z((\ln t)^3 u_{ttt}(x,\ln t)) = \int_0^\varepsilon \frac{(\ln t)^{s+3}}{t} u_{ttt}(x,\ln t) dt$ $y = (\ln t)^{s+3} \implies dy = (s+3)\frac{(\ln t)^{s+2}}{t}dt$ $dh = \frac{u_{ttt}(x, \ln t)}{t} dt \implies h = u_{tt}(x, \ln t)$ $\int_{-\infty}^{\infty} \frac{(\ln t)^{s+3}}{t} u_{ttt}(x, \ln t) dt$ $-(s+3)\int_{-t}^{e}\frac{(\ln t)^{s+2}}{t}u_{tt}(x,\ln t)dt$ $= u_{tt}(x,1) - (s+3)Z((\ln t)^2 u_{tt}(x,\ln t))$

 $= u_{tt}(x,1) - (s+3)u_t(x,1) + (s+3)(s+2)u(x,1)$ $-(s+3)(s+2)(s+1)Z(u(x,\ln t)).$

And so on, $Z\big[(\ln t)^n u_t^{(n)}(x,\ln t)\big]$ $= u_t^{(n-1)}(x,1)$ $+(-1)^n(s+n)u_t^{(n-2)}(x,1)$ $+(-1)^{n-1}(s+n)(s+n)$ $+(n-1)u_t^{(n-3)}(x,1)+\cdots$ +(s+n)(s+(n-1))...(s $+2)u_{t}(x,1)$ $+(-1)^n(s+n)(s+(n-1))$... (s +2)(s+1)v(x,s).

Example (1): To solve the differential equation $\ln t \, u_t(x, \ln t) - 3u(x, \ln t) = x \sin(2\ln(\ln t))$ u(x, 1) = -5

we take Z-transform to both sides of above equation we get

$$\begin{split} Z[\ln t \, u_t(x, \ln t)] &- 3Z[u(x, \ln t)] = xZ[sin(2\ln(\ln t))] \\ u(x, 1) &- (s+1)Z[u(x, \ln t)] - 3Z[u(x, \ln t)] \\ &= \frac{-2x}{(s+1)^2 + 4} \\ -5 &- (s+4)Z[u(x, \ln t)] = \frac{-2x}{(s+1)^2 + 4} \\ Z[u(x, \ln t)] &= \frac{2x}{(s+4)((s+1)^2 + 4)} - \frac{5}{(s+4)} \end{split}$$

By take Z^{-1} -transform to both side of above equation we

$$u(x,t) = Z^{-1} \left[\frac{A(x)(s+1) + B(x)}{((s+1)^2 + 4)} + \frac{C(x)}{(s+4)} \right] - 5(\ln t)^3$$

$$A(x) = \frac{-2x}{13} , B(x) = \frac{6x}{13} , C(x) = \frac{2x}{13}$$

$$u(x, \ln t) = Z^{-1} \left[\frac{-2x}{13} \frac{(s+1)}{((s+1)^2 + 4)} \right] + Z^{-1} \left[\frac{6x}{13} \frac{1}{((s+1)^2 + 4)} \right] + Z^{-1} \left[\frac{2x}{13} \frac{1}{(s+4)} \right] - 5(\ln t)^3$$

$$= \frac{-2x}{13} \cos(2\ln(\ln t)) - \frac{6x}{26} \sin(2\ln(\ln t)) + \frac{2x}{13} (\ln t)^3 - 5(\ln t)^3$$

Example (2): To find the solution of the differential equation

$$(\ln t)^2 u_{tt}(x, \ln t) - \ln t u_t(x, \ln t) + u(x, \ln t)$$

= $\ln(\ln t) \sin x$;
 $u(x, 1) = 1$, $u_t(x, 1) = 3$

we take Z-transform to both sides of above equation we get

 $Z[(\ln t)^2 u_{tt}(x, \ln t)] - Z[\ln t u_t(x, \ln t)] + Z[u(x, \ln t)] =$

$$\begin{aligned} \sin x \, Z[\ln(\ln t)] \\ u_t(x,1) - (s+2)u(x,1) + (s+2)(s+1)Z[u(x,\ln t)] \\ - u(x,1) + (s+1)Z[u(x,\ln t)] \\ + Z[u(x,\ln t)] &= \frac{-\sin x}{(s+1)^2} \\ -s + (s+2)^2 Z[u(x,\ln t)] &= \frac{-\sin x}{(s+1)^2} \\ Z[u(x,\ln t)] &= \frac{-\sin x}{(s+1)^2(s+2)^2} + \frac{s}{(s+2)^2} \\ &= \frac{-\sin x}{(s+1)^2(s+2)^2} + \frac{s+2}{(s+2)^2} - \frac{2}{(s+2)^2} \end{aligned}$$
 By take Z^{-1} -transform to both side of above equation we

get:

$$u(x, \ln t) = Z^{-1} \left[\frac{-\sin x}{(s+1)^2 (s+2)^2} \right] + \ln t$$

$$+ 2(\ln t)(\ln(\ln t))$$

$$= \frac{A(x)(s+1) + B(x)}{(s+1)^2} + \frac{C(x)(s+2) + D(x)}{(s+2)^2} - \ln t$$

$$+ 2\ln(\ln t)$$

$$A(x) = 2\sin x, B(x) = -\sin x, C(x) = -2\sin x, D(x)$$

$$= -\sin x$$

$$u(x, \ln t) = 2\sin x + (\ln(\ln t))\sin x - 2(\ln t)\sin x$$

$$+ (\ln t)(\ln(\ln t))\sin x + \ln t$$

$$+ 2(\ln t)(\ln(\ln t))$$

References:

- Gabriel Nagy, "Ordinary Differential Equations" Mathematics Department, Michigan State University, East Lansing, MI, 48824.October 14, 2014.
- Mohammed, A.H., Sadiq B. A., Hassan, A.M. "Solving New Type of Linear Equations by Using New Transformation" **EUROPEA ACADEMIC** RESEARCH Vol. IV, Issue 8/ November 2016.