
 

~ 32 ~ 

 
WWJMRD 2021; 7(2): 32-34 

www.wwjmrd.com 

International Journal 

Peer Reviewed Journal 

Refereed Journal 

Indexed Journal 

Impact Factor SJIF 2017: 

5.182 2018: 5.51 / ISI 2020-

2021: 1.361 

E-ISSN: 2454-6615 

 

Kwasi Baah Gyamfi 

Department of Mathematics, 

Kwame Nkrumah University 

of Science and Technology, 

Kumasi, Ghana. 

 

Abraham Aidoo 

Department of Mathematics, 

Kwame Nkrumah University 

of Science and Technology, 

Kumasi, Ghana. 

 

Emmanuel Akweittey 

Department of Mathematics, 

Presbyterian University 

College Ghana. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correspondence: 

Kwasi Baah Gyamfi 

Department of Mathematics, 

Kwame Nkrumah University 

of Science and Technology, 

Kumasi, Ghana. 

 

 

Some Applications of Lagrange’s Theorem in Group 

Theory Using Numerical Examples 
 

Kwasi Baah Gyamfi, Abraham Aidoo, Emmanuel Akweittey 

 
Abstract 
We present Lagrange’s theorem and its applications in group theory. We use Groups, Subgroups, 

Cyclic group, and Subcyclic groups, Fermat’s Little theorem and the Wilson’s theorem to illustrate the 

results. 
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Introduction 

Theorems are paramount because of how they can be applied in Mathematics. As such, a good 

theorem should contribute substantially to develop new ideas. We want to introduce the single 

most important theorem in finite group theory, The Lagrange theorem. The Lagrange theorem 

states that the order of any subgroup of a finite group divides the order of the group itself and 

is equal to the number of cosets of the subgroup of the group. The Lagrange theorem is critical 

in analysing groups and other concepts in Mathematics and is very useful in connecting group 

theory and number theory because many theorems in elementary number theory and their 

proofs require advanced algebraic know-how. 

Mamidi Sai Akash [1], presented applications of Lagranges theorem in relation to the order of 

the element in a finite group, the order of a group, the converse of Lagranges theorem, and the 

Fermats little theorem. Domenico Cantone et al [3], reported on the computerized verification 

of Lagranges theorem, carried out with the proof assistant /EtnaNova/Referee. The Lagrange 

theorem has many applications, but these applications are not widely known in Mathematics 

and hence make knowledge of the Lagrange theorem nominal and sometimes 

underappreciated. This piece of work sees to give a methodological presentation on the various  

applications of the Lagrange theorem and some numerical examples are presented. 
 

Preliminaries  

In this section we give some supporting theorems and their proofs.   
 

Theorem   

Let G  be a group. A nonempty subset H  of G  is a subgroup of G if and only if either of 

the following holds;      

(1). For all ,a b H , ab H and 
1a H−  . 

(2). For all ,a b H , 
1ab H−  .: 

 

Proof:      

If H  is a subgroup, (1) and (2) are obviously true. Conversely, suppose H  satisfies (1). Then 

for any 
1,a H a H−  . Hence, 

1e aa H−=  . Therefore, H  is a subgroup. Next, 

suppose that H  satisfies (2). Let ,a b H . Then 
1e bb H−=  .  

Hence 
1 1b eb H− −=  . Therefore 

1 1( )a b H− −  . Hence H  subgroup of G . 
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Theorem 

Every cyclic group is Abelian.  

 

Proof 

The elements of cyclic groups are of the form 
ia . 

Commutativity amounts to proving  

that 
i j j ia a a a= . 

i j i ja a a +=  

= 
j ia +

addition of integers is commutative 

= 
j ia a  

 

Fundamental Theorem 

Presentation on the various applications of the Lagrange 

theorem and some numerical examples are presented. 
 

Lagrange’s Theorem 

Let G  be a finite group, and H  any subgroup of G . The 

order of G  is a multiple of the order of H . Thus the order 

of H divides the order of G . 
 

Proof: 

Suppose that G  has order n and that H  has order m. We 

prove that m divides n. Since the cosets of H  partition G , 

each element of G  lies in exactly one coset. Let the number 

of distinct cosets be k . Each coset has exactly m elements, 

the same number as H . Thus, as each of the k  cosets has 

m  elements, there are k m  elements in all. Therefore,  

n  = k m , and m  divides n . 
 

Theorem 

If p  is a prime and gcd( , ) 1a p = , then 

1 1(mod )pa p−  . In the notation of modular arithmetic, 

this is expressed as, if 2a =  and 7p = , 72 128= , and 

128 2 7 18− =   is an integer multiple of 7 .  
 

Proof: 

Let { | (mod )}pS a a a p=  for p  prime and a N . 

Then 0 S because 0 0p =  for all p  so 0 0(mod )p p

Now assume k S  and (mod )pk k p . We want to 

show that for 1k S+  , ( 1) ( 1)(mod )pk k p+  + . By 

the Binomial theorem 
 

1

1
( 1) 1 ( ) 1(mod )

pp p p p p j

jj
k k k k p

− −

=
+ = + +  +  

If gcd( , ) 1a p = ,then by cancellation (mod )pa a p  

Implies 1 1(mod )pa p−  . If a is negative, then 

(mod )a r p for some r , where 0 1r p  − . Thus 

(mod )p pa r r a p   . 
 

Theorem 

If p is prime, then ( 1)! 1(mod )p p−  − . 
 

Lemma 

Let gcd( , )d a m= . If |d b , then (mod )ax b m  

has exactly d solutions (mod )m . 

Proof: If 2p = , then (2 1)! 1 1(mod 2)− =  −  and if 

3p = , then (3 1)! 2 1(mod3)− =  − . Thus assume p  

is a prime greater than 3. Since ( 1)! 1(mod )p p−  − , it 

suffices to show that ( 2)! 1(mod )p p−  . By Lemma 

above, for each j  such that 1 1j p  − there exists an 

integer k  such that j k and 2 2k p  −  and 

1(mod )jk p . Since there are 
1

( 3)
3

p −  such pairs, 

multiplying them together yields ( 2)! 1(mod )p p−   

Then ( 1)( 2)! ( 1)(1)(mod )p p p− −  − 

( 1)! 1(mod )p p−  − . 

 

Every subgroup of a cyclic group is cyclic. 

 

Proof: See [2] for proof. 

 

Orbit-Stabilizer Theorem 

If a group G  acts on a set X , then the map; 

: / ( ) ( );G Stab x Orb x → ( ) .gStab x g x  

is a bijection. When G  a finite group, this shows that, 

| | | ( ) | . | ( ) |G GG Orb x Stab x= , for each x X . 

Proof: See [4] for details. 

 

Main Result 

In this section we present some applications of Lagrange’s 

theorem together with example to illustrate the results. 

 

Groups and Subgroups 

Let G  be a group, where  8 0,1,2,3,4,5,6,7G Z= =  

Then the order of G  denoted | | 8G = . Let H  be a 

subgroup of G  where  0,2,4,6H = . Then the order of 

H denoted | | 4H = . Hence by Lagranges theorem | |G  is 

a multiple of the | |H . 

 

Cyclic group and Sub-cyclic group 

Let  15 1,2,4,7,8,11,13,14G Z= =  be a cyclic group 

of order 8 with generator 7. 

Let  1,4,7,13H =  be a subcyclic group of the cyclic 

group generated by 7   of order 4. The order of H  

divides the order of G : 

On the other hand, let  5 1,2,3,4Z =  be a cyclic group of 

order 4 with generator 2. 

Let  2,4H =  be a subcyclic group of the cyclic group 

generated by 2   of order 2. 

Then by lagrange’s theorem, the order of G  is a multiple of 

the order of H . 
 

Fermats Little theorem In Relation to Lagrange’s 

theorem. 

Now we look at Fermats Little theorem in relation to 

Lagrange theorem; by theorem 2.7 we know that 
1 1(mod )pa p−   where p  is a prime element.  
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1 1k p  − such that 1(mod )jk p . If k j= , then 

2 1(mod )j p  so 1j =  or 1j p= − . 2 2j p  − , 

then there exists an integer k  such 

Then 
62 1 (2 2 2 2 2 2) 1 64 1 63− =      − = − = , 

which is divisible by 7. 

 

Let ( 1)p −  be our group G  with order | |G . Since 

7 ( 1) 6p p=  − = which has the elements 

 1,2,3,4,5,6 . Let a  be the subgroup with the order of 

H defined as 

 

     0 1 2 1 0 1 2 6, , ,.., 2 ,2 ,2 ,.., 2 1,2,4pa a a a − = =

Hence | | 3H = . 

By Lagranges theorem, | |H  divides | |G . 

 

Wilsons Theorem 

Let us consider the Wilsons theorem which is a consequence 

of Fermats little theorem. Using theorem 2.8, we illustrate 

some examples; 

Let 5p = , where p  is a prime. Consider the element 

 *

5 1,2,3,4Z = where *

5Z is a subgroup H of order 4. 

Then by the theorem;  

( 1)! 1(mod ) | ( 1)! 1p p p p−  − = − + . ( 1)! 1p − +

has 24 elements given by  *

5 1,2,3,4,..,24Z = . 

Representing q by 25, q p , where q is the group 

G of order 24 and H is a subgroup of G or order 4, 

hence the order of H divides the order of G . This 
confirms the Lagrange’s theorem. 

Let 7p = , where p  is prime. We know that the elements 

of 
*

7Z  are six given by  1,2,3,4,5,6 . Let H  be a 

subgroup representing 
*

6Z . 

By theorem 2.8, ( 1)! 1p − +  has 721 elements. Hence 

* *

9 721Z Z=  has 720 elements which represents the group G

. 

Applying the Lagrange’s theorem, the order of G  is a 

multiple of the order of H . 

 

Orbit-Stabilizer Theorem 

We now look at the Orbit-Stabilizer Theorem in relation to 

the Lagrange’s theorem. Using theorem 2.9, we show some 

examples. 

Consider a group  

 3 1, (1,2),(1,3),(2,3),(1,2,3),(1,3,2)G S e= =  and 

let it act on itself by conjugation. By the theorem 2.9 we 

know that | | | ( ) | . | ( ) |G GG Orb x Stab x= , where G  is the 

group 
1 0(mod )pa p−   where p  divides 

1 1pa − − . 

Let 7p =  and 2a = . 

whereas ( )GOrb x  and ( )GStab x  are the subgroups. It is 

easy to see that. 

i)  ((1,2)) (1,2),(2,3),(1,3)GOrb = and 

| ((1,2)) | 3GOrb = . Also,  ((1,2)) ,(1,2)GStab e=  

and | ((1,2)) | 2GStab = . Hence by Orbit-Stabilizer 

theorem, 

| | | ((1,2)) | . | ((1,2)) | 3 2 6G GG Orb Stab= =  = . 

Hence by Lagrange’s theorem, | |G  is a multiple of both 

| ((1, 2)) |GOrb  and | ((1, 2)) |GStab . 

ii)  ((1,2,3)) (1,2,3),(1,3,2)GOrb = and 

| ((1, 2,3)) | 2GOrb = .Also, 

 1((1,2,3)) ,(1,2,3),(1,3,2)GStab e= and 

| ((1,2,3)) | 3GStab = . Therefore by the theorem, 

| | | ((1,2,3)) | . | (1,2,3) | 2 3 6G GG Orb Stab= =  =  

Hence by Lagrange’s theorem, both | ((1, 2,3)) |GOrb  and 

| ((1,2,3)) |GStab  divide | |G . 

 

Conclusion 

In this piece of work, we have been able to give a 

methodological representation on some applications of 

Lagrange’s theorem whereas practical illustrations have 

been exhibited using these applications which shows that the 

order of a subgroup divides the order of a group. 
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