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Abstract

In this paper we introduce the Zweier I-convergent triple sequence spaces 3Z!(¥), 3 Zi(¥) and
3Z 1, (W)using the double Orlicz function¥’. We study the algebraic properties and inclusion relations
on these spaces.
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1. Introduction

A triple sequence (real or complex ) can be defined as a function T:N XN X N —
R(C)where N,R and C denote the sets of natural numbers, real numbers and complex
numbers respectively [3] [1] .The Orlicz function has been founded by Prof. Wlayshaw
Roman Orlicz from Poland and carried his name, so he was constructed the Orlicz space [7].
A double Orlicz function is a function ¥: [0, ) X [0,00) — [0, ) X [0, )such that

Y(k,t) = (Pi(k),¥,(t)), Where

Y, : [0,00) = [0,0) and ¥,: [0,0) = [0, ) such that ¥;, ¥, are Orlicz functions which
is continuous, non — decreasing, even, convex, and satisfies the following conditions :

1) ¥ (0)=0, ¥, (0) =0 = ¥(0,0) = (¥, (0), ¥, (0) ) =(0.,0)

2) K)>0,%, 1)>0= ¥(kt) = (¥ (k),¥, (t))>(00)

for k>0,t >0 we mean by W(k,t)> (0,0) that ¥, (k) >0, ¥, (t)>0

3) W, (k) » o, ¥, (t) > wask,t — oo then,

Y(k,t) = (¥1 (k), ¥, (1)) = (o0, )as (k,t) — (o0, ),

We mean by ¥ (k,t) — (oo, 0) that ¥; (k) — oo, ¥,(t) = oo.[5][8].

Let X be a non-empty set. Then a family of sets | €2% (power sets of X) is said to be an ideal
if I is additivei.e. A,B € = AUB € [ and hereditaryi.e. A € ,B € A = B € [,where
X=sup(k,t) [2].

At the initial stage the notion of I-convergence was introduced by Kostyrko, “Salat and
Wilczyn'ski [4]. Later on it was studied by ~Salat, Tripathy and Ziman[6], Demirci [9] and
many others.

In this paper, we define the Zweier I-convergent triple sequence spaces which is defined by
the double Orlicz functions ¥ where¥ (k, t) = (¥, (k), ¥,(t)), and

Introduce the following classes of Zweier I-convergent triple sequence spaces defined by the
double Orlicz functions. Let N, R and C be the sets of all natural, real and complex numbers
respectively, we set

|.l3 ={(k, t) = (kh,d,b'th,d,b) : (kh,d,b' th,d,b) € RXR XRorCxCx C}

The space of all triple sequences real or complex .Throughout this work the triple sequence
will be denoted by(k, t) = (kpap thap) i-€., @ triple infinite array of elements (ky, 4, th,ap)
forall h,d,b € N, we mean thatk = (kpap),t = (thap)
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be an infinite array of elements for all h,d,b € N.We
define the Banach spaces of I- bounded, I-convergent, I-
null, bounded

I-convergent and bounded I-null triple sequences normed
by

”(k, t)”w = SUPn,a,p |(kh,d,b'th,d,b)| And we Study their
different properties like soild, symmetricity, monotony etc .

2. Some Important Preliminaries and Concepts

An Zweier triple sequence spaces Z3, Z3 and Z3, are
defined as follows:

73 = {(k,t) = (ky, ty) € p3: (Z®)P(k,t) € (C3)!, where
x = h,d,b},

Zi = {(kt) = (kpty) € (Z3P (kt) €
(3!, where x = h,d, b},
Zi, = {(kt) = (kyty) € Z3P (kt) €

(€2)!,where x = h,d,b},where (Z*)Pdenoted the matrix
(Z3)P = (z;,) defined by

p, (i = x)
Zix =\ 1—p,(i—1=x);i,x EN

0, otherwise

Now, we introduced the following classes of triple
sequence spaces.
@*)'={h,d,b €N : {(kt) = (kpap thnap) €W’ :

I —1im(Z®)P(k,t) = (£1,%,) for some £1,€,}} € I,
where
I —1im(Z3)Pk = ¢, for some £,,1 —lim(Z3)?t =

£, for some ¢,

(Z3)" = {h,d,b €N: {(k;t) = (kpap thap) € W : |
—1lim(Z3)P (k,t) = (0,0) } € I, where

I-1im(Z3)?Pk = 0,1-1im(Z3)Pt =0

(%) = {hd,b eN: {(kt) = (knap,tnap) € 1 :
SUPR,apl(Z*)P (k,t)| < (20,00)} } € I, where

SUPR,apl(Z*)P k| < o0, suppqp|(Z3)P t|<oo.

We also denote by

I 1
(m3s)' = (22)' N2 and (m3s) =(23)" N(Z3)’
In this section we introduce the following classes of Zweier

I-Convergent triple sequence spaces defined by the double
Orlicz functions.

(¥) =  {kO)=(knap thap) €

ol (55 (o ) -

0, for some #{,£,and p >0},
3 Zo(W) = {(kt) = (knap,thap) € ©°

o, (52 ) (o, (1)) -

0, for some p > 0},
3%, (W) ={(k,t) = (knap,thap) € w?

oo (S oG]

o, for some p > 0}.

Also we denoted by

3m s () = 3ZL,(¥) N3Z' (W) and 3 mys(¥) =32 (¥
YN3ZL (P).

We will

(Kfy ap thap)-Where
(Z®)P(trap) = (thap):
(ahaps jhap),  Where
(ZS)p(jh,d,b) = (jﬁ,d,b)-

I —lim

I —

denoteby (Z*)? (kb thap) =
(Z3)P(knap) = (Kiap) and
(Z*P(anap jnap) =
(Z3)P(anap) = (ahap) and
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Lemma .2.1
[5].A sequence space E is solid implies that E is monotone.

Definition 2.1

A triple sequence space (k,t) € u3is said to be I-
convergent to the number (¢4, #,) if for every €>0,

{hd,b €N : |(knap — 21 thap—F2)>€ YE L. In this
case we write
I=limp g p(Knap thap) = E1€2),
I=limpgpkpap = 41,

I —limpgpthap = €2

where

Definition 2.2

A triple sequence (k,t) € u3is said to be I-null if
(€1!€2) =

(0,0), where £, = 0,¢, =0.

In this case we writel — limy, 4., (knap thap) = (0,0).

Definition 2.3

A triple sequence (k,t) € u3is said to be I-Cauchy if for
every € >0 there exists a number n,r,s = n,r,s(e) such
that

{ h,d,b €N : |(kh,d,b; th,d,b) _(kn,r,s' tn,r,s)‘2 € }E L.

Definition 2.4

A triple sequence(k, t) € u3 is said to be I-bounded if there
exists Y>0 such that {h,d,b € N :| (knap tnas) >Y3}
€l.

Remark .2.1 [3]
If ¥ is an Orlicz function, then ¥ (Ak)< A ¥ (k) for all A
with 0 <A<1.

Lemma .2.2
That a triple sequence spaceE? is solid implies that E3 is
monotone.

Definition 2.5

A triple sequence space E2 is said to be solid (or normal) if
( @napknap Braptnap) EE* whenever (kyqp, thap) €
E3and for all triple sequence (@45, Brap) Of scalars with
|ah'd‘b ‘Sl !|:8h,d,b|§1 for all h, d, b € N.

Definition 2.6
A triple sequence space E3is said to be symmetric if

(kn,apr thap) € E3implies (K may ey trm@mm)) €
E3, where 7 is a permutation of N.

Definition 2.7

A triple sequence space E3 is said to be sequence algebra if
(knap) * (tnap) = (knaptnap) € E whenever (
Kknap) (tnap) € E.

Definition 2.8

A triple sequence space E3is said to be convergence free if
(anapjnap) € Ewhenever (kpap tnap) € Eland
(Kn,aps th,ap) =0 implies

(anap jnap) = 0.

Definition 2.9
Let H = {hy <h, <-+}cN, D ={d, <d, <-}cC
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N and

B ={b, <b, <-+} N, LetE? be a triple sequence

space. A (H, D, B)-step space of E3 is a triple sequence
3

space 75 ps= {((kn,a,.by thyann,))ERS: (Knrsitnrs) €

E3}.

Definition 2.10
A canonical
E3 .
(khn,dr,bs' thn;dr,bs)ETH,D,B IS a
(ah,d,b'jh,d,b) € E3 defined by

(knm, tnm) if n,r,seN
0 otherwise

preimage of a
triple

sequence
sequence

(ah,d,b'jh,d,b) = {

Definition 2.11

A canonical preimage of a step space TE?DIB is a set of
canonical preimages of all elements in TE?D,B, i.e. (a,j)isin
the canonical preimage of rf,?D,B if and only if(a,j) is a
canonical preimage of some (k,t) € sz?n,s-

Definition 2.12

A triple sequence space E3is said to be monotone if it
contains the canonical preimages of its step spaces.

Now, we introduce the following classes of triple
sequences spaces:

T2(W) = {(k, t) € 3 : suppqp SUp {‘Ifl (Ikh;'bl) ' (lth;'b|)} <o, for somep>0 },
ie T(W) = (3T (¥1), 3T (%))

3w =
I{ k £ £ \|
{(k,t) € :1— lim [sup{[ ¥, <—| hdb_ 1|) k2 <—|th'°‘*b_ Zl) = 0,}
p p :
for some #;, ¢, and p >0
ie (CH'(W) = (3¢ (%), 3C'(¥))
€' W) = (k,t) € u® : 1 — lim [sup [(‘I’l (w)) ,<‘P2 (@)) ” =0, 7

3. Main Results

Theorem 3.2.2.1 for any double Orlicz function¥, the
classes of triple sequences 3Z!(‘P),

3ZL(P), 3m IZ3 (W) and 3m’Zg (\P) are linear spaces.

Proof. We will prove the result for the space 3Z/(¥) .The

for some p >0
ie (C)'W) = (Co(¥), Co(¥)).
Furthermore, we write
m3)'W) = (€H'WP) NTIW¥) and (m3)' (W) = (CH'(P) N T3.
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Let(knap ) (@nap) € 3Z' (Y1)  and(tnap ) Unap) €
3Z'(¥,) and consequently (k,t) = (kpap thap) €
' W), (a,)) = (@napinap) € @)'(¥) and let
(a, @), (8. B) be scalars. Then there exists positive numbers
p1 and p, such that

proof for the other spaces will follow similarly.
I—lim[sup <lP1 (W)) ,<lP2 (lthdl%ell)) H =0, for some ¢,, £,€ C;
1 1
o |ah,ap=22] lib,ap—*2! _
I —lim|supi{| ¥; — Wy o =0, for some ¢4, £, € C.
2 2
That is for a given € > 0, we have
Ky ap — 7 thap — % €
A= hd,ben:|sup [ (g) (v, (g> ~flen
P1 P1 2
apgap — 7% ihap —t €
A, ={hd,be N:|sup!| ¥ <M) |, <M> >-—tel, (2)
P2 P2 2
Let ps=max {3| @ |p1,3| B | p2}- Since ¥;, ¥, and ¥ are non — decreasing and convex functions,we have
sup? [ w <|[0‘(kf1,d,b) + B(ahap)] — [aty + Bt”z”) W (Ha(tﬁ,d,b) + B(jhap)] — [ty + sz”) <
1 ’ 2 -
p3 p3
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sups| ¥ (
! P3 P3

|kf1,d,b - 1?1| n |ai1.d,b - €2|

su 'd
P ! < P1 P2

|l |Kiy ap — 24 4 |3||ai1,d,b—{’z|> (v, (|Ol||ti1,d,b—{’1| 4 |[3||]'f1,d,b—192|> <

P3 P3

) | w, (|tf1,d,b—f1| + |]'fl,d,b—fz|)
P1 P2

Now, by (1) and (2), we have

{h,d,bEN:sup

P3

P3

(‘1’1 (|[a(kf]'d'b)+B(af]'d'b)]—[afl+B€2]|>) ,(‘1’2 (|[a(tfl_d_b)+B(if,,d,b)]—[od’ﬁﬁt’z]|)> }> E} c A, UA,.

Therefore[a(kh‘d‘b, th,d,b) + B(ah,d‘b,jh‘d,b)] € 3ZI (‘I")Then SZI(\P) is a linear Space.

Theorem 3.2.2.2

Let ¥, ¥,be a double Orlicz functions that satisfy the 4,-

condition. Then

(i) a3(W,)S o3 (V. ¥,).

(ii) o2 (¥, Na3(W,)< a3 (¥, + W,) for o3 =3Z/(P),
3ZH(¥), 3mis (¥) and 3mIZg (¥), where
¥, = (W5, ¥ and ¥, = (Y5, Vo).

Proof. (i) Let (knap thap) € 3 ZH(¥W, )whereky ,, €

3 Z§(¥s) and ty 45 € 3 Z§(We)- Then there exists p>0 such
that

L —lim g psup {4,5 (((ki,,s.b) )) o, (((tﬁ,s,b) ))} —0
3

Let €>0 and choose & with 0 <6<1 such that ¥, (v) <e for
0<v < 6. We write

) ((kh,a)) (th,d,p)
(anapijnap) = sup {'}’5 ( hsb ) e ( hsb )} and
consider for all (h,d, b) € N, we have

limos(ah,d,brfh,d,b )s8.hd,beNSUP {'P3 (@) ¥ (%)}

lim(ah’d’b,jh’d’h )<6,h,d,b,e NSUP {1}13 ((an:,b)) v, ((jh,g,b))} n

lim(ah’d’b,jh’d’b )>8,h,d,b,e NSUP {rp3 ((ah:i,b)) v, ((ih,;z,b ))} .
We have

; @ndp) Uhdb)
llm(ah’d,b,jh’d’b )<8,h,d,b,e NSUup {(1_13 ( P ) ’ lIJ4 ( p )} =

P1DUM 0y, i a5 ndbE v(@hap inas ) - @)

For (anapjnap ) >0, we have

(ah,d,b'jh,d,b) <
(anab) 1 (anap) (nab) 1

(anas ) < s <1+t (nap ) < A2 < 1+

(Jnap) _

(ah,d,b(rslh,d,b) <1+ (ah.d,br}h,d,b),where

S
Since ¥, is non-decreasing and convex, it follows that

Y1 (anap jnap )< Yy (1 + W) < %ll’l @) +

o (g,

, _ (an,d,b) Undpb)
where ¥, (anap jnap ) = Sup {1113( . ),'%’4( . )}
Since ¥; satisfies the 4,-condition, we have
¥ (anap jnap )<

iY(ah,d,b;sjh,d,b) v, (2) + %Y(ah,d,b(vsjh,d,b) w,(2) =

Y(ah,d,b(;jh,d,b ) v, (2).
Hence

, (an,a,p) Undb)
llm(ah'd'b,jh'd'b )>5,h,d,b,€ Nsup {1}13 ( P ) ) llull— ( p )} S
max(l, Y&y, (2)) lim(ah,d,b,jh,d,b )>8,h,d,b,€ N(ah,d,b'jh,d,b ) .
(5)

From (3), (4) and (5), we have

(knaps tnap) € 3Zo(¥1. W)

Thus 3ZL(¥,)< 3ZL (¥, - ¥,). The other cases can be
proved similarly.

(ii) Let (kpap thap) € Zo(¥1) N Zo(¥2).

Then there exists p,>0 and p,>0 such that

I —lim p 4 psup {‘}’3 ((k’;‘j'b)) A ((th!')‘j'b))} =0, and

a1 (5 (252 =

Let p = max{p,, p,}, the rest of the proof follows from the
following equality

im0 (52,0 ()
limp g psup {(11/3) (|(k};(j,b )|) +

(#s) (%) ,(Pa) (w) + (Py) (M;)%ﬂ)}

Theorem .3.2.2.1
The spaces 3Z}(¥)and 3m’Zg (W)are solid and monotone

Proof. We shall prove the result for3Zi(W).
for 3m123 (¥), the result can be proved similarly.Let
(knap thap) € 3ZH(¥ ), where ky 4 € 3Zh(¥,) and
thap € 3Z§(¥,) .Then there exists p>0 such that

I-limyqp [sup {(‘}’1 (M)) ,<‘1’2 (M)) H = 0. (6)

Let (apq,) be a sequence of scalars with |ay 4 ,|<1 for all h,d,b € N.
Then the rest follows from (6) and the following inequality

o (o) o) e ) (0029

s (55) (v (59) I}
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By lemma.3.2.1.1 the triple sequence space E3 is solid
implies that E3 is
monmtone .We have the space 3Z.L(¥ ) is monotone.

Theorem 3.2.2.2

The triple spaces 3Z/(¥) and 3m IZ3 (W)are neither solid
nor monotone in general.

Proof. The proof of this result follows from the following
example.

Example 3.2.2.1

Let I =I5, W, (k)=k? and ¥, (¢t)=t? forall k,t € [0,00).
Consider the (H,D,B)-step space Uypp(¥) of U(W)
defined as follows:
Let(kpapr thap) €

Uy p g(¥) be such that
(knap thap ) if (h+d +Db) is even
(0,0) otherwise

(kh,d,b' th‘d,b) defined by

U®) and let (apapsjnap) €

(@naprJnap) = {

Consider the sequence
(kn,ap thap )= (1, 1) forall
h,d,b € NThen (knap thap) € 3Z'(¥) but its
(H,D, B)-step space preimage does not belong to 3Z!(¥).
Thus 3Z! (¥)is not monotone. Hence 3Z! (¥) is not solid.

[=lim pq

(s (259) (o

Theorem 3.2.2.3

The spaces 3 Z (¥) and3Z! (¥)are not convergence free in
general.

Proof. The proof of this result follows from the following
example.

Example 3.2.2.2

Let]=I,, ¥,(k)=k*and ¥, (t)=t>forall k,t € [0, o).
Consider the sequences (kpqp, thap) and (anap jnap)
defined by

1 1 .
(knabs tnab) :(h+d+b ) h+d+b) and  (anapifnap) =
(h+d+bh+d+Db) for allh,d,b € N. Then
(knap thap) € 3 Zo(W) and3Z' (W), but (an g p, jnap) €
3ZL(¥Y)and 3Z/(¥).Hence the spaces 3 ZL(¥)
and 3Z!(¥) are not convergence free.

Theorem 3.2.2.4. The spaces 3 ZL(¥) and 3Z!/(¥) are
sequence algebras.

Proof. We prove that 3 ZJ(¥) is sequence algebra. For the
space3Z! (W), the result can be proved similarly.

Let(knaps thap ) @napsjnap) € 3 Zo(¥),then

|th‘;d,b|>> ” = 0 for some p; >0, and
1

1-lim g, [Sup{(ll’l (M» ,<lp2 (""p—db')) }] = 0 for somep, >0, where¥’ = (¥,,¥,).
2

P2

Let p = py. p, > 0. Then we can show that,

I =lim pq, [SUp

p

ThUS [(kh,d,b "

<l1!1 <|(kfl,d,b “ahap)l

) (5m509) -0

anap) tnap * Jnap) |E3 ZH(P).

Hence 3 ZL (W) is sequence algebra.
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