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Abstract 
In this paper we introduce the Zweier I-convergent triple sequence spaces 3  (Ψ), 3   

     and 

3   
    using the double Orlicz function . We study the algebraic properties and inclusion relations 

on these spaces. 
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1. Introduction  

A triple sequence (real or complex ) can be defined as a function         
    where           denote the sets of natural numbers, real numbers and complex 

numbers respectively [3] [1] .The Orlicz function has been founded by Prof. Wlayshaw 

Roman Orlicz from Poland and carried his name, so he was constructed the Orlicz space [7]. 

A double Orlicz function is a function   [     [     [     [    such that  

                         Where 
    [      [             [      [     such that       are Orlicz functions which 

is continuous, non – decreasing, even, convex, and satisfies the following conditions : 

1)    (0) =0,    (0) =0    (0,0) = (   (0),    (0) ) =(0,0) 

2)  (k) ˃ 0,    (t) ˃ 0                             ˃ (0,0) 
                                                 ( ) ˃ 0,    ( ) ˃ 0 
3)    ( )   ,    ( )    as        then, 

                                                   , 
 

We mean by               that          ,   ( )   .[5][8]. 

Let   be a non-empty set. Then a family of sets I ⊆   (power sets of X) is said to be an ideal  

if   is additive i.e.        ⇒         and hereditary i.e.        ⊆   ⇒       where  

X=          [2]. 

 

At the initial stage the notion of I-convergence was introduced by Kostyrko, ˘Salat and 

Wilczyn´ski [4]. Later on it was studied by ˘Salat, Tripathy and Ziman[6], Demirci [9] and 

many others.  

In this paper, we define the Zweier I-convergent triple sequence spaces which is defined by 

the double Orlicz functions   where       (           ), and  

 

Introduce the following classes of Zweier I-convergent triple sequence spaces defined by the 

double Orlicz functions. Let N, R and C be the sets of all natural, real and complex numbers 

respectively, we set 

   ={      (             )  (             )                  } 
 

The space of all triple sequences real or complex .Throughout this work the triple sequence 

will be denoted by      (             ) i.e., a triple infinite array of elements (             ) 

for all         , we mean that   (      )   (      )
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be an infinite array of elements for all         .We 

define the Banach spaces of I- bounded, I-convergent, I-

null, bounded  

 I-convergent and bounded I-null triple sequences normed 

by  

‖     ‖           |(             )| And we study their 

different properties like soild, symmetricity, monotony etc .  

 

2. Some Important Preliminaries and Concepts 

 An Zweier triple sequence spaces   ,   
  and   

  are 

defined as follows: 

   = {      = (  ,   )      :                   , where 

         }, 

   
  = {      = (  ,   )      :               

   
                   }, 

  
  = {      = (  ,   )      :               

   
                   },where      denoted the matrix 

      = (   ) defined by  

    ={

        

                  
           

 

Now, we introduced the following classes of triple 

sequence spaces. 

      = {                                         : 

I −lim                                        , 
where 

I −lim                       I −lim       
                
   

    = {                                         : I 

−lim                      , where 

I −lim           I −lim          

   
    = {                                         : 

        |      (k,t)| < (∞,∞)}}  I, where 

        |      k | < ∞,         |      t | < ∞ . 

We also denote by 

(   
 )

 
 =    

    ∩      and ( 
  
 

 )
 

 =   
    ∩   

     

In this section we introduce the following classes of Zweier 

I-Convergent triple sequence spaces defined by the double 

Orlicz functions. 

3  (Ψ) = {      (               )      : 

     [   {(   (
|      
    |

 
))

 

 (   (
|      
    |

 
)) }]  

                             
3   

     = {                             :   

   *   ,(  (
|      
 |

 
))  (  (

|      
 |

 
))-+  

                   
3   

     =                               : 

        *   ,(   (
|      
 |

 
))  (   (

|      
 |

 
))-+ < 

∞,             }.  

Also we denoted by  

3    
  (  ) =    

     ∩       and    
  
 

     =   
  (  

)∩   
  (  . 

We will denoteby                        

(      
        

 ),where                 (      
 ) and 

                (      
 ),                         

(      
        

 )  where                 (      
 ) and 

                (      
 ). 

Lemma .2.1 

[5].A sequence space   is solid implies that   is monotone. 

 

Definition 2.1 

A triple sequence space           is said to be I-

convergent to the number         if for every  >0,  

{         : |(                   )|≥   }   . In this 

case we write 

   –         (             )           , where 

  –                    

                         
 

Definition 2.2 

 A triple sequence           is said to be I-null if 

        =  

     , where           . 

 In this case we write           (             )        . 

 

Definition 2.3 

A triple sequence           is said to be I-Cauchy if for 

every   >0 there exists a number              ( ) such 

that 

 {          : |(             )  (             )|≥   }   . 

 

Definition 2.4 

A triple sequence          is said to be I-bounded if there 

exists Y>0 such that {          :| (             )| >Y} 

  . 
 

Remark .2.1 [3] 

If   is an Orlicz function, then   (λk)≤ λ   (k) for all λ 

with 0 <λ<1. 

 

Lemma .2.2 

That a triple sequence space   is solid implies that    is 

monotone. 

 

Definition 2.5 

A triple sequence space    is said to be solid (or normal) if  

(                          )     whenever (             )   

  and for all triple sequence (             ) of scalars with 

|      |≤1,|      |≤1 for all            
 

Definition 2.6 

A triple sequence space   is said to be symmetric if 

(             )     implies (                               )   

  , where π is a permutation of  . 

 

Definition 2.7 

A triple sequence space    is said to be sequence algebra if  

(      ) ∗ (       ) = (             )   E whenever ( 

               )       
 

Definition 2.8 

A triple sequence space   is said to be convergence free if  

(             )     whenever (             )     and 

(             ) =0 implies  

(             ) = 0. 

 

Definition 2.9 

Let                                          
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  and  
                       Let    be a triple sequence 

space. A (H, D, B)-step space of    is a triple sequence 

space       
  = {((                   ))   : (             )   

  }.  

 

Definition 2.10 

A canonical preimage of a sequence 

(                   )       
   is a triple sequence 

(             )      defined by  

(             )  {
(             )           

             
 

 

Definition 2.11 

A canonical preimage of a step space       
   is a set of 

canonical preimages of all elements in       
  , i.e.       is in 

the canonical preimage of       
   if and only if      is a 

canonical preimage of some               
  .  

 

Definition 2.12 

A triple sequence space   is said to be monotone if it 

contains the canonical preimages of its step spaces. 

Now, we introduce the following classes of triple 

sequences spaces:  

  
     {                       {   (

|      |

 
)     (

|      |

 
)}                 }, 

i.e   
     (               ) 

 

          

{
 
 

 
 
                 [   {.   (

|         |

 
)/  .   (

|         |

 
)/ }]    

                        }
 
 

 
 

  

i.e          (          
     ) 

   
       {

                 [   {(   (
|      |

 
))  (   (

|      |

 
)) }]    

              

}, 

i.e    
        (  

        
     ). 

Furthermore, we write 

                     
     and    

           
          

 . 

 

3. Main Results  

Theorem 3.2.2.1 for any double Orlicz function , the 

classes of triple sequences 3  (Ψ),  

3  
    , 3    

  (   and   
  
 

     are linear spaces.  

Proof. We will prove the result for the space 3  (Ψ) .The 

proof for the other spaces will follow similarly. 

Let         ,                   and         ,           

        and consequently                           
                                             and let 

(   ), ( ,  ) be scalars. Then there exists positive numbers 

   and    such that 

 

 

I −lim[   {(   (
|      
    |

  
))  (   (

|      
    |

  
)) }] = 0, for some          ; 

I −lim[   {(   (
|      
    |

  
))  (   (

|      
    |

  
)) }] = 0, for some          . 

That is for a given ϵ > 0, we have 

 

   {        [   {.   (
|      

    |

  
)/  .   (

|      
    |

  
)/ }]  

 

 
}           

 

   {        [   {.   (
|      

    |

  
)/  .   (

|      
    |

  
)/ }]  

 

 
}           

 

Let   =max {3|   |  ,3|   |   }. Since             are non – decreasing and convex functions,we have 

   {.   (
|[ (      

 )   (      
 )]  [       ]|

  
)/  .   (

|[ (      
 )   (      

 )]  [       ]|

  
)/ }   
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   {.   (
| ||      

    |

  
 
| ||      

    |

  
)/  .   (

| ||      
    |

  
 
| ||      

    |

  
)/ }   

   {.   (
|      

    |

  
 
|      

    |

  
)/  .   (

|      
    |

  
 
|      
    |

  
)/ } 

Now, by (1) and (2), we have 

{           {(   (
|[ (      

 )  (      
 )] [       ]|

  
))  (   (

|[ (      
 )  (      

 )] [       ]|

  
)) }   }       . 

Therefore[ (             )   (             )]        .Then 3  (Ψ) is a linear space. 
 

Theorem 3.2.2.2 

Let      be a double Orlicz functions that satisfy the   -

condition. Then  

(i)   (  )⊆    (     ) . 

(ii)    (  ) ∩   (  )⊆   (     ) for    3  (Ψ), 

   
    , 3    

  (   and   
  
 

    , where 

           and           .  
 

Proof. (i) Let                   3   
     ),where        

    
      and            

       Then there exists ρ>0 such 

that 

 I −            {  (
 (      

 )  

 
)    (

 (      
 )  

 
)}     

      (3)  

Let  >0 and choose δ with 0 <δ<1 such that    (v) <  for 

0≤ v ≤ δ. We write  

(              ) =    {  (
 (      

 )  

 
)    (

       
  

 
)} and 

consider for all            , we have 

 

     (              )            
   {  (

        

 
)    (

         

 
)}

= 

   (              )            
   {  (

        

 
)    (

         

 
)}  

    (              )            
   {  (

        

 
)    (

         

 
)} . 

 We have 

   (              )            
   {  (

        

 
)    (

         

 
)}  

        (              )            
(              ) . (4) 

For (              ) >δ, we have 

(              )  
(              )

 
   

(              )

 
,where 

(       )  
(       )

 
   

(       )

 
 (        )  

(        )

 
   

(        )

 
 . 

Since    is non-decreasing and convex, it follows that 

  (              )<   (  
(              )

 
)  

 

 
      

 

 
  (

 (              )

 
),  

where   (              )      {  (
        

 
)    (

         

 
)}  

Since    satisfies the   -condition, we have 

  (              )< 
 

 
Y
(              )

 
      

 

 
Y
(              )

 
       

Y
(              )

 
       

Hence 

   (              )            
   {  (

        

 
)    (

         

 
)}  

   (           )    (              )            
(              )   

(5)  

From (3), (4) and (5), we have 

                     
        ). 

Thus    
    )⊆    

       ). The other cases can be 

proved similarly. 

 (ii) Let                     
        

     ). 

Then there exists   >0 and   >0 such that 

 I –            {  (
(      )

  
)    (

(       )

  
)}     and  

I −            {  (
        

  
)    (

         

  
)}     

Let             , the rest of the proof follows from the 

following equality 

           {       (
        

 
)         (

         

 
)}  

           {    (
|         |

  
)  

    (
|         |

  
)      (

|          |

  
)      (

|          |

  
)}  

 

Theorem .3.2.2.1 

The spaces    
    and    

  
 

    are solid and monotone 

 

Proof. We shall prove the result for    
      

for   
  
 

      , the result can be proved similarly.Let 

                      
       where            

      and  

           
       Then there exists ρ>0 such that  

 

I −           [   {(   (
|(      

 ) |

 
))  (   (

|(      
 ) |

 
)) }]     (6) 

Let          be a sequence of scalars with |      |≤1 for all          . 

Then the rest follows from (6) and the following inequality 

[   {(   (
|      (      

 ) |

 
))  (   (

|      (      
 )|

 
)) }]  |      | [   {(   (

      
 

 
))  (   (

|      
 |

 
)) }]  

[   {(   (
|      
 |

 
))  (   (

|      
 |

 
)) }] . 
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By lemma.3.2.1.1 the triple sequence space    is solid 

implies that    is  

monmtone .We have the space     
      is monotone. 

 

Theorem 3.2.2.2 

The triple spaces 3  (Ψ) and 3    
  (  are neither solid 

nor monotone in general. 

Proof. The proof of this result follows from the following 

example.  

 

Example 3.2.2.1 

Let   =  ,      = 
  and       = 

  for all       [      
Consider the (     )-step space           of U    
defined as follows: 

Let                  U    and let                   

          be such that 

                  ,
(              )                   

               
 

Consider the sequence (              ) defined by 

(              )= (1, 1) for all 

          Then (              )          but its 

(     )-step space preimage does not belong to       . 
Thus       is not monotone. Hence        is not solid. 

Theorem 3.2.2.3 

The spaces 3   
     and      are not convergence free in 

general. 

Proof. The proof of this result follows from the following 

example.  
 

Example 3.2.2.2 

Let   =  ,      = 
  and       = 

  for all       [      

Consider the sequences                  and                  
defined by  

                 =(
  

     
 

  

     
) and                  = 

               for all        . Then 

                  3   
     and      , but                   

    
                 Hence the spaces 3   

     
and        are not convergence free. 
 

Theorem 3.2.2.4. The spaces 3   
     and        are 

sequence algebras. 

Proof. We prove that 3   
     is sequence algebra. For the 

space      , the result can be proved similarly. 

 Let                ,                    3   
    ,then 

 

 

I −           [   {(   (
|      
 |

  
))  (   (

|      
 |

  
)) }]    for some    > 0, and 

I −         [   {(   (
|      
 |

  
))  (   (

|      
 |

  
)) }] = 0 for some   > 0, where         . 

Let ρ =        > 0. Then we can show that  

I –         [   {(   (
|(      

         
 )|

 
))  (   (

|(      
         

 )|

 
)) }]     

Thus [(               )                    ] 3   
      

Hence 3   
     is sequence algebra. 
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