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Abstract 
The paper deals with the stress-strain state of parallel cylindrical tubes with a liquid. A formal 

solution of the problem of the diffraction of plane harmonic (longitudinal or transverse) and no 

stationary elastic waves on parallel circular cylindrical shells with a liquid enclosed in an infinite 

medium is constructed. The problem with the help of the integral Fourier transform with respect to 

time reduces the system of partial differential equations with respect to the coordinate. The field of 

stresses in the shells and their around in a finite distance between them is studied in detail. It is found 

that the ranges of the selected parameters with stresses and displacements on the shadow side of the 

first shell, increases somewhat in comparison with the case of one obstacle. The problem is solved in 

a bicylindrical coordinate system under the action of harmonic waves. An analytic solution is 

obtained in special Bessel and Henkel functions, as well as numerical results. Parametric analysis of 

the dynamic stress coefficient. 

 

Keywords: Shell, Elastic Medium, Heaviside Function, Incident Wave, Fourier Transform, Cylindrical 

Tube, Liquid, Harmonic Waves  

 

Introduction 

Stationary diffraction of plane elastic waves in many connected bodies is considered in 

fundamental works. And his students: Golovchana V.T. And Cherevko M.A. [1, 2]. Here the 

following approach is used. We consider an infinite elastic body having n-cylindrical 

noncontacting parallel inclusions. In a plane perpendicular to the inclusion, n-systems of 

polar coordinates are chosen, the center of each of which coincides with the center of one of 

the inclusions. Further, the longitudinal and transverse potentials are represented as the sum 

of the Fourier series for each inclusion. In [3], Chen considered the solution of the particular 

problem of scattering of a plane P wave by two identical rigid fixed inclusions. The wave 

propagates along the center line. His solution is based on the method of multiple reflections. 

Diffraction of waves on circular obstacles in a half-plane was considered in [5], applying the 

addition theorem in the same way as in [6] and representing the Hankel functions in integral 

form. The main numerical methods are given in [6, 7, 8] for solving dynamical problems. It 

is known that numerical methods, in comparison with analytic ones, allow solving more 

complicated problems that are closer to the real working conditions of the design. Fotieva 

N.N. [4], using the solution of Sherman DI, developed a program for quasistatic calculation 

of two parallel panels. As in the case of a single pipe, the solutions of other authors that did 

not find application in this problem can be used to calculate the pipes laid in the embankment 

in several threads. This includes work to determine the stress-strain state in a plate weakened 

by a series of circular reinforced holes [11, 12, 13]
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Fig 1: The settlement scheme 

 

Statement of the Problem 

An unbounded homogeneous isotropic elastic medium 

contains two cylindrical shells of radii аj (j=1,2), referred 

to Cartesian (or cylindrical) coordinate systems (a1= a2). In 

the case of a sufficiently long cylindrical shell and an 

impact (directed perpendicular to its longitudinal axis), the 

environment and the lining are reduced to the plane 

problem of the dynamic theory of elasticity (Fig. 1). 

Mathematical formulation of the problem leads to the need 

for a joint solution, a system of differential equations of 

motion of the medium [14] 
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Where  and  - the Lame coefficients, defined by 

formulas 
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v, w - tangential movement points of the middle surface of 

the shell; 0, , Е - respectively, the density of the Poisson 

ratio and the modulus of elasticity of the shell material; 
2 2 2/12 , ( , ) ( 1,2; 1,2)j j j кjc h a z t к j  

 - external load 

pressure; u - displacement vector; 


- cylinder density; 

ij
 - stress tensor; 

ij
 - tensor of deformations. 

 If the displacement vector is represented as a potential and 

a solenoidal part, then the wave equation in the cylindrical 

(r, , z) coordinate systems, respectively, have the form 

u grad rot  
 

where , 
(0,0, )z 

 - respectively, scalar and vector 

potentials of longitudinal and transverse waves; 


 – the 

potential of longitudinal waves; The potentials of a 

function in Cartesian coordinate systems satisfy the 

following wave equations 

22
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2 2 2 2
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р Sc t c t


 


     

 
     (3) 

2 - Laplace operator in polar coordinates; ср, сs - velocity 

respectively of the longitudinal and transverse waves. 

The problem under consideration is posed in cylindrical 

coordinate systems r,, z and reduces to the plane problem 

of the theory of elasticity. As unknowns, we use the 

components of the displacement vector 
,ru u . The 

cylindrical coordinate system is related to the Cartesian 

coordinate system by the following relations: 

 sin,cos ryrx 
 ds

2
=dr

2
+r

2
d

2.
 

The boundary conditions along the outer surface of the 

pipe are the condition for an ideal contact with the ground, 

the inner surface is free of loads. The boundary conditions 

ensuring the equality of the normal components of the 

fluid and shell velocities are  

r2u
(   n)   =+

t
V

r a






,                      (4) 

where V - fluid particle velocity; n - normal surface at 

r=a, w- radial movement of the shell. In order to 

completely close the formulation of the problem, it is 

necessary to add conditions at infinity to conditions (4) 

0u   at 
2 2R x y  

 filled with some radiation 

conditions. 

For non-stationary problems, the causality principle is 

required as the radiation conditions, and in the medium 

there should be no displacements outside the region 

bounded by the leading edge of the waves from the 

oscillation sources. 

1. The parameters of the incident wave and the shell along 

the generator of the cylinder are constant, therefore we 

assume that all functions describing the shell motion and 

the medium depend only on the angular coordinate , 

radial coordinates of time t. Change in normal voltage 0 

on time is applied in the form 

0 0 0( ) (1 / ) ,  0 ; ( ) 0 ,  0t t T t T t t T        
, (5) 

or 
0 0( ) ( )

x a
t H t

c
 


 

, where 0- incident wave 
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amplitude; Т - Duration of wave action, H - Housed 

function. The initial conditions are zero. 

The boundary conditions on the surface of the shell are 

applied as follows: the continuity of the radial and 

tangential changes in the soil and shell particles, i.e. 

,  j r j

j j j j

w U v u

r a r a r a r a

 

   
     (6) 

If the cylindrical cavity is not supported by a shell (cavity), 

then the boundary conditions take the following form: 

- at 1r a
: 

( ) ( )
1 1
p s

rr rr  
; 

( ) ( )
1 1 1 1
p s

r r r r  
 ; 

- at 2r a
: 

( ) ( )
2 2

p s
rr rr  

 ; 
( ) ( )

2 2
p s

rr rr  
              (7) 

The boundary conditions at infinity, i.e. At r  : 
0  

. 

First, we find a solution for a plane step of a particular 

wave. Stress tensor in general form 
( ) ( )p s

ij ij ij   
 

where 
(р)

 - voltage when the incident wave, 
(s)

 - voltage 

of the response waves. For each cylindrical shell there will 

be coordinates (x1y1) and (x2y2), but in a cylindrical system 

(r1,1) and (r2,2). The transition from the Cartesian 

coordinates to cylindrical next: 

1 1 1 2 1 1x r cos ; y r sin ;  
 1 2 2 1 2 2x -b r cos , y r sin    

. 

In the polar coordinate system associated with the 

cylinder, the stresses and displacements in the incident 

wave r = a have the form: 
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where Н0(z) - unit function of Heaviside; 0 - voltage on 

the front of a wave propagating in the direction; z, a - shell 

radius; С1 - expansion wave speed, 1 - Poisson's ratio; 1 

- The density of the medium. Applying to the equations (7) 

and (8) the integral Fourier transform with respect to time 

( ) ( )exp( )F i d     





 
, 

1
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

 
, 

where   - time Fourier transform parameter; 
F
( ) - 

feature image (t). 

The wave equation (2) after application of the Fourier 

transform takes the following form: 
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for (ri,i) coordinates (2) can be written as: 
2 2 2 2 2 2
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If you know the potential increments 1 and 1, Then it is 

possible to determine the displacement of the environment 

of a cylindrical body 
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The solution of the wave equation (7) and (8) is expressed 

in terms of trigonometric and special functions: 
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Kn - Modified Bessel function, n - order [15]. 

Arbitrary constants В1, В2, Сn, n is determined from the 

boundary conditions (4) and (5). To do this, you need to 

determine the voltage 
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Here 
, , ,,  ,  C D C D C D

n n nf S h
 expressed in terms of modified 

Bessel functions of the n-th order. 

Arbitrary constants (Cn, Dn) is determined from the system 

of algebraic equations. 

The inverse transformation is carried out numerically by 

the Romberg method. Potentials, And the radial and 

tangential displacements from the envelope w and v for the 

incident wave are obtained using the Duhamel integral [9] 

0

0

( ) ( )

t

iu u t d    
 

where u() - flat-stepped wave solution. 

Discussion of numerical results. The improper integral 

(10) is calculated by the Romberg method [9]. For this, the 

improper integral is replaced by the integral [9] 

1( ) ( , )

b

a

W

W

l f x dx  
                             (11) 

the finite limits of which are chosen taking into account 

the nature of the spectral function. The integral (11) is 

calculated by the Romberg method, and the zero (n = 0) 

series of approximate values Т0/К=0,1,2,3.К - integral by 

the Trapeziums formula when dividing a segment from 
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Wa,Wb into two equal parts 
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With the help of Т0

(к) 
Calculate n = 1,2,... K. A series of 

approximate values of the integral Т(1):Fig.2 
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1 1(4 ) / (4 1)        k=0,1...k-n
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n n nT T T
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The presented schemes are constant from the calculation 

data
0

1( ) kf T 
 с Step 1

0,02l 
. 

 
 

Fig. 2: Changing the hoop stress versus time. 

 

For each fixed value of the computationf(1) was carried 

out over the interval х by the formula (12) with k = 

11. For some large valuesf (1) Repeated calculations with 

increased accuracy gave corrections of less than 3%. Now 

let us see the interaction of the incident waves (1) and (3) 

with a cylindrical shell 
-2 -7 -1

0 0 0

6 -2
0

1.0; 0.3;  6 . 10 ,  3,72 10 Е ,

 5,25 10  , ( 1,2)

i i i j

i
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-5

Е0 а
-1

, Ср1=1
.
 10

3
а1с

-1
, сs1=4,4 10

2
а1с

-1
, 

load Р0=2,38 10
-5

Е0. 

 
 

Fig. 3: Change 1 1
/ p 

 from time. 

 

Results of calculation of deflection ns w/h for the time t is 

shown in Fig3. The maximum deflections in the 

considered time interval are localized mainly in the angles 

corresponding to the angles =0
о,
 45

о
, Maximum 

tangential displacements in the values =90
о 

and 270
о
. It 

can be seen that the action of seismic waves increases the 

radial pressure of the surrounding medium. Calculations 

show (Fig. 2 and Fig. 3) that for fixed values of the 

amplitude and duration of the action, the incident wave 

increases with the acoustic rigidity of the surrounding 

deflection and earth to the first and second shells. 

Increasing the rigidity of the shell or its thickness leads to 

a decrease in deflections and an increase in effort. And 

with the increase in the thickness of the shell, the ring 

forces S Calculation is faster than bending moments and 

bending moments are faster than lateral forces. 

2. We consider the problem of the dynamic theory of 

linear elasticity, the effect of harmonic seismic waves on 

pipes laid in a high embankment in two strands and filled 

with an ideal compressible fluid. In this case, let us 

consider the case when the wave falls perpendicular to the 

axis connecting the tube centers, and to the longitudinal 

axis of these tubes. The calculation scheme is shown in 

Fig. The bicylindrical coordinate system is related to the 

Cartesian coordinate system by the following relations: 

x=(asin)/(ch-cos), y=(ash)/(ch cos), z=z    (13) 

where: а - half distance between points =- и =. The 

problem is flat, we obtain the following Helmholtz 

equation in polar coordinates: 
2 2 2( cos ) ( ) ( ) 0a ch v v k v                 (14) 

where 

1

n=1
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n
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









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 







      (15) 

Equation (14), after certain transformations, reduces to the 

form in 
2( ) ( ) (2 ) 0v v kae v

 
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                (16) 

We seek the solution of (14) in the form of a series: 

0

( )cos ( )sina b iwt
n n

n

v v n v n    






  
 

     (17) 

Substituting (17) into (16) and equating the coefficients for 

the corresponding harmonics, we obtain the following 

ordinary differential equation: 
" 2 2(2 ) 0n nv kae n v   

                         (18) 

The standard replacement 

( ) ( )nv z t 
, t=exp() 

we reduce (18) to the Bessel equation of the form 
2 2 2 2" +(4k a -n )z=0t z tz 

             (19) 

which has a particular solution in the form of a cylindrical 

function z(2ake
-

), and the solution of the Helmholtz 

equation takes the following form: 

0

(2 )cos iwt
n n

n

A Z ake n e 







, 

0

(2 )sin iwt
n n

n

B Z ake n e 







.                  (20) 

Now we put the boundary conditions. To this end, we use 

condition (20), the substitution r= and =. Taking into 

account the obtained relations, we will seek the solution of 

the boundary value problem for the case of the fall of two 

P-compression waves and SV-waves of shear 
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perpendicular to the y axis onto two underground pipes. 

The wave potential wave has the form 
( ) .i i x iwtAe  

                               (21). 

To represent (21) in the form (20), we write (21) with the 

aid of (12) in bipolar cylindrical coordinates. 

( ) 2 exp( ) sin
1

iwti ik a eAe
 




                     (22) 

Expanding the second factor of expression (22) into a 

Fourier series (complex form) and after small 

transformations, we obtain the final expression for the 

potential of the incident P wave: 

( )
11

0

( )cos
i i t

n n

n
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





 
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where =2aexp( ).The remaining potentials (20), in 

analogy with (23), have the form: 
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2 22

0

( ) (1) (2)
2 22

0

( ) (1)
33

0

( ) ( ) cos ,

( ) ( )sin ,

( ) cos .

r i t
n n n n

n

r i t
n n n n

n

r i t
n n

n

C H D H n e

E H F H n e

G J n e







     

     

   
















 


 









 (24) 

The dynamic stress-strain state is expressed in terms of the 

potentials 1 and 2: 

( ) ( )i i iu        ( ) ( )i i iu        ,
1

3 3( )  ( )u iw   
                   (25) 

 2
i 2 0,5 ( )sin 0,5 ( )i i i id                               

3 3 3 3 3iw      
, 

22 0,5 0,5 ( )sini i                          , 

1,2; / 2 .i e a   
Substituting (24) and (25) in (8) we obtain the final 

solutions to the problems of the fall of the P and SV waves 

respectively on two underground pipes. Arbitrary 

constants An, Bn, Cn and others are determined from a 

system of algebraic equations with complex coefficients 

[C]{q}={р} 

where C is the determinant of (12x12) -order, the elements 

of which are the Bessel and Hankel functions of the 1 st 

second kind of the n-th order, q is the vector of a column 

of unknown quantities, and p is the vector of the right-

hand side. 

A system of algebraic equations with complex coefficients 

is solved by the Gauss method with the separation of the 

principal element. Dynamic stressed - deformed state in 

the case of a fall - shear wave on two underground pipes is 

also recorded in bipolar coordinates in the asymptotic 

form: 

, ( ) , ( )z z i z z i zu w u u          
 

As boundary conditions, we use condition (23) and replace 

r = n. The final solution of the problem for the cases of the 

fall of the SH-wave into two tubes has the form: 

(1)
1 0 1 1

0

(1) (2)
2 0 2 2

0

(1)
1 1 0 1 1 1

0

(1) (2)
2 2 0 2 2 2
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
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
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

0

(1)
1 1 0 1 1

0

(1) (2)
2 2 0 2 2

0

;

( ) ( ) sin ;

( ) ( ) sin ;

iwt

n

iwt
z n n n

n

iwt
z n n n n

n

w n k A H k n e

w n B H k C H k n e





     

    
















   
 
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 






 (27) 

Uncertain coefficients An,Bn,Cn is determined from the 

boundary conditions. Let us consider the definition of the 

dynamic stress-strain state of a cylindrical tube under the 

action of harmonic waves. To solve the problem, an 

addition theorem is applied. The addition theorems for 

cylindrical wave functions are derived in [4, 5, 6]. Let 

there be two different polar coordinate systems (rg,g) and 

(rk,k) (Fig. 3), in which the polar axes are equally 

directed. Pole coordinate k at q system will Rkq, kq, so 

that equality 

kgi

g kg kZ R e Z


 
                               (28) 

Then the addition theorem has the form: 

( )
( ) ( ) ( )exp( ),q kqin i n p

n q n p kq k k k kq

p

b r e b R e Tp r ip r R
 

   








 
, 

( )
( ) ( ) ( )exp( ),q kqin i n p

n q n p kq p k k k kq

p

b ar e J R e b r ip r R
 

  








 
 (29) 

Formula (28) makes it possible to transform the solution of 

the wave equation (1) from one coordinate system to 

another. Consider the calculation of an extended 

underground multi-thread pipeline for seismic action 

within the framework of the plane problem of the dynamic 

theory of elasticity. In this case, we investigate the case of 

stationary diffraction of plane waves on a series of 

periodically located cavities, supported by rings with an 

ideal compressible fluid inside. The solution of the 

problem is realized by the method of potentials. The 

boundary conditions have the form (8). The form of the 

incident potential will not change either. The potentials of 

the waves reflected from the tubes after the application of 

the addition theorem, and taking into account the 

periodicity of the problem, will have the form: 

( ) (1) ( )
1 11

0

( ) ( ) ,
r iwt in

n n n n

n

e A H r S J r e    


 



  
 

 

( ) (1) ( )
1 11

0

( ) ( ) ,
r iwt in

n n n n

n

e B H r J r e     


 



  
 

 

(1) (1)
1 1

0 1

 ( ) ( ) ,im im
n p p n p n p

p m

S A E e H m e H m    
 


 

 

  
 

 (30) 

(1) (1)
1 1

0 1

 ( ) ( ) ,im im
n p p n p n p

p m

Q B E e H m e H m    
 


 

 

  
 

 

where: =kcos, - distance between pipe centers. 

The refracted wave potentials in the tubes are written in 

the form 
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( ) (1) (2) ( )
2 1 2

0

( ) ( ) ,i m w in
n n n n n

n
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

 



  
 
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n n n n n

n
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

 



  
 

 (31) 

and the velocity potential in the ideal form of a 

compressible fluid 

( ) ( )
3 3

0

( ) ,i m w in
n n n

n

e E G J r e    


 



 
           (32) 

Unknown coefficients An-Gn are determined by setting 

(29) - (32) in (8). As a result, an infinite system of linear 

equations is obtained, which is solved by an approximate 

reduction method, provided that the relation 

(1 cos ) 2k n  
 

The general characteristic of the program is designed for 

multi-threaded pipes in the embankment for the case of a 

drop in seismic waves perpendicular to the axis passing 

through the pipe centers. The information entered contains 

the minimum required data: elastic characteristics (Е and 

) soil embankments and pipes; Density of soil, pipes and 

fluids filling it; Internal and external pipe radii; The 

predominant period of oscillation of soil particles; 

Coordinates of the point where the VAT is located; 

Coefficient of seismicity. With the help of a special label, 

it is possible to calculate pipes filled with an ideal 

compressible fluid, or empty ones. The calculation of the 

cylindrical Bessel and Hankel functions is carried out 

according to known formulas. The solution of the system 

of linear equations is carried out by the Gauss method with 

the separation of the principal term. 

Effect of distance between pipes. Table. 1 shows the 

values of the coefficient 
2

max max 0( / ( 2 ) )rr       
 

The maximum radial pressure of the media (ground) on the 

pipes at different distances d between them in the event of 

a fall in longitudinal waves. In this case, the inner and 

outer radius of the pipes R0=0,8 m and R=1,0 m: The 

predominant period of oscillation of soil particles is T = 

0.2 sec. Soil Characteristics: Permanent Lame 1=8,9- 

MPa; 1=4,34 MPa; density 1=1,74 Кn.sec
2
/m

4
. Pipe 

material characteristics 2=8690 MPa; 2=12930 MPa; 

2=2,55 Кn sec
2
/m

4
. 

 

Table 1: The value of the coefficient of dynamic concentration at 

different distances between the tubes for the case of longitudinal 

wave incidence. 
 

[1] D/d [2] 0,5 [3] 1,0 [4] 2,0 [5] 4,0 

[6] max [7] 1,68 [8] 1,76 [9] 1,61 [10] 1,60 

 

From Table: 1 it follows that first with increasing the 

distance between the pipes 0,5d/D1,0 coefficient max 

slightly increases by 5%, and with a further increase 

d/D>1,0 Decreases more sharply by 10%. For d / D> 2.0, 

the value max stabilizes, i.e. Practically does not change, 

with l4,0 close to the value max for a single pipe 

according to calculations. Consequently, the mutual 

influence of reinforced concrete pipes of multiline stacking 

takes place with the distance between them d4,0D and 

leads to an increase in the maximum dynamic pressure of 

the ground on them compared to a single pipe. This effect 

of increasing the coefficient max is associated with the 

imposition of waves reflected by several surfaces of 

multicell pipes. In this case, the nonmonotonic increase in 

the coefficient max with a decrease in the distance 

between the tubes, d / D is connected in our opinion with 

the phenomenon of interference superimposed after 

reflection of the waves. This phenomenon is extremely 

important for the practice of designing seismic 

underground multi-threaded pipelines. Allows you to 

choose the optimal distance between the pipes, at which 

the dynamic pressure during seismic action is minimal. For 

example, in Table 1, such a distance is d = 0.5D. It is 

known to note, for comparison, that in the case of static 

action, the reverse picture is observed: the pressure of the 

ground on multicell pipes is less than that of a single one. 

Table 2 shows the values max the maximum radial 

pressure of the soil on the pipes in the event of a fall in the 

P- and SV-seismic waves at different distances d between 

the pipes. Analysis of the data of Table. 2 shows that for 

d/D<4.0, the coefficient values max For the P-wave and 

SV-wave are as if in antiphase, i.e. At l / D = 1.0, the 

maximum seismic effect of the P-wave is 27% higher than 

for the SV wave, at d / D = 2.0 7% lower, and at d / D = 

4.0 again higher, But only by 1%. At the same time, as the 

distance between pipes increases, the difference in these 

effects decreases and at d / D = 4.0 it practically 

disappears altogether. In addition, we note that when an 

SV wave is applied, the values max at different distances 

between the pipes has a 2.5 times greater spread (up to 

25%) than when the P wave is applied (up to 10%). 

Influence of fluid filling pipes. Table 3 shows the values of 

the coefficient max In the case of a fall of P-wave on 

empty and water-filled pipes at different distances d 

between the pipes. The density of the liquid was assumed 

equal to 3=0,102 Кn sеc
2
/m

4
. 
 

Table 2: Coefficient value max with seismic actions in the form 

of P and SV waves at different distances d between the pipes. 
 

d/D max  

 P – wave SV - wave 

[11] 1,0 [12] 1,76 [13] 1,29 

[14] 2,0 [15] 1,61 [16] 1,72 

[17] 4,0 [18] 1,60 [19] 1,51 

 

Table 3: Coefficient value max for the case of the fall of P-wave 

on empty and water-filled pipes. 
 

d/D max 

 P - wave SV - wave 

[20] 1,0 [21] 1,76 [22] 1,89 

[23] 2,0 [24] 1,61 [25] 1,78 

[26] 4,0 [27] 1,60 [28] 1,90 

 

From Table 3 it follows that the presence of water in the 

pipes increases seismic effects on them compared to empty 

pipes. Obviously, this is due to the increase in the weight 

of the pipeline. The maximum dynamic pressure of the soil 

on the pipes is enhanced. For example: for d / D = 1.0, the 

difference in the values of the coefficient d/D=2.0-10%, 

with d / D = 4.0-19%. In addition, we note that the scatter 

of the coefficient values max at different distances d pipes 

filled with water are less (7%) than for empty pipes (10%). 

Effect of shell wall thickness (pipes). Table 4 shows the 

values of the coefficient max for different thicknesses of 

the wall of the reinforced concrete pipe in the case of 

incidence of continuous waves on empty multicellular 

pipes, stacked multicell pipes laid at a distance d=0.5. 



 

~ 276 ~ 

World Wide Journal of Multidisciplinary Research and Development 
 

Table 4: Coefficient value max for different pipe wall 

thicknesses t. 
 

[29] d/D [30] 0,08 [31] 0,1 [32] 0,15 [33] 0,2 

[34] max [35] 1,60 [36] 1,66 [37] 1,66 [38] 1,68 

 

From Table 4 it follows that the range of wall thickness, 

practically does not affect the dynamic pressure of the soil. 

This, in all likelihood, is due to the fact that the wave does 

not penetrate the reinforced concrete pipe due to the 

sufficient rigidity of the pipe. 

 

Conclusions 

1. When exposed, the mutual influence of reinforced 

concrete pipes of multiline stacking takes place with a 

distance d> 4,0D between them and leads to an 

increase in the maximum dynamic pressure of the 

ground on them as compared to a single pipe (local 

resonance phenomenon) by 5-10%. 

2. The phenomenon of local resonance manifests itself 

more strongly for seismic action in transverse waves 

than longitudinal waves. 

3. The denser the soil of the embankment, the less 

seismic impact on underground pipes. The change in 

wall thickness and class of concrete practically does 

not affect the dynamic pressure of the soil on 

reinforced concrete pipes under seismic action. 

4. Maximum dynamic earth pressure max On pipes laid 

in two strings at a distance d<3.0D from each other, 

more than a single pipe. This excess reaches 15%. 

5. The presence of liquid in the pipes, as a rule, increases 

the pressure max for a single pipe by 20% and for two 

thread pipes by 5-10%. The exception is densely 

packed pipes d=0, for which the pressure max 

decreases by 4%. 
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