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Abstract 
The paper considers an infinitely long circular cylinder consisting, in the general case, of a finite 

number of coaxial viscoelastic (or elastic) layers, surrounded by a deformed medium. The dynamical 

stressed - deformed state of a piecewise homogeneous cylindrical layer from a harmonic wave is 

investigated. Numerical results of stresses are obtained depending on the geometric and 

physicomechanical parameters of the system. 
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Introduction 

The theory of diffraction of seismic waves is based on the solution of the boundary value 

problem of the dynamics of a continuous medium. The known number of works with success 

can be applied to the calculation of underground pipes. These include the work Guz A.N., 

Kubenko V.D. and Cherevko M.A. [1], which gives an example of calculating the diffraction 

of a plane harmonic P and SV wave on a rigid circular inclusion soldered into a thin elastic 

plate. In this case, cases are considered when the inclusion itself is either motionless or it 

moves together with the plate [2]. The problem of the interaction of an SV wave with a rigid 

circular inclusion, when on one part of its contour there is complete coherence with the 

surrounding medium, and on the other - sliding, contact, is solved by Parton V.Z. [3]. The 

fundamental work devoted to plane waves on a single inclusion is the work of  Pao I.Kh. and 

Mao S.S. [4]. It investigates in detail the diffraction of plane waves of P and SV waves by a 

rigid and elastic inclusion. An analysis of the example of the calculation carried out by the 

same authors for a tunnel with concrete lining laid in a granite rock showed that with 

increasing lining, the tunnel decreases the maximum dynamic pressure; Dynamic stresses 

exceed the corresponding static by 10 - 15%; at R (where   - wave number, R - the 

outer radius of the inclusion), the dynamic stresses are close to static. It was also shown in 

[5] that the magnitude of dynamic stresses mainly depends on the ratio of the shear moduli 

and the propagation velocities of the waves in the soil and in the lining, and also on the 

thickness of the lining. Similar problems were solved in [6, 7]. All of the above diffraction 

studies were solved by the method of potentials. In addition to this method, another approach 

to solving the diffraction problem is known, namely; Method of integral transformations (II 

P). A major contribution to this field has been made in the works   [8,9].  

 

Formulation of the problem. 

An infinitely long circular cylinder consisting, in general, of an arbitrary number of coaxial 

viscoelastic layers, is surrounded by a deformable medium and is filled with liquid (gaseous) 

media. At a distance d from the cylinder is located a linear source of seismic (or explosive) 

loads (Fig. 1, a). It is assumed that the laminated package is an alternation of thin-walled and 

thick-walled layers of the cylinder. When describing the motion of thin-walled elements of a 

set, equations of the theory of such shells are used, based on the hypotheses of Krichgoff-

Love. For thin-walled layers, the initial equations are the linear theory of viscoelasticity. The 

numbering of shell layers is made in layers - a product in the order of increasing their radii 

from 1к  and Nк  ( Fig. 1, b). The value characterizing the properties and the state of 

the thick-walled elements of the composite correspond to the values  j =1, 2, 3,…, N,  where 
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the j-th viscoelastic layer is enclosed between the j-th and 

j-th shells. The parameters of the internal and external 

media are denoted by the indices i=1 and i=N+1. Under 

the assumption of a generalized plane-deformed state, the 

equation of motion in displacements has the form                           
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 - displacement vector, which depends от tr ,, ; j - density of the layer material; 

 

 

 
 

Fig.1. Calculation schemes. 
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)(tf  – some function;   ),()( tR i

Е )()(  tR i
 and 

)()(  tR i
- relaxation core; ojoj  , - instant elastic 

moduli of the viscoelastic layer, 01E - instantaneous 

elasticity moduli of the shell. At pressures up to 100 MPa, 

the motion of the liquid is satisfactorily described by the 

wave velocities for the potentials of the liquid particles 

[11] 
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where Со  – acoustic velocity of sound in a liquid. Potential 

0  and the velocity vector of the liquid are related by the 

dependence  
0gradV 


. Fluid pressure 0Rr   is 
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  – the liquid pressure on the 

wall of the cylindrical layer and ρо – density of the liquid. 

Under the condition of continuous flow around a fluid, the 

normal component of the velocity of the liquid and the 

layer on the contact surface r = R1  should be equal  
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where 1ru
 – moving the layer along the normal. 

The problem is solved in the displacement potentials, for 

this purpose we represent the displacement vector in the 

form: 
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where j  – longitudinal wave potential; ),( jrjj 
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and the quantity Н
N (

Z) Is a Hankel function of the first 

kind and of order . Using the addition theorem for 

Bessole functions [15], expressions (8) can be rewritten in 

the form  
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where Jm- Bessel function of the first kind of order m. On 

the other hand, the external stress field, due to the presence 

of cylindrical inhomogeneities, is completely determined 

by solutions of equations (5), which are periodic in   and 

are waves emerging from a specific point, which have 

amplitude decreasing in time. These decisions are as 

follows: 
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where jmjmjmjm DCBА  ,,, , D,   C , B ,А jmjmjmjm  

constants to be determined from the contact conditions 

r=Rn.  (n=1,2,3,…N) the construction of a formal solution 

does not encounter fundamental difficulties, but the 

investigation of such a solution requires a huge amount of 

computation. Problems are reduced to solving non-

homogeneous algebraic equations with complex 

coefficients 

                           [c]{g}={p}   (10) 
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In this case, the circumferential stress on the cavity surface 

is reduced to the following: 
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Coefficient of voltage concentration 
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To solve the system of equations (11), in general, the 

Gauss method is used, with the separation of the principal 

element. 

 

The movements are calculated as follows: 
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Elements of the matrix [C] (10) have the following form:  
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and in the case of  С55(2) = С55(2b) 
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Thus, we can find the elements of the matrix [C] for any order 
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The most obvious criterion for assessing the deterministic 

state is the choice of the "concentration coefficient" 

(stresses, deformations, etc.). The main objectives of this 

work are: 

A) study of the redistribution of stresses due to the 

presence of a cavity or inclusion; 

B) a study of the effect of the location of the source of 

excitation on this distribution. In accordance with such 

problems, stress concentration coefficients  К1N, К2N, К3N  

and  К4N  are determined by the voltage: 
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Here    ),(  и ),( )(
1

)(
21 nN

К
n

К
nn  - the main 

stresses, determined by the potentials (,) and (
(Р)

, 
(Р)

). 

The principal stresses are related to the components of the 

plane stress state by the following relations [16]. 

1,2=0,5{(rr+)[(rr-)
2
+4r

2
)]

1/2
}   

it is also possible to determine the strain energy 

concentration coefficient, defined by expression: 

 (N /tn
 (p)

) r=Rn   =  sn / sn
(p)

 = K
(n)

 s              

where  S and S
(H)

 – Functions of the deformation energy 

plane for the same point, related to the displacement 

potentials. (1y) and (
(n)


(n)
). The energy density of the 

strain is expressed in terms of the principal stresses: 

EN=[
2
1n+

2
2n-2vn1n+2n]/(2En)  ,     

  

where  EN  and   n  respectively, Young's modulus and the 

Poisson's ratio. 

Solutions (4) and (5) define complex stresses. 

Consequently, the functions of the deformation energy 

plane have the form: 
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where  1n= rc tg(ImT/ReT), 2 = rc tg(Im(T
 

(p)
)/(ReT

(p)
)).  
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Does not depend on time and is complex. As a measure of 

concentration, we can choose the value [16] 
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Notice, that 

Scn=Sc(,n, n, n; Z, n, Rn,  n). 

 

Numerical results and the limiting case of large 

wavelengths. To study the stress concentration on a free 

surface, we use the absolute values of the complex 

quantity and the relations (13) and (14). The value of the 

complex function depends on the wave number , angle θ 

distances r , Poisson's ratio, the ratio of Young's moduli 
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Е

 = Е1/Е2 , density ratios 


= 1/2 , geometric parameters 

R1 and R2. If all the characteristics (Fig. 1) of the 

mechanical system are the same (Е1=Е2=. . . Еn; 1 = 2  =. 

. .= n ; 1 = 2  = 3 =. . . =  n) , Then the problem of the 

interaction of cylindrical waves with cylindrical cavities. 

In the particular case, the solutions obtained for the cavity 

coincide with the solutions of RS. Moop and W. N. Rao 

[2]. The results of calculations of the stress concentration 

are shown in Fig. 2. From the analysis of numerical results 

in Fig. 2. It can be seen that , R, and n  The stress 

concentrations of the rim face coincide. In the particular 

case, we consider the interaction of waves with a rigid 

inclusion (Fig. 1), then on the boundary r =R1 The 

following conditions are imposed:  

  sincos UuUur     (15) 
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where   On – inclusion density. 

It is found that the transfer and rotation of the inclusion as 

a rigid integer are determined by the expressions: 
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where U, V – In the directions of x and y respectively, - 

angle of rotation,  =рср/рon. . The solutions of equation 

(15) are expressed in terms of the Bessel and Hankel 

functions of the first and second kind of the n-th order. Of 

special interest is the case of a fixed inclusion, i.e. =0. 

For this inclusion, the conditions on  r = RN have the form: 

U=V==0;  ur=u=0. 

It can be verified that from the motion the inclusion is held 

by the forces X and Y in the directions x and y 

respectively and the moment M in the x-y plane, which are 

defined by formulas 
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where =P/Rn1 , 1=(1-v
2

1)/(21R1) ,2=(1+v
2 

1)/1R1. 
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Using suitable expansions for the Hankel function, it can 

be shown that  
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Fig. 3: Dependence of the energy concentration coefficient on 

the wave number 1R1  (r1/D=3,5) 
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Some graphs of the nature of stress redistribution near the 

discontinuity surface are given. Figures 2 and 3 give 

graphs of the coefficient Sc as a function 1 R1 for 

different values  and . These graphs show that for given  

,   and   there is a value 1R1=, which maximizes the 

value Sc. The propagation of waves from a source О  

(Fig. 3.1) in cylindrical coordinates  and . The 

relation 


 /rr  depending on the r  at   = 0,25 

(without a cylindrical body). It can be seen that radial 

stresses at high wave numbers are almost three times 

greater than σ θθ .  
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Fig. 4: Dependence of the energy concentration coefficient on 

the wave number  (v=0.25). 

 

In the following example, we consider the interaction of 

cylindrical waves with a cylindrical layer (the boundary 

conditions at the contact of the layer (r = R2) and free 

surface (  = Ri) are given in (11). From the general 

solutions we obtain solutions for n = 1,2. The numerical 

results are shown in Fig. 3.4. From Fig.3.4. It is clear that 

the concentration of the voltage depends essentially on the 

location of the harmonic wave source. When ro / D = 2  the 

dynamic concentration curve differs from static to 15%. 

When 1P1=2 the results of the static and dynamic stress 

state are radically different for close ro /D = 2 source 

distances. Now we consider some limiting cases. Here are 

the results for the hole. If in equation (15) ro Tends to 

infinity, then we can use the asymptotic expansions of the 

Hankel function for large values of the argument.  
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This expression completely coincides with the expressions 

obtained [18] for a plane incident wave. Defining an 

asymptotic static solution, we obtain  
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 r0 - final. 

This solution exactly coincides with the solution of the 

static problem obtained by [17]. 

The difference between the results obtained in the present 

paper and the results of the ordinary wave diffraction 

problem justifies their consideration in many practical 

problems.  
Table 1 

 

R1/ro 3 4 5 50 60 80 

Θ, Hailstones 60о 70о 90о 90о 90о 90о 

|σ θθ| 1,541 1,536 1,525 1,414 1,416 1,416 

 

Table 1 shows the stress concentrations as a function of  

R1/ro for different values of θ. It can be seen that the 

maximum stress |σ

 θθ|  in a cylindrical body arises when θ 

= 30
о
 (σ


 θθ = σ θθ/ σ кк ) . At R1/ro > 50 The impact of a 

cylindrical source is decomposed as a plane wave, i.e. The 

radius of curvature of the wave can be ignored.  

 

Conclusions 

1. The problem of diffraction of harmonic waves in a 

cylindrical body is solved in displacement potentials. 

The displacement potentials are determined from the 

solutions of the Helmholtz equation. Arbitrary 

constants are determined from the boundary 

conditions that are placed between the bodies. As a 

result, the problem posed reduces to a system of 

inhomogeneous algebraic equations with complex 

coefficients that are solved by the Gauss method with 

the separation of the principal element. 

2. Contour stresses σθθ on the free surface of cylindrical 

bodies reach their maximum value in  

1.                      
















 wavesallongitudin ofaction  Under the
4

sshear wave ofaction  Under the
2





Q

 

2. Contour stresses  σθθ under the action of transverse 

harmonic waves is 15-20% greater than when exposed 

to longitudinal waves. 

3. When the source of harmonic waves is at a distance of 

five radii ( RV 5 ) from the cylindrical body, the 

high-frequency nature of the change in contour 

stresses  σθθ, Acting on the internal free surface, can 

be approximated well by the solution for a flat (

V


) wave. Further, all values approach the 

same asymptote. 

4. Numerical results show that the dynamic stress 

concentration coefficients around cylindrical bodies 

depend on 

A) the distance between the source and the body; B) the 

wave number for the sphere and the body; C) 

physicomechanical parameters of the sphere and body; 

In the case of a cavity in an unbounded medium, the loop 

voltage depends on: 

A) the distance between the source and the cavity; B) the 

wave number; 

C) Poisson's ratio of the medium. 
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