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Abstract 
The propagation of natural waves on a viscoelastic cylindrical panel with variable thickness is 

considered. For the derivation of the shell equations, the principle of possible displacements (the 

Kirchhoff-Love hypothesis) was used. Using a variational equation and a physical equation, a system 

consisting of eight differential equations is obtained. After some transformations, a spectral boundary 

value problem is constructed with respect to complex parameters     , For a system of eight 

ordinary differential equations with respect to complex form functions. The dispersion relation for a 

cylindrical panel. 
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Introduction 

Basic relations for a cylindrical shell of variable thickness. Statement of the wave 

problem  

 

     An infinite cylindrical shell of thickness h, density ρ, with Young's modulus E, Poisson's 

ratio ν, and viscosity coefficient of the material is considered. In a curvilinear orthogonal 

coordinate system  (α1 ; α2 ; z ) with complex Lame parameters at z = 0, the shell occupies 

the region  

                 ;1      ;0 2 l     
22

h
z

h
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The curvatures of the middle surface z = 0 are equal to  
R

kk
1

;0 21   according to 

coordinates α1 and α2 . In the framework of the Kirchhoff-Love hypotheses, the law of 

variation of the displacement vector components   u1
(z)

 , u2
(z)

 , w
(z)

  the shells are defined by 

the following relations 

u1
(z) 

= u – θ1 z; u2
(z)

 = v -  θ2 z  ;  u3 
(z)

 = w,             (1) 

 

where    u, v, w – components of the displacement vector of the middle surface; 

θ1 , θ2  - angles of rotation of the normal relative to the axes α1  and α2 

To derive the shell equations, as before, the principle of possible displacements was used  

δП = δТ                                              (2) 

where δП – variation of the potential energy of the shell; 

δТ – virtual work of mass inertia forces of the shell 

 Novozhilov V.V. / 97 /, taking relations (1) into account, deduced the following 

expression for δП, starting from the linear theory of elasticity 

  212211122211 2  ddNxMxMSTТП
F

     (3)                                                                                                                    

where  Т1 , Т2 , S , M1 , M2 , N – efforts and moments;  ε1,  ε2,  ε12,    х1,   х2,  τ – Components of 

deformation of the median surface F. 

In the expression (5.3), terms that are of order 
R

h
. 
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According to (97), the components of the tangential 

bending deformation of the middle surface are expressed 

in terms of its displacement and the angles of rotation of 

the normal as follows  
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  (4) 

 

In turn, the forces and moments are related to the 

deformation components by the defining relations that 

follow from the generalized Hooke's law: 

       (5) 
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If we neglect the inertia of the rotation of the normal, then 

the virtual work of force 

The inertia of the shell can be represented in the form:  

21)(  ddwwuuhT
F

           (6) 

After substituting expressions (3) and (6) in (2) and the 

standard of the integration by parts procedure, taking into 

account relation (4.4), we obtain the equations of motion 

in the form: 
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Alternative boundary conditions of a free edge, or a hard 

seal, with  

α2 = 0, l  have the form: 

Free edge  

02 M ; 0S ; 02 T ; 02 Q   (9) 

hard seal 

u=0,     =0,      w=0,      q2=0  (10) 

Using relations (4), (5), (7), (8), the complete system of 

equations of motion can be represented in the form of eight 

differential equations placed relative to the first derivatives 

with respect to   :2   
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In the case of running along   1   harmonic waves of the 

solution of the boundary value problem for system (11) 

with boundary conditions of type (9), (10) admit a 

separation of variables 

 

 tkzu   11 sin  

 tkzv   12 cos                           (12) 

 tkzw   13 cos  

 tkz   142 cos  

 tkzS   15 sin  

 tkzT   162 cos  

 tkz   172 cos  

 tkzM   182 cos  

 

where    - Frequency of oscillations; K is the wave 

number   8.121 iz  - function of the form of 

oscillations. It is further assumed that both edges of the 

shell  0   and   α1= l  - Are free. After substituting 

relations (12) into equations (11) and boundary conditions 

(9), there is a spectral boundary-value problem with 

respect to the parameter   for the system of eight 

ordinary differential equations with respect to the complex 
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functions of the form: 

251 kzAzz 
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When analyzing the dispersion of harmonic waves, the 

parameter k is assumed to be given. 

 

Numerical analysis of the dispersion of normal waves 

in cylindrical panels   

The relations obtained in the previous section describe the 

propagation of harmonic waves in infinite cylindrical 

panels. On the basis of the solution of the boundary-value 

problem (13), the Godunov orthogonal sweep method was 

used to perform a numerical analysis of the dispersion of 

these waves. 

Figure 1-5 shows the real parts of the complex phase 

velocities of the first two modes versus the wave number 

for different waveguides. In all variants of calculation, the 

following dimensionless shell parameters 
 

,1E   ,1    ,25,0   1G ,  1,0 . 
 

The thickness h varies linearly 
 

    21212  hhhh                               (14) 
 

The solid lines in the figures correspond to the options of a 

panel of constant thickness  (h1= h2=0.1), the dashed lines 

characterize the panel with a wedge-shaped section. In the 

latter case h2=0.1 and the thickness h1 ranged from 0.001 

to 0.0001. In this case, in the considered range of wave 

numbers from 0 to 40 with decreasing h1 numerical 

convergence to the limiting solution was observed. These 

solutions are shown in graphs. The curvature parameter k2 

is constant and takes five values from 0 to 2 . The dash-

dotted lines in Figs. 1 and 2 correspond to the case of the 

Kirchhoff-Love plates considered earlier к2=0. 

In Fig. Figures 6-15 show the corresponding functions of 

the waveform of the deflection w for different values of 

the wave number. 

In the long-wave range, the first mode describes the 

flexural oscillations of the beam type, the second mode 

corresponds to torsional oscillations. At small k, the 

velocity of the first mode tends to zero, the velocity of the 

second mode is always finite. 

In the case of a panel of constant thickness, it is interesting 

to trace the influence of the transverse curvature of the 

panel on the velocity  RC  wave propagation. With 

increasing parameter к2 the tendency of increase in speed 

 RC  bending mode and reducing the speed of the torsion 

mode. Rate of attenuation of flexural mode reduced and 

increased completion rates 

An analogous dependence on the curvature was noted in 

[100], a twisting mode depending on к2.  It is observed in 

the analysis of the natural frequencies of flexural and 

torsional oscillations of a plane curvilinear elastic rod. In 

this variant of calculation this effect leads to the fact that 

starting from a certain value к2  the dispersion curves of 

the first two modes, the real and imaginary parts, 

respectively, twice intersect each other. With further 

increase  к2  the first point of intersection is shifted to the 

region of small wavenumbers, and the second to the short-

wave region, and then to the mid-frequency region. With 

increasing к2 the number of nodal points of the form w also 

increases. The first mode has two, the second - three. In 

comparison with curvilinear rods, this fact also agrees with 

the results of [100]. 

Fig.1-5 (dashed lines), 11-15 - are devoted to cylindrical 

panels of wedge-shaped section. 

Figure 1, 2 shows the qualitative difference in the behavior 

of the dispersion curves of the first mode corresponding to 

the shell and plate. If in the second case the phase velocity 

curve is monotonic, then in the first case a characteristic 

maximum in the medium-wave range is observed, which is 

explained by the increased flexural brutality of the shell in 

comparison with the plate. The velocity of the second 

mode, in contrast to the case of a panel of constant 

thickness in general, also increases with increasing 

curvature. Therefore, the intersections of the modes in the 

considered range of variation к2 not visible. 

With respect to all modes as well as the plate, according to 

Figs. 11 ± 15, the localization of the wave motion near the 

sharp edge is observed with increasing wave number. 

Simultaneously, the tangential displacements u and v tend 

to zero in comparison with the normal displacements w. 

Because of this, in the short-wave range, the phase 

velocity of the harmonic waves in the shell also has a 

limiting value, which coincides with the corresponding 

value of the limiting phase velocity for the plate. This fact 

is physically obvious, since localization with increasing 

wave number decreases the characteristic size of the wave 

motion zone, with respect to which the curvature of the 

shell tends to zero. 

At the same time, as one would expect, the greater the 

curvature  к2 The slower the transition to a site without 

dispersion motion     constc     with increasing wave 

number. 

As for the localization itself, it increases with increasing 

curvature (for sufficiently large k, for example, for k = 10 

in Fig. 11-15). Moreover, such an "increased" localization 

in a cylindrical panel is characteristic for both modes (real 

frequent complex velocities). 

A feature of the oscillation modes in the wedge-shaped 

panel is also the dependence of the number of nodal points 

on the wave number. For example, as follows from Fig. 7, 

for the second mode with k = 1 there is one node point, for 

k = 3 - none, k = 5 or more - two nodal points. A detailed 

effect was not observed in plates of variable thickness and 

shells of constant thickness. 
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Fig.1 Change of phase I and II modes of speed by wave number. 

 

 
 

Fig.2 Change the phase I and II modes of velocity by wave 

number. 

 

 
 

Fig.3 Change the phase I and II modes of the velocity by the 

wave number. 

 

 
 

Fig.4 Change the phase I and II mode of the velocity by the wave 

number. 

 

 
 

Fig.5 Change the phase I and II modes of speed by wave number. 

 

 
 

Fig.6.a. Changing the shape of the oscillations depending on the 

coordinate Х2. 
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Fig.6b. Change in the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig.7.а. Change in the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig.7b. Change in the shape of the oscillations depending on the 

coordinate Х2 

 

 
 

Fig.8a. Change in the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig.8b. Change in the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig. 9a. Change in the shape of the oscillations depending on the 

coordinate Х2. 
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Fig.9b. Change in the shape of the oscillations depending on the 

coordinate Х2 

 

 
 

Fig.10a. Changing the shape of the oscillations depending on the 

coordinate Х2 

 

 
 

Fig.10b. Changing the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig.11a. Changing the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig.11b. Change in the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig. 12a. Change in the shape of the oscillations depending on 

the coordinate Х2. 
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Fig.12b. Changing the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig. 13a. Change in the shape of the oscillations depending on 

the coordinate Х2. 

 

 
 

Fig.13b. Changing the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig.14. Change in the shape of the oscillations depending on the 

coordinate Х2. 

 

 
 

Fig.15. Change in the shape of the oscillations depending on the 

coordinate Х2. 

                                  

Conclusions 

1. With increasing curvature of a cylindrical panel of 

constant thickness, the propagation velocity of the 

first bending mode increases and the propagation 

velocity of the second torsional mode decreases so 

that, starting from a certain value of the curvature 

parameter, the modes intersect twice. With increasing 

curvature, the number of nodal points of the shape of 

the deflection oscillations also increases. 

2. In the case of a wedge-shaped cylindrical panel, for 

each mode there exist limiting propagation velocities 

with an increase in the wave number, which coincide 

in magnitude with the corresponding velocities of 

normal waves in a wedge plate of zero curvature. In 

the shortwave range, the localization of motion exists 

and increases with increasing curvature of the panel. 

The number of nodal points of the shape of the 

oscillations of the deflection depends not only on the 

curvature, but also on the wave 
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