

~ 83 ~

WWJMRD 2017; 3(12): 83-86

www.wwjmrd.com

International Journal

Peer Reviewed Journal

Refereed Journal

Indexed Journal

UGC Approved Journal

Impact Factor MJIF: 4.25

e-ISSN: 2454-6615

Shaik Naseera

School of Computer Science

and Engineering, VIT

University, Vellore, India

Gayathri P

School of Computer Science

and Engineering, VIT

University, Vellore, India

Santhi H

School of Computer Science

and Engineering, VIT

University, Vellore, India

Gopichand G

School of Computer Science

and Engineering, VIT

University, Vellore, India

Geraldine Bessie Amali D

School of Computer Science

and Engineering, VIT

University, Vellore, India

Shubham Kumar

School of Computer Science

and Engineering, VIT

University, Vellore, India

Correspondence:

Shubham Kumar

School of Computer Science

and Engineering, VIT

University, Vellore, India

A Study on Six Degrees of Separation Using Self-

Adapting Algorithm

Shaik Naseera, Gayathri P, Santhi H, Gopichand G, Geraldine Bessie

Amali D, Shubham Kumar

Abstract
Six Degrees of Separation is a theory which states that any two random people in the world can be

associated with each other with no more than six intermediate links. In this paper we use this theory

to create an application which is going to help the user in expanding his professional network and

make use of opportunities that he otherwise would not be able to. This is achieved through

maintaining a central search server which contains the details of all the users using our application.

The server continuously finds links between various users based on their activities and updates the

link table if that link has not been established before. Doing so will result in a much smaller wait time

for the clients as in most of the cases the link will already be present in the link table. The search time

for links of 3rd degree are easy to establish and thus will be done by default for all clients limited to

their friend list. This move will make it much easier to return client requests as most of the time they

are limited to their friends circle. We have tried to make use of self-adapting algorithms in this paper

which will be responsible for calculating such statistics like average degrees of separation,

establishing links on its own for most active clients, updating 3rd degree links for every client and

updating the link tables. The system will make use of a main server side compute algorithm where

the main handling logic will run on a parent process or thread. As soon as any client connects to the

server through socket connection a new child thread will be created by the server in order to serve the

new client. The client will only send its client id and the target name. This data will then be used by

the server to compute and find the link between the client and the target. As soon as the server finds

the link the client thread will send this data to the client and display it to the user. After this the client

thread will be killed and the connection with the client will be terminated. The main server thread

will be responsible for accepting client requests, creation of new threads, background passive

searching, updating the link table, and modifying the statistics. The details about the clients will be

stored in a central database which will be accessed only by the server side algorithms.

Keywords: Social Network, connectivity, sig degree, separation, search, link

Introduction

Since in our application the size of the network and complexity will grow as the number of

users increases our main objective is to minimize the time taken to establish a valid link

between the user and the target. The time taken to establish a link can depend on various

factors like the position of the target relative to the user in the search network, average

number of friends in the network, complexity of the domain, diversity and various other

dynamic factors.

Two directional search is capable of moving in both the direction in the search domain,

which means we can search in both the direction in the search domain simultaneously. This

is beneficial for us as it helps to reduce the depth that each search side has to visit.

The application system will follow client server architecture with all the computation done

on the server side. The clients only need to send requests which include the target to be

searched for.

World Wide Journal of Multidiscip linary Research and Development

~ 84 ~

World Wide Journal of Multidisciplinary Research and Development

Link-Table Search

The architecture followed for this model is based on client

server architecture as shown in Fig. 1. As mentioned earlier

because our search domain is huge we have to find a

solution to minimize the search time to find valid links. To

do this we have used a link table which will record all the

links found by the application so that they can be directly

used in the future whenever the same link or a subset of

that link is searched for.

This helps us to make sure that search time for links can be

reduced considerably. Apart from this to reduce the timing

we have designed the algorithm in such a manner that each

new user will by default be connected up till the 3rd degree

automatically. This process of finding links will be limited

to the user’s friend list and will take place in the

background. The users will be seen as clients who will have

a small GUI that they can use to find and add contacts and

also send requests to the server to find a link between them

and a person. The server will accept this request and create

a new child process to handle this request. The search will

always start from the link table. If a link is found here the

child process returns this link to the client and kills itself. If

not the algorithm will query all the third degree links and

continue to use the last link to search the next three links.

This helps because half of the link is already preprocessed

and helps to reduce the time considerably. If the link is not

present in the user’s friend network then the process is

moved to the background and the search starts using the

next valid network.

Fig. 1: Architecture of the Application

The system will make use of a main server side compute

algorithm where the main handling logic will run on a

parent process or thread. As soon as any client connects to

the server through socket connection a new child thread

will be created by the server in order to serve the new

client. The client will only send its client id and the target

name. This data will then be used by the server to compute

and find the link between the client and the target.

As soon as the server finds the link the client thread will

send this data to the client and display it to the user. After

this the client thread will be killed and the connection with

the client will be terminated. The main server thread will be

responsible for accepting client requests, creation of new

threads, background passive searching, updating the link

table, and modifying the statistics.
The details about the clients will be stored in a central database

which will be accessed by the server side algorithms. The ER

diagram showing the relationship is given in Fig.2.

The database consists of three tables. A main table that

stores all the user login information and their refined data

like their hometown, state, email id, organization etc.

The second table is called the friends table which has all

the information of the friendships formed by all the users.

This table is widely used by the compute algorithm to find

the links.

The last table is the link-table which stores all the

previously found links and also the links up to the 3rd

degree for every user within their friends list.

~ 85 ~

World Wide Journal of Multidisciplinary Research and Development

Fig. 2: ER Diagram of the Database Used

Design and implementation
In order to achieve minimized search time we will set up a

record table called link table which will store all the

established links that the application finds for future use. In

addition to this we will have a server side compute which

will keep on finding links continuously between various

users using statistical data and storing those links for future

use.

The client simply needs to send a target request using

socket programming to the server and the server will return

back a valid match between the client and the target.

The server starts by searching the link table for the

requested link and if found simply returns the link to the

client. If the link is not present in the link table then the

server starts to search for the link using the server side

compute logic. In order to make this search time small we

have designed the server to automatically find all the links

between every client and its friends list. This means that if

the link is not present in the link table then the server will

have to only start from the 4th degree onwards. This move

will help to save time by making use of previous

computations.

If the link to be found is outside the clients friend list then

we will put this search thread in the background as

searching through the whole search domain can take a lot

of time. The client in this case would be sent a wait

message and the link will be sent as soon as the server

completes the search.

We have also made use of statistical values in order to

make the algorithm self-adaptive. The initial offset for

automatic searching of links inside the client’s friend list

will be set to 3. The server will automatically determine

based on the client traffic the average value for the links

that are being searched for. If this value changes by 1 over

the previously set value of 3 the server will automatically

start to search for the new next links and update them in the

link table.

The link table is maintained inside the central database in

the form of links that are successfully found in the previous

searches. This helps to query the database with just the first

link id which will be the id of the client and all the

previously found links originating from that clients will be

used to search for the present link required by the user.

Experimental Results
The application is expected to produce valid links up to a

maximum of six degrees of separation in acceptable

amounts of time. The wait time that a client gets before

obtaining the resultant link has been minimized to a great

extent by using link tables and statistical values. The client

in the worst case will have to wait a longer duration as its

search thread will be sent to run in the background. Fig. 3.

Shows the time taken by various algorithms to find the

links.

In most of the cases the client is expected to search for

links in its own friend domain which will extend utmost to

the 3rd degree. As these links have already been computed

the clients for the most cases will obtain their results

instantaneously.

The server is also expected to control the client threads

properly and monitor the growth of the network and also

update the statistical data which is used by the search

algorithms.

Apart from this the background searching for the most used

clients should also be properly executed by the server.

~ 86 ~

World Wide Journal of Multidisciplinary Research and Development

Fig. 3: Time Taken to Find a Test Links by Various Algorithms

Conclusion

The idea that anyone in the world can be connected in six

or less steps was enough to motivate us to look for its

application in real life. Upon extensive research we came

up with this idea to help people connect better with others

using their common friends. Our application does a good

job to achieve this but as the proper implementation of six

degrees of separation requires a large search domain that is

well connected our application would fail to utilize the true

meaning of “six degrees of separation” for every user

without a well-populated database.

Also the use of various optimizing techniques such as hash

tables, look-back tables and heuristic priority enables our

algorithm to get search results quite fast but this is only

tested on a small database, which we feel may need a lot

more optimization in future while dealing with a much

larger database.

In general due to the use of link tables and making use of

already found links our algorithm has proven to be better at

finding links than other common search algorithms like

DFS and BFS. Since our algorithm already has the first 3

links stored in the database it has to search only the

remaining 3 links when searching for the entire 6 degrees

of separation. This reduces the search time drastically as

the algorithm actually has to look only for the remaining 3

links. Hence reducing the compute load by half. The worst

case scenario again comes out to be O (N3) instead of O

(N6).

Future scope of this model is huge. As the user base will

increase so will the computational requirements. This will

require high end server side computing power and storage

space. To reduce the financial cost that will be required.

We can make use of SETI’s compute at home program.

This is a free ware background computing application from

SETI which is sponsored by NASA. It lets a normal user

install a screen saver application which starts to compute

the application logic once the user is away. The user will

need to download a dataset which will be used by the

algorithm to find the links. Once the dataset is completed

the user application will upload the processed dataset to the

server. Hence we can use this and save on computing costs.

References

1. E. Edwin Lawrence and Dr. R. Latha (2015),

“Analysis of Six degrees of separation in Facebook

using Ant colony optimization”, IEEE proceedings of

International Conference on Circuit, Power and

Computing Technologies (ICCPCT), 19-20 March

2015, Nagercoil, pp. 1-5.

2. Ke Xiao-hua (2008), “A Social Networking Services

System based on the “Six Degrees of Separation”

Theory and Damping Factors”, IEEE proceedings of

Second International Conference on Future Networks

(ICFN-2010), 22-24 January 2010, Sanya, Hainan, pp.

438-441.

3. Reza Bakhshandeh, Mehdi Samadi, Zohreh Azimifar

and Jonathan Schaeffer(2011), “Degrees of Separation

in Social Networks”, Proceedings of The Fourth

International Symposium on Combinatorial Search

(SOCS), 15-16 July 2011, Barcelona, Spain, pp. 18-23.

4. Lei Zhang and Wanqing Tu (2009), “Six Degrees of

Separation in Online Society”, Proceedings of the

WebSci’09, Society On-Line, 18-20 March 2009,

Athens, Greece, pp. 1-5.

5. Hakan Kardes, Abdullah Sevincer, Mehmet Hadi

Gunes, and Murat Yuksel (2012), “Six Degrees of

Separation among US Researchers”, IEEE/ACM

Proceedings of International Conference on Advances

in Social Networks Analysis and Mining, 26-29

August 2012, Kadir Has University, Istanbul, Turkey,

pp. 654-659.

6. Facebook, https://www.facebook.com.

7. Six Degrees.com, http://www.sixdegree.com.

8. LinkedIn, https://www.LinkedIn.com.

