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Abstract 
Aggregate Production Planning (APP) is a type of medium-term planning that centers on the most 

cost-effective way to manage production to meet changing demand and other uncertainties. In this 

study, the suggested technique makes reference implementation to labor levels, machine, inventory 

levels, overtime, warehouse capacity and backordering levels in an effort to minimize overall 

expenses, maximize customer satisfaction, and maximize revenue. Thus, filling the following lacuna; 

to pro-pose a new multi-product multi-period multi-objective APP problem through mathematical 

modeling; produce a FGP method to solve the multi-period, multi-product, and multi-objective APP 

problem; apply the proposed method in a real case study; propose a dictionary for information 

gathering. However, the study results were obtained using Lingo version 18 software with data 

gathered from Rich Pharmaceuticals Limited (RPL) based in Lagos, Nigeria. The proposed model 

produces a useful compromise result and general levels of DM gratification with the various fuzzy 

goal values. A decision maker can interactively alter the fuzzy data and associated model parameters 

until a satisfying answer is attained thanks to the suggested model's systematic structure for easing 

the decision-making process. 

 

Keywords: Aggregate production planning, fuzzy demands, goal programing, Decision maker, linear 

membership function. 

 

1. Introduction 

Demand forecasting has always been crucial for the better production process. As the need 

for more efficient operations in the modern business environment, more effective forecasting 

methods are needed (Sahin et al, 2013).  Forecasting is utilized in operational function to 

make recurring decisions regarding facility layout, capacity planning, supplier selection, and 

process selection. Forecasts are also necessary to understand how a company's daily 

operations are conducted. (Chase & Jacobs 2014). To meet the demand, footwear 

manufacturing companies need to find the most optimal rate of production. In each 

production activity, the company will always deal with costs including inventory costs, labor 

costs, and overtime costs, etc. (Mariyani, 2014). To optimize production costs, there are 

several strategies that could be done. One of them is by using aggregate planning method. 

Aggregate Production Planning (APP) governs the most effective way to adjust to forecast 

demand in the intermediate future, often takes 6 to 24 months ahead, by adjusting regular and 

overtime production rates, inventory levels, labor levels, subcontracting and backordering 

rates, and other controllable variables (Wang R. et al., 2005). The primary inputs of APP are 

market demands and the manufacturing plan to meet those expectations (Leung et al., 2003). 

Production planning does this in response to changes in demand. Changing a company's 

production schedule on a moment’s notice can be expensive and lead to insecurity. Planning 

for changes in demand months in advance guarantees that the change of production 

schedules can occur with little effort (Hossain M. et al., 2016). APP is a general style to 

altering a company's production schedule to respond to changes in demand.  

Saad (1982) divided all traditional decision models for resolving APP problems into six 

categories: (1) Linear decision rule by Holt et al. (1955), (2) Transportation method by  
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Bowman (1956), (3) Management Coefficient Approach by 

Bowman (1963), (4) linear programming method by 

Charnes and Cooper (1961), (5) Simulation method by 

Jones (1967) and (6) Search decision rule by Taubert 

(1968). 

However, the goals and model inputs when any of these 

APP models are used generally are assumed to be 

deterministic/crisp, but the linear programming (LP) 

method is the most acceptable presently. Also, some 

involve models that are easy to formulate, while others 

require complicated models. As a result of certain 

information being insufficient or unavailable, real-world 

APP problems frequently have input data or related 

parameters that are imprecise or fuzzy, such as market 

demand, capacity and resource availability, as well as 

appropriate operating costs; Thus, the Fuzzy Aggregate 

Production Planning (FAPP) is enabled. 

In this paper a new multi-product multi-period multi-

objective APP problem is proposed. The proposed problem 

is modeled using multi-objective mathematical 

programming. Concurrently, three objective functions—

minimizing total cost, enhancing customer experience, and 

increasing sales revenue—are taken into account. 

Numerous restrictions are also taken into account, 

including those relating to the amount of production, the 

amount of time available, the number of workers, the 

amount of inventory, the number of backorders, the 

capacity of the machines, the amount of warehousing 

space, and the available budget. Then, a Fuzzy Goal 

Programming (FGP) is proposed to solve the proposed 

model. The results of proposed approach are compared 

with those of the existing experimental method used in the 

company. 

This study shall contribute to the following; (a) pro-pose a 

new multi-product multi-period multi-objective APP 

problem through mathematical modeling, (b) produce a 

FGP method to solve the multi-period, multi-product, and 

multi-objective APP problem, (c) apply the proposed 

method in a real case study, (d) propose a dictionary for 

information gathering. 

  

2. Literature of Past Works 

Based on two groups, the literature of earlier studies was 

reviewed. The APP and its variations are reviewed in the 

first group. The goal programming method is examined in 

the second category. The APP literature has been examined 

in three primary headings: 1) The traditional APP models, 

which take into account planning horizons, 2) APP models 

that take uncertainty into account; and 3) multi-objective 

APP models used to solve actual industrial challenges. 

Classic Aggregate Production Planning 

Generally speaking, APP is one of the principal production 

planning categories (Giannoccaro and Pontrandolfo, 2001; 

Mula et al., 2006). Numerous academics have extensively 

explored the APP problem since the classical model of 

linear decision rule for production and employment 

scheduling proposed by Holt et al. (1955, 1961). (Jain and 

Palekar, 2005; Leung and Wu, 2004; Wang and Liang, 

2004). According to Wang and Liang (2004) APP is one of 

the most vital functions in production and operations 

management. Nam and Logendran (1992) studied APP 

models and clustered them in groups of optimal and near-

optimal. An assessment of mathematical optimization 

models, including the APP, showed that the most widely 

accepted approach is linear programming, which has been 

adopted as a standard technique. Baykasoglu (2001) 

described APP model as medium-term capacity planning 

through a planning horizon of 2–18 months. Fung et al. 

(2003) described APP as a plan to determine production, 

inventory, and labor levels required to answering to all 

market demands. Junior and Filho (2012) reviewed the 

works on production planning and control for 

remanufacturing. Karmarkar and Rajaram (2012) discussed 

a rivalry version of APP model with capacity constraints. 

Ramezanian et al. (2012) focused on systems with multi-

period, multi-product, and multi-machine with setup 

results. Zhang et al. (2012) presented a mixed integer linear 

programming model for APP problem with expansion of 

capacity in the production system. Jamalnia and Feili 

(2013) suggested a hybrid system dynamics and discrete 

event simulation methodology to model and simulate the 

APP problem. The key objective of their study was to 

determine the effectiveness of APP strategies regarding the 

Total Profit. Tonelli et al. (2013) proposed an optimization 

approach to face aggregate planning problems in a mixed 

model production environment. Furthermore, the APP 

models can handle the specifics of real-world issues, and 

they are frequently solved using effective algorithms. 

Numerous studies have noted that the APP cost function is 

convex and piecewise (Bushuev 2014). For resolving the 

APP problem, Bushuev (2014) developed a novel convex 

optimization strategy. A model for integrating process 

planning with production planning and control was created 

by Hassan Zadeh et al. (2014). They centered their 

thorough framework on the field of cellular manufacturing 

systems. 

 

Fuzzy Aggregate Production Planning 

The Fuzzy Set (FS) theory was first put forth by Zadeh 

(1965). It is based on an expansion of the traditional 

definition of set A, which states that each element 𝑥 of a 

given universe 𝑋 either belongs to set 𝐴 or it does not. 

However, in the FS theory, an element only belongs to set 

𝐴 to a certain "degree of membership." There is little doubt 

that some fuzzy programming issues are beyond the scope 

of traditional mathematical programming tools. Fuzzy set 

theory was initially applied to traditional LP problems by 

Zimmermann (1976). His research focused on LP problems 

with fuzzy goal and constraints.  The same study verified 

the existence of an equivalent single-goal LP problem using 

Bellman and Zadeh's (1970) fuzzy decision-making 

approach. Fuzzy mathematics programming has since 

evolved into a number of fuzzy optimization techniques for 

resolving APP problems. Currently, fuzzy techniques are 

often efficient in the area of decision making. Essentially 

every type of decision-making, including multi-objective, 

multi-person, and multi-stage decision-making, has used 

fuzzy methodologies (Tamiz,1996). Additionally, 

applications of fuzzy theory in management, business, and 

operational research are included in other studies related to 

fuzzy decision making (Zimmermann, 1991).  

By employing integrated parametric programming, best 

balance, and interactive approaches, Fung et al. (2003) 

introduced a fuzzy multi-product aggregate production 

planning (FMAPP) model to cater to various situations 

under varied decision-making preferences. This model can 

also effectively improve the capability of an aggregate plan 

to deliver feasible disaggregate plans under varying 
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circumstances with fuzzy demands and fuzzy capacities. In 

order to tackle multi-product APP choice problems in a 

fuzzy environment, Wang and Liang (2004a) more recently 

created a fuzzy multi-objective linear programming model 

using the piecewise linear membership function. The model 

can yield an effective compromise solution and the decision 

maker’s overall levels of satisfaction. Additional research 

on fuzzy APP problem solving may be found in Wang and 

Fang (1997), Tang et al. (2000), Wang and Fang (2001), 

and Tang et al (2003). To optimize profit, minimize repair 

costs, and maximize machinery usage, Leung and Chan 

(2009) created a preemptive goal programming approach 

for the APP problem. Sakall et al. (2010) discussed a 

probabilistic APP model for the blending issue in a brass 

production. They came up with the best procedures for 

buying raw materials. For the APP problem with 

uncertainty, Li et al. (2013) suggested a brand-new 

hierarchical belief-rule-based inference technique. 

 

Multi-Objective Aggregate Production Planning   

Zimmermann 

A Fuzzy Multi-Objective Linear Programming (FMOLP) 

model was developed by Wang and Liang (2004) to solve 

the multi-product APP decision problem in a fuzzy 

environment. By taking into account inventory level, labor 

level, capacity, the time value of money, and warehouse 

space, the suggested model aims to reduce carrying and 

backordering costs, total production costs, and the changes 

in the rate of labor levels. The goal of the multiple-

objective mathematical programming described by 

Tabucanon and Majumdar (1989) was to address the issue 

of production planning for a ship repair company. Nagarur 

et al. (1997) provided an example of the handling and 

production planning in use for pipe fitting injection 

molding. And more recently, Boppana and Slomp (2002) 

solved this issue in a corporation of machines and tools 

using a mathematical programming model with objectives. 

Wang and Fang (2003) and Dai et al. (2003) both offer a 

method that makes use of fuzzy linear programming 

(2001). The costs associated with the supply chain and 

demand were also taken into account by Mirzapour Al-e-

Hashem et al. (2011) as uncertain parameters. For a two-

level supply chain, Ghasemy Yaghin et al. (2012) 

suggested a fuzzy multi-objective APP model with 

qualitative and quantitative objectives. In an uncertain 

context, Mirzapour Al-e-Hashemet et al. (2012) created a 

multi-site, multi-period, multi-product, and multi-objective 

resilient APP to address conflicts between supply chain 

total costs, customer service standards, and worker 

productivity.  

 

Fuzzy Goal Programming 

When there are multiple objectives and goals that conflict, 

decision-makers and production managers must make 

difficult decisions about which objectives and goals should 

take precedence. The goal programming (GP) method may 

be suggested as a workable and useful solution to address 

this problem. As a productive multi-criteria and multi-

objective planning technique, GP was first proposed by 

Charnes et al. (1955). After that, Cooper (1961) developed 

GP. GP is actually a development of linear programming. 

The GP model can help decision-makers take into account 

multiple objectives at once in order to come up with 

workable solutions, claim Chen and Tsai (2001). The 

following GP models are categorized depending on 

combinations of departures from the goals: 1) weighted GP, 

2) lexicographic, and 3) min-max. Among the classes, 

weighted GP minimizes the weighted sum of the deviations 

from the goals. The weighted GP can achieve efficient and 

high-quality compromise solutions. 

Several decision-making strategies have been expanded in 

fuzzy environments as a result of the introduction of fuzzy 

set theory in order to deal with the ambiguous nature of 

real-world problems. Numerous multi-objective production 

planning problems have been solved using fuzzy 

mathematical programming, particularly the fuzzy goal 

programming (FGP) method. For supplier selection issues 

with various objectives, Lee et al. (2009) and Kumar et al. 

(2004) presented FGP techniques. For the purpose of 

resolving integrated production and distribution planning 

problems with fuzzy multiple goals in uncertain 

environments, Liang (2006) suggested a FGP technique. 

The suggested model seeks to concurrently reduce the 

overall production and distribution costs, the overall 

quantity of returned goods, and the overall delivery time. In 

a multi-echelon automotive supply chain network, Torabi 

and Hassini (2009) suggested a multi-objective, multi-site 

production planning FGP model incorporating procurement 

and distribution plans. 

A gap in earlier works has been identified, according to the 

literature referenced above. In this study, an APP problem 

with multiple objectives, multiple periods, and multiple 

products is suggested. The suggested solution to the 

problem is a FGP. Minimizing total manufacturing costs, 

maximizing sales revenue, and maximizing customer 

satisfaction are all crucial factors for the case concern in 

this instance. It is therefore more reasonable to describe 

them as three distinct objectives so that the APP model may 

identify a Pareto optimum that strikes a balance between 

these three goals. So, for the example study, the following 

three-objective, multi-period, multi-product FGP-APP 

model is developed: 

 

3. Method and Procedure 

Assumptions and Problem Definition 

Following the findings of a real-world case study, the 

following presumptions are made for the mathematical 

model of the suggested APP problem. 

• Production planning is done in a time horizon of T 

time periods (∀ 𝑡 = 1,2, … , 𝑇). 
• There is a Batch production system capable of 

producing all kinds of 𝑁 types of products. 

• Market demand can be fulfilled or backordered, 

however no backorder in the last 𝑡 is allowed. 

• There are two working shifts; Regular time production 

and Over time production 

• A warehouse is allowed for holding final products. 

• In advance, the holding cost of inventories are 

determined and well known. 

• The workforce accommodates various skill levels (𝑘 −
𝑙𝑒𝑣𝑒𝑙𝑠). 

• Worker’s salary is independent of unit production cost. 

• At each period T, Production quantity is considered 

more of the safety stock for finished products. 

• Hiring and firing of Manpower based on product 

demand is eligible and there is an allowable limit. 

• In each period T, the shortage of production is 

recovered by overtime production in each shift. 
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• In each period T, the nominal and actual capacity of 

production machines is not the same due to unforeseen 

failures. So, the actual capacity of production is 

usually reduced by a fixed failure percentage. 

• If an unforeseen failure occurs during a shift the repair 

process is completed in the next. This may stop, 

reduce, or decrease the production rate during 

maintenance actions 

• The impreciseness and uncertainty of real-world 

problem and confliction of different objectives are 

modeled using fuzzy goals. 

• Linear membership functions are defined for fuzzy 

goals. 

• FGP used to solve the problem. 

 

3.1  Parameters, Indices, Decision Variables and 

Notations 

 

They are as stated in Tables 1 to 3 

 

Table 1:       Set of indices. 
 

𝑡 Number of periods in the planning horizon;  𝑡 = 1,2,… , 𝑇 

𝑖 Number of product types; 𝑖 = 1,2, … , 𝐼 
𝑚 Raw material type; 𝑚 = 1,2, … ,𝑀 

𝑞 Types of shifts; 𝑞 ∈ 1,2 

𝑤 Types of warehouses; 𝑤 = 1,2,… ,𝑊 

𝑘 Skill levels of workers; 𝑘 = 1,2,… , 𝐾 

𝑗 Number of objective Functions;  𝑗 = 1,2,3 

 

Table 2:          Notation for parameters. 
 

Parameter Definition 

𝐶𝑜𝑃𝑖𝑞 Cost of Production; for product 𝑖 in shift 𝑞 

𝐷𝑜𝑃𝑖𝑡 Demand of product 𝑖 in period 𝑡 
𝐶𝑜𝐵𝑖𝑡 Cost of Backordering; for product 𝑖 in period 𝑡 
𝑆𝑅𝑒𝑖 Sales Revenue for product 𝑖 (₦/unit) 

𝑃𝑟𝑇𝑡 Process time of product 𝑖 in period 𝑡 
𝐵𝑈𝐿𝑡 The Budget upper limit in period 𝑡 
AsP𝑖𝑡 Allowable shortage of product 𝑖 in period 𝑡 

𝐴𝑀𝑊𝑡 Available Maximum workforce in period 𝑡 

𝐴𝑀𝑊𝑡 Available Minimum workforce in period 𝑡 

𝑊𝑎𝑂 workforce that are available for overtime (in percentage) 

𝐶𝑜𝑊𝑘𝑡 Cost of workforce of level k in period 𝑡 
𝐶𝑜𝐻𝑘𝑡 Cost of Hiring workforce of level k in period 𝑡 
𝐶𝑜𝐹𝑘𝑡 Cost of firing workforce of level k in period 𝑡 
𝐶𝑜𝑅𝑚𝑡𝑤 Holding cost for raw material type 𝑚 in period 𝑡 in warehouse 𝑤 

𝐶𝑜ℎ𝑃𝑖𝑡𝑤 Holding cost of unit of product 𝑖 in period 𝑡 
𝐸𝑡 cumulative investment in tools and equipment in period t (currency unit) 

𝐹𝑜𝑊𝑡 fraction of the workforce variation in period 𝑡 
𝑀𝐻𝑖𝑡 Machine hours needed to produce unit of product 𝑖 in period 𝑡 
𝑀𝐶𝑖𝑡 Machine capacity that is lost due to interruption in period 𝑡 (in percentage) 

𝑀𝐶𝑟𝑡 Machine capacity that is lost due to repairs in period 𝑡 (in percentage) 

𝑀𝑚𝐶𝑞𝑡 The maximum of machine capacity that is available in shift 𝑞 in period 𝑡 

𝑀𝐶𝑜 The machine capacity that is available for overtime (in percentage) 

𝐴𝑟𝑇𝑖𝑡 Available Regular time in both shifts in period 𝑡 
𝑢𝑀𝑅𝑖𝑚 The units of type 𝑚 raw material required to produce unit of product 𝑖 
𝑆𝑆𝑃𝑖 product 𝑖 safety stock 

𝑆𝑆𝑅𝑚 Raw material type 𝑚 safety stock 

𝑀𝑆𝑊𝑚 The maximum available space of warehouse w 

𝑊ℎ𝐶𝑅𝑤𝑚𝑡 The capacity of warehouse 𝑤 for storage of raw-material type 𝑚 in period 𝑡 
𝑊ℎ𝐶𝑃𝑤𝑖𝑡 The capacity of warehouse 𝑤 for storage of finished-product 𝑖 in period 𝑡 
𝒟𝑑𝑖  The Due date of product 𝑖 
ℬ𝑖 Batch size of product 𝑖 
𝐷𝑟𝐹𝑖 Finished product 𝑖 Defect rate 

 

Table 3: Decision variable Notation. 
 

Decision variable Definition 

𝑋𝑖𝑞𝑡 Number of product i produced in shift q of period t 

𝑋𝛽𝑖𝑞𝑡  Number batches of product i produced in shift q of period t 

𝐵𝑖𝑡 Backorder level of product i in period t 

𝑋𝑊𝑘𝑡 Number of available workers of level k in period t 

𝑋𝐻𝑘𝑡 Number of hired workers of level k in period t 

𝑋𝐹𝑘𝑡 Number of fired workers of level k in period t 
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𝑋𝑅𝑚𝑡𝑤 Inventory level of raw material type m at the end of period t in warehouse w 

𝑋𝑃𝑖𝑡𝑤 Inventory level of finished-product i in period t in warehouse w 

 

3.2  Model Formulation Minimize Total Cost 
 

𝑀𝑖𝑛 𝑍1 =∑ ∑ ∑𝐶𝑜𝑃𝑖𝑞𝑋𝑖𝑞𝑡

𝑇

𝑡=1

 

𝑞∈{1,2}

𝐼

𝑖=1

+∑∑𝐶𝑜𝑊𝑘𝑡𝑋𝑊𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜𝐻𝑘𝑡𝑋𝐻𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜𝐹𝑘𝑡𝑋𝐹𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑∑𝐶𝑜ℎ𝑃𝑖𝑤𝑡𝑋𝑃𝑖𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝐼

𝑖=1

+ ∑ ∑∑𝐶𝑜𝑅𝑚𝑤𝑡𝑋𝑅𝑚𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

+∑∑𝐶𝑜𝐵𝑙𝑡𝐵𝑙𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

(𝟏) 

 

The above Minimization of Total Cost function (TFC) 

involves the following seven terms; the per unit Production 

Cost, Cost of salary of the workforce, Cost of hiring, Cost 

of firing, Cost of holding of products, Cost of holding of 

raw materials, and Cost of Backordering. 

 

 

Maximize Customer Satisfaction Level 

  

    𝑀𝑖𝑛 𝑍2 =∑| ∑ ∑𝑃𝑡𝑃𝑖𝑡𝑋𝑖𝑞𝑡

𝑇

𝑡=1

− 𝐷𝑑𝑖

 

𝑞∈{1,2}

|

𝐼

𝑖=1

                                                                                        (2) 

 

Function (2) is for achieving the customer satisfaction, this 

is by minimizing the difference between the delivery date 

(𝑃𝑡𝑃𝑖𝑡) of all products and the due date (𝐷𝑑𝑖) of all 

products, this in turn maximizes the customer satisfaction 

level. Worthy of note that delivering the product earlier to 

𝐷𝑑𝑖  is not to the benefit of the producer and delivering later 

to 𝐷𝑑𝑖  is also not to the benefit of the customer, thus (2) 

minimizes the imbalance concurrently. 

Maximize Sales Revenue 

This last objective function is to realize the highest possible 

return from the quantities produced by regular production 

and overtime production including inventories and back 

orders. 

 

   𝑀𝑎𝑥 𝑍3 =∑ ∑ ∑𝑆𝑅𝑒 × (𝑋𝑃𝑖𝑤𝑡−1 − 𝐵𝑙𝑡−1 + 𝑋𝑖𝑞𝑡 − 𝑋𝑃𝑖𝑤𝑡 + 𝐵𝑙𝑡)

𝑇

𝑡=1

 

𝑞∈{1,2}

𝐼

𝑖=1

                               (3) 

 

Constraints 

 

The Labor-force Constraints are considered as follows: 

      ∑𝑋𝑊𝑘𝑡

𝐾

𝑘=1

≤ 𝐴𝑀𝑊𝑡  ,          ∀𝑡                                                                                                                 (4) 

      ∑𝑋𝑊𝑘𝑡

𝐾

𝑘=1

≥ 𝐴𝑀𝑊𝑡  ,          ∀𝑡                                                                                                                 (5) 

𝑋𝑊𝑘𝑡 = 𝑋𝑊𝑘(𝑡−1) + 𝑋𝐻𝑘𝑡 − 𝑋𝐹𝑘𝑡  ,      ∀𝑘, ∀𝑡, 𝑡 > 1                                                                           (6) 
𝑋𝑊𝑘𝑡 − 𝑋𝑊𝑘(𝑡−1) ≤ 𝐹𝑜𝑊𝑡 ∗ 𝑋𝑊𝑘𝑡  ,      ∀𝑘, ∀𝑡, 𝑡 > 1                                                                         (7) 

 

Constraints (4) attests that the total labor utilized during 

period t does not exceed the total workforce that is 

available. In a similar vein, (5) guarantees that in period t, 

the employed workforce exceeds the available minimum 

workforce. Set of Constraints (6) is a workforce level 

balance equation that assures that the workforce with skill 

level k available during a given period is equal to the 

workforce with the same skill level k during the previous 

period plus the change in workforce level during the 

current period. The change in workforce level in each 

planning period cannot be greater than a benchmark 

number of workers in the present period, according to 

constraint number seven. 

Time Constraints 

 

   ∑𝑃𝑟𝑇𝑖𝑡 ∗  𝑋𝑖𝑞𝑡

𝐼

𝑖=1

≤∑𝐴𝑟𝑇𝑞𝑡 ∗  𝑋𝑊𝐾𝑡

𝐾

𝑘=1

 ,                       ∀𝑡,   𝑞 = 1                                                     (8) 

   ∑𝑃𝑟𝑇𝑖𝑡 ∗  𝑋𝑖𝑞𝑡

𝐼

𝑖=1

≤∑𝐴𝑟𝑇𝑞𝑡 ∗ 𝑊𝑎𝑂 ∗ 𝑋𝑊𝐾𝑡

𝐾

𝑘=1

 ,          ∀𝑡,   𝑞 = 2                                                     (9) 

 

The relationships mentioned above make sure that each 

working shift's necessary production time is less than or 

equal to the available regular production time and overtime. 

Inventory Constraints 
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𝑋𝑃𝑖𝑤𝑡 = 𝑋𝑃𝑖𝑤(𝑡−1) + ∑ 𝑋𝑖𝑞𝑡

 

𝑞∈{1,2}

− 𝐵𝑖𝑡 − 𝐷𝑜𝑃𝑖𝑡  ,      ∀𝑖, ∀𝑤,    𝑡 > 1                                                 (10) 

𝑋𝑅𝑚𝑤𝑡 = 𝑋𝑅𝑚𝑤(𝑡−1) + ∑ 𝑋𝑖𝑞(𝑡−1)

 

𝑞∈{1,2}

− 𝑢𝑅𝑀𝑖𝑚,      ∀𝑖, ∀𝑤,    𝑡 > 1                                                 (11) 

𝑆𝑆𝑅𝑚 ≤ ∑ 𝑋𝑅𝑚𝑤𝑡

 

𝑤∈𝑊

,      ∀𝑚, ∀𝑡,                                                                                    (12) 

 

Constraints (10) ensures that the amount of finished 

product type 𝐼 in period 𝑡 in warehouse 𝑤 is equal to the 

amount of finished product type 𝐼 in period 𝑡 − 1 in 

warehouse w plus the quantity of produced finished goods 

type I in period t in both working shifts, less the amount of 

product type 𝐼 in period 𝑡 that is on backorder and the 

quantity of produced finished goods type I in period t in 

both working shifts. A set of limitations (11) assures that 

there is a balance between raw materials, and (12) 

guarantees that the safety stock of raw materials in 

warehouses is satisfied. 

Production Constraint 

 

𝑆𝑆𝑃𝑖 ≤ ∑ 𝑋𝑖𝑞𝑡

 

𝑞∈{1,2}

,      ∀𝑖, ∀𝑡,                                                                                                  (13) 

𝐷𝑜𝑃𝑖𝑡 ≤ (1 −
𝐷𝑟𝐹𝑖
𝛽𝑖

) ∗ ∑ 𝑋𝑖𝑞𝑡

 

𝑞∈{1,2}

+ 𝑋𝑃𝑖(𝑡−1),      ∀𝑖, ∀𝑡,    𝑡 > 1                                                       (14) 

 

Set of constraints (13), which is written for all product 

types and all periods of planning, guarantee the satisfaction 

of safety stock of finished-products in working shifts. Set 

of constraints (14) represents the total production of non-

defected final products plus the inventory of finished-

product in previous period should be greater than or equal 

to demand of the finished-product in current period.  

Machine capacity Constraints 

 

          ∑𝑀𝐻𝑖𝑡 ∗  𝑋𝑖𝑞𝑡

𝐼

𝑖=1

≤ 𝑀𝑚𝐶𝑞𝑡 −𝑀𝐶𝑖𝑡 ∗ 𝑀𝑚𝐶𝑞𝑡 ,          ∀𝑡,   𝑞 = 1                                            (15) 

        ∑𝑀𝐻𝑖𝑡 ∗  𝑋𝑖𝑞𝑡

𝐼

𝑖=1

≤ 𝑀𝐶𝑜 ∗ 𝑀𝑚𝐶𝑞𝑡 −𝑀𝐶𝑟𝑡 ∗ 𝑀𝐶𝑜 ∗ 𝑀𝑚𝐶𝑞𝑡 ,          ∀𝑡,   𝑞 = 2                  (16) 

 

Constraints (15) and (16) pledge that in regular time and 

overtime, the machine capacity is assured. 

Warehouse Capacity Constraint 

 

∑𝑋𝑃𝑖𝑤𝑡

𝑊

𝑤=1

≤ ∑𝑊ℎ𝑐𝑃𝑤𝑖𝑡

𝑊

𝑤=1

,   ∀𝑖, ∀𝑡,                                                                                                   (17) 

∑ ∑𝑋𝑅𝑚𝑤𝑡

𝑊

𝑤=1

𝑀

𝑚=1.

≤ ∑ ∑𝑊ℎ𝑐𝑅𝑚𝑤𝑡

𝑀

𝑚=1

𝑊

𝑤=1

,    ∀𝑡,                                                                                    (18) 

∑𝑊ℎ𝑐𝑃𝑤𝑖𝑡

𝑊

𝑤=1

+ ∑𝑊ℎ𝑐𝑅𝑚𝑤𝑡

𝑊

𝑤=1

≤ 𝑀𝑆𝑊ℎ𝑚,   ∀𝑖, ∀𝑡,                                                                      (19) 

 

The first two constraints (17) and (18) gives the restrictions 

of actual inventories of finished products and raw 

materials. While (19) guarantees that each warehouse at 

each period will not be able to allow storage capacity of 

products an raw materials beyond its maximum warehouse 

available space.  

Backorder, Budget limit and Non-negativity Constraints 

 There is backorder obeying the following; 

 

∑𝐵𝑖𝑡

𝑊

𝑤=1

≤ ∑ 𝐴𝑠𝑃𝑖𝑡

𝑊

𝑤=1

∗ 𝐷𝑜𝑃𝑖𝑡    ∀𝑖,    𝑡 ≠ 𝑇                                                                           (20) 

𝐵𝑖𝑇 = 0,                  ∀𝑖                                                                                                               (21) 

  𝑇𝑜𝐶𝑜 ≤ ∑𝐵𝑈𝐿𝑡

𝑇

𝑡=1

                                                                                                               (22) 

        𝑋𝑖𝑞𝑡 , 𝑋𝛽𝑖𝑞𝑡 , 𝐵𝑖𝑡 , 𝑋𝑅𝑚𝑡𝑤, 𝑋𝑃𝑖𝑤𝑡 ≥ 0,        ∀𝑖, ∀𝑞, ∀𝑡, ∀𝑚, ∀𝑤                                       (23) 

            𝑋𝐿𝑘𝑡 , 𝑋𝐻𝑘𝑡 , 𝑋𝐹𝑘𝑡    ≥ 0,         ∀𝑡, ∀𝑘, ∀𝑙                                                                   (24) 
 

Constraints (20) represent the backorder level at the end of 

period t cannot exceed the certain percent-age of the 

demand which determines the upper limit of shortage. 

While (21) assure that there is no possibility for 

backordering at the end of time horizon or last period. 

A restriction on the available budget for each planning 
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period is shown using (22), which ensures that the Total 

Cost (i.e., Eq. (1)) cannot go beyond the predetermined 

budget for the time horizon. 

(23) and (24) both present non-negativity requirements on 

decision variables. 

 

 

3.3  Fuzzy Multi-objective Goal Programing 

Development 

In classic models of GP, the decision maker has to specify a 

precise aspiration level (goal) for each of the objectives. In 

general, especially in large-scale problems, this is a very 

difficult task, and the use of the Fuzzy Set theory in GP 

models can overcome such problem, allowing decision 

makers to work with imprecise aspiration levels (Yaghoobi 

and Tamiz, 2007). In multiobjective programming, In 

fuzzifying the inequality signs; “ = ”  “ ≤ ” and “ ≥ ”, 
Zimmermann (1978) used the symbol “~”, they are to be 

understood as “essentially greater than or equal to” and 

“essentially less than or equal to”. if an imprecise aspiration 

level is introduced to each of the objective functions then 

these fuzzy objectives are termed as fuzzy goals. Let 𝑔𝑘 be 

the aspiration level assigned to the kth objective 𝑍𝑘(𝑥). 
Then the fuzzy goals are: 

  

𝑍𝑘(𝑥) ≥̃ 𝑔𝑘   [for maximizing 𝑍𝑘(𝑥)]    and 

𝑍𝑘(𝑥) ≤̃ 𝑔𝑘   [for minimizing 𝑍𝑘(𝑥)] 
In solving the problem, a general form of FGP model is considered: 

find      𝑥
to satisfy;

subjet to

𝑍𝑘(𝑥) ≥̃ 𝑔𝑘
𝑍𝑘(𝑥) ≤̃ 𝑔𝑘

𝐴𝑋 (
≤
=
≥
)𝑏

𝑋 ≥ 0

𝑘 = 1…𝑛                                                           
𝑘 = 𝑛 + 1… 𝐽                                                  (25)  

  

 

For this paper, a FGP is employed in solving the APP 

system (1) –(24). Being able to use FGP approach with 

fuzzy goals, the aspiration levels should be calculated. 

Payoff table is used when the decision maker has no 

enough view point to determine the aspiration levels. 

Zimmermann (1978) used a Payoff table to develop an 

upper and lower limit that was used to formulate the 

membership functions of the fuzzy goals. 

In the general form (25), the purpose of FGP is to find 

compromise solution 𝑋 such that all fuzzy goals are 

satisfied.  𝑔𝑘 is the aspiration level for kth goal, 𝐴𝑋 ≤ 𝑏 are 

system constraints in vector notation. 𝑍𝑘(𝑥) ≤̃ 𝑔𝑘 Means 

that the kth fuzzy goal is approximately less than or equal 

to the aspiration level 𝑔𝑘, and 𝑍𝑘(𝑥) ≥̃ 𝑔𝑘 Means that the 

k-th fuzzy goal is approximately greater than or equal to the 

aspiration level 𝑔𝑘 (Hannan, 1981). 

The fuzzy decision-making concept of Bellman and Zadeh 

(1970) can be used to solve the planned multi-objective 

APP problem (1)–(24).  Linear membership functions as 

proposed by Zimmermann (1978) are used to represent the 

fuzzy goals of decision makers. 

 

Now, the membership function 𝜇𝑘 for the kth fuzzy goal 𝑍𝑘(𝑥) ≤̃ 𝑔𝑘 can be expressed as follows: 

𝜇(𝑍𝑘(𝑥)) =

{
 
 

 
 

 

1                                                                                   𝑍𝑘(𝑥) ≤ 𝑔𝑘                                  
 

𝑢𝑘 − 𝑍𝑘(𝑥)

𝑢𝑘 − 𝑔𝑘
                                                            𝑔𝑘 ≤ 𝑍𝑘(𝑥) ≤ 𝑢𝑘                           (26) 

 
  0                                                                               𝑍𝑘(𝑥) ≥ 𝑢𝑘                                   

 

 

where 𝑢𝑘 is the upper tolerance limit for the kth fuzzy goal 

and 𝑢𝑘 − 𝑔𝑘 is the tolerance 𝑝𝑘 which is subjectively 

chosen and the function is as depicted in Figure 1a. 

 

Again, the membership function 𝜇𝑘 for the kth fuzzy goal 𝑍𝑘(𝑥) ≥̃ 𝑔𝑘 can be expressed as follows: 

𝜇(𝑍𝑘(𝑥)) =

{
 
 

 
 

 

1                                                                                   𝑍𝑘(𝑥) ≥ 𝑔𝑘                            
 

𝑍𝑘(𝑥) − 𝑙𝑘
𝑔𝑘 − 𝑙𝑘

                                                    𝑙𝑘 ≤ 𝑍𝑘(𝑥) ≤ 𝑔𝑘                 (27) 
 

     0                                                                                   𝑍𝑘(𝑥) ≤ 𝑙𝑘                              

 

 

where 𝑙𝑘 is the lower tolerance limit for the kth fuzzy goal 

and 𝑔𝑘 − 𝑙𝑘 is the tolerance 𝑝𝑘 which is subjectively 

chosen and the function is as depicted in Figure 1b. 
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Fig 1: Linear Membership form 

 

Hence, the associated FGP model for the multiobjective APP problem (1)-(26) is formulate as follows: 
find      𝑥

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝜆
to satisfy;

𝜆 ≤ 𝜇(𝑍1(𝑥)) =
𝑢𝑘 − 𝑍𝑘(𝑥)

𝑢𝑘 − 𝑔𝑘

𝜆 ≤ 𝜇(𝑍2(𝑥)) =
𝑢𝑘 − 𝑍𝑘(𝑥)

𝑢𝑘 − 𝑔𝑘

𝜆 ≤ 𝜇(𝑍3(𝑥)) =
𝑍𝑘(𝑥) − 𝑙𝑘
𝑔𝑘 − 𝑙𝑘

𝜇(𝑍𝑗(𝑥)) ∈ [0,1],   𝑗 = 1,2,3

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (4) − (24) 
𝑥𝑖 ≥ 0, 𝑖 = 1… . . 𝑛

 

 

This suggested approach states that goal weights are 

decided by DM, and goal aspiration levels are derived 

using a payout table. The positive ideal solutions (PIS) and 

negative ideal solutions (NIS) of the objective functions 

can be respectively specified as follows, (Hwang and 

Yoon,1981; Lai and Hwang, 1992b); 

 

𝑍1
𝑃𝐼𝑆 = 𝑀𝑖𝑛𝑍1;  𝑍1

𝑁𝐼𝑆 = 𝑀𝑎𝑥{𝑍1(𝑣𝑗
∗)} 

𝑍2
𝑃𝐼𝑆 = 𝑀𝑖𝑛𝑍2;  𝑍2

𝑁𝐼𝑆 = 𝑀𝑎𝑥{𝑍2(𝑣𝑗
∗)} 

𝑍3
𝑃𝐼𝑆 = 𝑀𝑎𝑥𝑍3;  𝑍3

𝑁𝐼𝑆 = 𝑀𝑖𝑛{𝑍3(𝑣𝑗
∗)} 

 

Where 𝑣𝑗
∗ is the positive ideal solution of objective function 𝑍𝑘. 

 

3.4  Model Algorithm 

The following steps constitute the algorithm for building 

the FGP model: 

Step 1: Formulate the APP problem using the FGP model. 

Step 2: Solve the multi-objective APP problem as a single 

objective APP problem using each time only one objective. 

This value is the best value for this objective as other 

objectives are absent. 

Step 3: From the results of step2 determine the 

corresponding values for every objective at each solution 

derived. 

Step 4: From steps 2 and 3, for each objective function find 

a lower bound and an upper bound corresponding to the set 

of solutions for each objective Let 𝑍𝑖
𝑃𝐼𝑆 and 𝑍𝑖

𝑁𝐼𝑆 denote the 

lower bound and upper bound for the 𝑖𝑡ℎ objective (𝑍𝑖). 
Step 5: For the objective functions Specify the linear 

membership function of each objective function according 

to (26) and (27). 

Step 6: Introduce the auxiliary variable 𝜆 to transform the 

problem into the equivalent ordinary LP pattern. The 

variable 𝜆 can be interpreted as representing the overall 

degree of DM satisfaction with the multiple fuzzy goal 

values. 

Step 7: Find the optimal solution vector 𝑥𝑖, where 𝑥𝑖 is the 

efficient solution of the original multiobjective APP 

problem with the DM’s preferences. 

 

4. Implementation 

An industrial case studies 

 

Data description 

The case study of Rich Pharmaceuticals Limited (RPL) was 

utilized to show how useful the suggested methodology is 

𝜇(𝑍𝑘(𝑥)) 

1 

0 
𝑙𝑘  

𝑍1
𝑁𝐼𝑆  

𝑔𝑘  

𝑍1
𝑃𝐼𝑆 

(b) 

𝑍1(𝑥) 

1 

𝜇(𝑍𝑘(𝑥)) 𝑍2(𝑥) 

0 
𝑔𝑘  

𝑍2
𝑃𝐼𝑆 

𝑢𝑘 

𝑍2
𝑁𝐼𝑆  

(a) 
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RPL is one of the leading producers of pharmaceuticals in 

Nigeria. RPL's goods are mostly sold in Southern and 

Middle belt of Nigeria, some parts of West and East Africa, 

they have recently experienced strong demand. RPL's 

business APP approach is to keep a stable labor force level 

over the planning horizon, allowing for the flexible meeting 

of demand through the use of inventories, overtime, and 

backorders. Due to the shortcomings of the graphical 

method, in which evaluation comparisons are only 

available for specific plans under specified conditions and 

indication for the optimal plan is ambiguous, RPL has been 

unable to reach the performance initially predicted. 

Alternately, the DM can use a mathematical programming 

technique to create an aggregate production schedule for 

RPL factory. Based on company reports, the planning 

horizon spans for six months, May to October. The model 

includes two types of standard products. Each period, the 

standard payroll is ₦64. The expenses for hiring and firing 

employees are ₦30 and ₦40 per employee every day, 

respectively. Production expenses for overtime are capped 

at 30% of production expenses for regular hours. 

Additionally, it is assumed that each product has no 

beginning inventory and no backorders at the last period. 

The inventory's maximum allowed storage area is 3000𝑚3. 

In a day, there are two working shifts. 8 hours are allotted 

for regular production per shift, while 3 hours allotted for 

overtime production. To produce these products, 10 types 

of raw materials are required. Repairs are done just in shift 

2 (i.e., overtime). When demand for a certain period 

exceeds production capacity during regular hours and 

inventory levels are likewise insufficient to meet this 

demand, production is continued during overtime. 

The APP decision problem for the industrial case that is 

discussed here focuses on the creation of a multiple fuzzy 

goals programming model for figuring out the best way to 

meet forecasted demand by modifying output rates, hiring 

and firing, inventory levels, overtime and backorders. The 

anticipated outcomes of this APP decision include 

minimizing total production costs and Process time and 

maximizing sales. 

 

4.1 Computational Results 

As already indicated, the suggested APP is coded and run 

using LINGO 18 solution. The payoff matrix establishes 

the minimum and maximum values for objectives as in 

Table 4. Thus, the objectives and aspirational levels have 

been established as 𝑔1 = 1368835; 𝑔2 = 10266; 𝑔3 =
1760481. 

 

Table 4: Payoff Matrix. 
 

  𝑍𝑘(𝑣𝑗
∗)  

Objectives PIS   NIS 

Min 𝑍1(𝑥) 1368835 1606714 1588914 1606714 

Min 𝑍2(𝑥) 10266 10344.06 11835.14 11835.14 

Max 𝑍3(𝑥) 1760481 1650640 1638420 1638420 

 

The linear membership function of each objective function 

is determined with its PIS and NIS as the interval of the 

objective values, and also to specify the equivalence of 

these objective values as a membership value in the interval 

[0, 1]. The fuzzy aspiration levels can be quantified using 

the linear and continuous membership function. According 

to Eq. 26 and 27, the relevant linear membership functions 

can be defined as shown below. 

 

𝜇(𝑍1(𝑥)) =

{
 
 

 
 

 

1                                    𝑍1(𝑥) ≤ 1368835            
 

1606714 − 𝑍1(𝑥)

1606714 − 1368835
      1368835 ≤ 𝑍1(𝑥) ≤ 1606714     

 
     0                                        𝑍1(𝑥) ≥ 1606714                   

 

 

𝜇(𝑍2(𝑥)) =

{
 
 

 
 

 

1                                    𝑍2(𝑥) ≤ 10266                            
 

11835 − 𝑍2(𝑥)

11835 − 10266
       10266 ≤ 𝑍2(𝑥) ≤ 11835                     

 
     0                                     𝑍2(𝑥) ≥ 11835                             

 

 

 

𝜇(𝑍3(𝑥)) =

{
 
 

 
 

 

1                                         𝑍𝑘(𝑥) ≥ 1760481       
 

𝑍3(𝑥) − 1638420

1760481 − 1638420
        1638420 ≤ 𝑍𝑘(𝑥) ≤ 1760481  

 
     0                                        𝑍𝑘(𝑥) ≤ 1638420           

 

 

The information in Table 5 can be used to draw the 

conclusion that the suggested FGP is capable of locating a 

high-quality compromise solution even in the face of 

numerous competing objective functions and constraints. 

As is obvious, there is a high level of satisfaction for all 

objective functions, and this is seen as a good 

Compromising solution for the problem. 
 

 

 

Table 5:    The fuzzy goal programming. 
 

Satisfaction Level Objective values  

𝜇1                    𝜇2                 𝜇3 𝑍1              𝑍2              𝑍3 𝜆 

0.8809078     0.6733067     

0.6733067 

1397165     10778.58     

1720604 

0.673306

7 

 

Considering the various fuzzy goal values (𝑍1,
𝑍2 𝑎𝑛𝑑 𝑍3), the suggested model gives the overall levels of 

DM satisfaction (𝜆 value). Each goal is fully satisfied if the 

answer is 𝜆 =  1. If  𝜆 =  0, none of the goals are satisfied. 

𝑍3(𝑥) 

0    1638420    1760481 

1 

𝜇(𝑍3(𝑥)) 

   10266      11835 

1 

𝜇(𝑍2(𝑥)) 

0 

𝑍2(𝑥) 
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If  0 < 𝜆 <  1, all of the goals are satisfied at some level. 

For instance, the initial calculation of the overall DM 

satisfaction (𝜆) with the goal values (𝑍1 = 1397165, 𝑍2 =
10778.58, and 𝑍3 = 1720604) was 0.6733067. The 𝜆 

value can be adjusted to look for a set of superior 

compromise options if the DM did not accept the initial 

overall degree of this satisfaction value. 

 

4.2  Additional Analysis 

Table 6 gives the comparison and also demonstrates the 

interaction of trade-offs and conflicts among dependent 

objective functions; Minimization of cost, Maximization of 

Customer Satisfaction Level and Maximization of Sales 

Revenue have diverse meanings. For instance, the 

combination of the Minimization of cost and Maximization  

 

of Customer Satisfaction in the first trade-off was 𝑍1 =
1380668 and 𝑍2 =10344.05 with 𝜆 = 0.9502547 giving a 

higher satisfaction to DM. same with second and third 

trade-offs. These answers show that the trade-offs and 

conflicts among dependent objective functions differ and 

interact fairly. The objective and 𝜆 values may change 

depending on how various arbitrary objective function 

combinations are combined. Since the suggested FGP 

model can concurrently minimize costs, maximize 

customer satisfaction levels, and maximize sales revenue, it 

satisfies the requirements of the practical application, see 

Table 7. 
 

Table 6: 
 

𝜆 0.9502547 0.8338611 0.6733067 

𝑍1 1380668 1408356 − 

𝑍2 10344.05 − 10778 

𝑍3 − 1740202 1720604 

 

The Minimum Total cost is fuzzy due to the fuzziness of 

the input in the new APP. The  
𝜆 values of Z, where one extreme ( = 1) represents the 

most likely total cost and the other extreme (=  0) displays 

the range in which the total cost might occur, is used to 

represent the likelihood that the total cost of the APP will 

appear in the related range. The minimum total cost for the 

situation covered in this paper is probably 1390611; it will 

never be more than 1371369 or lower than 1368835. It is 

significant to remark that the membership function derived, 

as shown in Figure 1, has an approximative shape that 

resembles a continuous function and appears to be rather 

fine. 
 

Table 7: Results of the APP. 
 

  Product 1    

Period 
Regular time production 

(units) 

Over time production 

(units) 

Ending inventory 

(units) 
Backorder Demand 

May 234.5284 72.77206 55.30050 0 252 

June 269.5261 80.85784 110.6845 0 295 

July 299.4735 89.84204 0 43 430 

August 230.9357 72.06427 0 26 260 

September 240.2142 59.79578 174.0100 30 300 

October 125.9900 0.000000 0 0 270 

  Product 2    

May 183.7806 71.22794 0 0 255 

June 263.8072 79.14216 48.95786 0 294 

July 293.1191 87.93573 0 19.84791 430 

August 279.8479 0.000 0 26 260 

September 293.1191 32.88089 0 30 300 

October 300.0000 0.00 0 0 270 

Period Total hiring (persons) Total Firing (persons) Machine capacity 
Warehouse space 

(𝒇𝒕𝟐) 
 

May 0 20 90.96507 1005  

June 20 0 101.0723 1100  

July 22 0 112.3026 1800  

August 0 22 90.08033 2700  

September 0 0 90.08033 2700  

October 3 3 87.50000 3300  

Z1 1397165     

Z2 10778.58     

Z3 1720604     

 

The suggested solution approach allows for the 

simultaneous acquisition of the optimal operating plans, 

which are connected to the lower or upper bounds of the 

minimum total cost for the 11 values of 𝜆 as listed in Table 

8. It is demonstrated that for any 𝜆 obtained 𝑋𝐻𝑘𝑡𝑋𝐹𝑘𝑡 = 0 

and 𝐵𝑖𝑡𝑋𝑃𝑖𝑡𝑤 = 0 which validates the optimality of the 

operation plans produced by the method suggested in this 

study and that it is not essential to impose these two sets of 

constraints on the APP model. The attained results for the 

lower bounds of the minimum total cost show that the 

productivity of the production plan increases with the use 

of overtime production, the hiring of fewer workers, and 

the establishment of a lesser inventory level to satisfy the 

anticipated demands without exceeding the resources 

required for a higher level of 𝜆. The DM should recruit 

more employees to increase output by utilizing regular-time 

production and built-up inventory, if a lower 𝜆 level is 

offered in order to optimize the operation plan. 

The volume of output and the price per unit of a product 

that will maximize profits are determined by economic 

metrics such as the marginal cost of production and 

marginal revenue. The link between marginal revenue and 
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the marginal cost of production enables rational industries 

to pinpoint the point at which they can generate the 

maximum amount of profit. Here, achieving marginal 

revenue equality over marginal cost is the desired outcome. 

This can aid the DM through Table 8 to know the extent of 

adjustments in the parameters of the APP.  Marginal 

revenue increases whenever the revenue received from 

producing one additional unit of a good grows faster—or 

shrinks more slowly—than its marginal cost of production. 

Increasing marginal revenue is a sign that the company is 

producing too little relative to consumer demand, and that 

there are profit opportunities if production expands, as can 

be obtained by the difference of the Maximum Sales 

Revenue and Minimum Total Cost. 
 

Table 8: The Optimal Aggregate Production Planning. 
 

𝝀 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝜇1 0.9893 0.9896 0.9883 0.9847 0.9690 0.9425 0.9085 0.7740 0.8096 0.9000 1.0000 

𝜇2 0.9503 0.9503 0.9083 0.8587 0.8090 0.7594 0.7097 0.7000 0.8000 0.9000 1.0000 

𝜇3 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.6196 0.4182 0.2168 0.0154 

Z1 1371369 1371317 1371624 1372478 1376208 1382508 1390611 1422599 1414125 1392623 1368835 

Z2 10344 10344 10410 10488 10566 10644 10721 10737 10580 10423 10266 

Z3 1638420 1650626 1662832 1675038 1687244 1699450 1711657 1714043 1689462 1664881 1640300 

X111 240.72 240.72 240.72 240.72 240.72 240.72 240.72 242.57 242.57 254.91 252.13 

X112 267.47 267.47 267.47 267.47 267.47 267.47 267.47 269.53 269.53 283.23 280.15 

X113 297.19 297.19 297.19 297.19 297.19 297.19 297.19 299.47 299.47 314.70 311.28 

X114 260.01 260.01 260.01 260.01 263.33 273.32 272.52 203.18 203.18 174.90 311.28 

X115 263.33 263.33 263.33 260.01 263.33 263.33 263.33 326.00 300.01 300.01 245.24 

X116 100.00 100.00 121.92 125.99 125.99 125.99 125.99 0.00 0.00 12.07 100.00 

X121 72.22 72.22 72.22 72.22 72.22 72.22 72.22 64.73 64.73 14.78 0.00 

X122 80.24 80.24 80.24 80.24 80.24 80.24 80.24 80.86 80.86 84.97 84.04 

X123 89.16 89.16 89.16 89.16 89.16 89.16 89.16 89.84 89.84 94.41 93.38 

X124 0.00 0.00 0.00 0.00 0.00 4.51 30.48 99.82 99.82 94.41 3.49 

X125 36.67 36.67 36.67 40.00 36.68 36.68 36.68 0.00 0.00 0.00 0.00 

X126 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 104.90 0.00 

X211 239.28 239.28 239.28 239.28 239.28 239.28 239.28 183.78 183.78 225.09 227.87 

X212 265.86 265.86 265.86 265.86 265.86 265.86 265.86 263.81 263.81 250.10 253.18 

X213 291.06 291.06 291.06 291.06 291.06 291.06 291.06 293.12 293.12 277.89 281.32 

X214 260.00 260.00 260.00 260.00 260.00 260.01 260.81 233.07 227.36 194.41 260.00 

X215 270.00 270.00 270.00 273.32 270.00 270.00 270.00 241.20 224.22 242.92 288.09 

X216 270.00 270.00 270.00 291.88 300.00 300.00 300.00 183.69 185.79 173.22 195.48 

X221 15.73 15.73 15.73 15.73 15.73 15.73 15.73 71.23 71.23 67.53 56.29 

X222 79.76 79.76 79.76 79.76 79.76 79.76 79.76 79.14 79.14 75.03 75.96 

X223 87.32 87.32 87.32 87.32 87.32 87.32 87.32 87.94 87.94 83.37 84.39 

X224 0.00 0.00 0.00 0.00 0.00 0.00 0.00 69.92 68.21 65.59 0.00 

X225 30.00 30.00 30.00 26.69 44.54 56.00 56.00 77.69 75.79 72.88 86.43 

X226 0.00 0.00 0.00 0.00 0.00 0.00 0.00 86.32 84.21 80.97 0.00 

XL11 90.27 90.27 90.27 90.27 90.27 90.27 90.27 90.97 90.97 95.59 94.55 

XL12 100.30 100.30 100.30 100.30 100.30 100.30 100.30 101.07 101.07 106.21 105.06 

XL13 111.45 111.45 111.45 111.45 111.45 111.45 111.45 112.30 112.30 118.01 116.73 

XL14 98.75 98.75 98.75 97.50 98.75 102.50 102.20 124.78 124.78 118.01 116.73 

XL15 98.75 98.75 98.75 97.50 98.75 98.75 98.75 138.65 138.65 131.13 91.97 

XL16 98.75 98.75 98.75 90.54 87.50 87.50 87.50 125.00 125.00 131.13 91.97 

XL21 89.73 89.73 89.73 89.73 89.73 89.73 89.73 89.03 89.03 84.41 85.45 

XL22 99.70 99.70 99.70 99.70 99.70 99.70 99.70 98.93 98.93 93.79 94.94 

XL23 109.15 109.15 109.15 109.15 109.15 109.15 109.15 109.92 109.92 104.21 105.49 

XL24 101.25 101.25 101.25 102.50 101.25 97.50 97.80 87.40 85.26 81.99 105.49 

XL25 101.25 101.25 101.25 102.50 101.25 101.25 101.25 97.11 94.73 91.10 108.03 

XL26 101.25 101.25 101.25 109.46 112.50 112.50 112.50 107.90 105.26 101.22 108.03 

XH11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XH12 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.11 10.11 10.62 10.51 

XH13 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.23 11.23 11.80 11.67 

XH14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.48 12.48 0.00 0.00 

XH15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.86 13.86 13.11 0.00 

XH16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XH21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XH22 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.89 9.89 9.38 9.49 

XH23 9.45 9.45 9.45 9.45 9.45 9.45 9.45 10.99 10.99 10.42 10.55 

XH24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XH25 0.00 0.00 0.00 0.00 0.00 3.75 3.45 9.71 9.47 9.11 2.54 

XH26 0.00 0.00 0.00 6.96 11.25 11.25 11.25 10.79 10.53 10.12 0.00 

XF11 9.73 9.73 9.73 9.73 9.73 9.73 9.73 9.03 9.03 4.41 5.45 

XF12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XF13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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XF14 12.70 12.70 12.70 13.94 12.70 8.95 9.25 0.00 0.00 0.00 0.00 

XF15 0.00 0.00 0.00 0.00 0.00 3.75 3.45 0.00 0.00 0.00 24.76 

XF16 0.00 0.00 0.00 6.96 11.25 11.25 11.25 13.65 13.65 0.00 0.00 

XF21 10.27 10.27 10.27 10.27 10.27 10.27 10.27 10.97 10.97 15.59 14.55 

XF22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XF23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XF24 7.90 7.90 7.90 6.65 7.90 11.65 11.35 22.52 24.66 22.22 0.00 

XF25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XF26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XP11 60.94 60.94 60.94 60.94 60.94 60.94 60.94 55.30 55.30 17.69 0.13 

XP12 113.65 113.65 113.65 113.65 113.65 113.65 113.65 110.68 110.68 90.89 69.33 

XP13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XP14 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 54.76 

XP15 200.01 174.04 174.01 174.01 174.01 174.01 174.01 200.00 174.01 174.01 174.01 

XP16 30.01 4.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

XP21 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 37.62 29.16 

XP22 51.63 51.63 51.63 51.63 51.63 51.63 51.63 48.96 48.96 68.75 64.30 

XP23 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 

XP24 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

XP25 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 15.81 74.53 

XP26 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

B11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

B12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -26.01 

B13 0.00 0.00 0.00 0.01 3.33 17.83 43.00 43.00 43.00 9.31 0.00 

B14 0.00 25.97 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 

B15 0.00 0.00 25.93 30.00 30.00 30.00 30.00 30.00 4.01 20.98 4.01 

B16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

B21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

B22 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 

B23 0.00 0.00 0.00 0.01 0.01 0.01 0.81 43.00 35.58 0.00 0.00 

B24 0.00 0.00 0.00 0.01 14.54 26.00 26.00 18.89 0.00 0.00 0.00 

B25 0.00 0.00 0.01 21.88 30.00 30.00 30.00 0.01 0.01 0.01 0.01 

B26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

5. Conclusion 

Fuzzy APP problem have drawn the interest of many 

scholars over the past few decades, inspiring the 

development of a variety of models. According to the cost-

benefit analysis, a company should continue to increase 

production until marginal revenue (MR) is equal to 

marginal cost (MC). The FGP-APP model is transformed 

into a family of crisp APP models that are described by a 

single mathematical program. Using this method, users can 

determine the membership function of the fuzzy multi-

objectives of the APP problem linked to the fuzzy 

parameters. Lingo software was used to resolve the 

developed FGP model for the APP problem. The result 

revealed RPL's optimal values for production during 

regular and overtime shifts, backorders, inventories, hiring 

and firing of staff during shifts, product prices, etc. across 

the planning horizon. 

The DM can choose a preferred production plan with a 

common satisfaction level or different combinations of 

possibility and satisfaction levels using the suggested 

models and approaches, depending on the market demands 

and available production capacities that meets their top 

priorities. Also, the DM in APP can use the structure of the 

optimal solution shown in Table 7.  

It has also become evident that a linguistic presentation is 

more useful and appropriate for illustrating the APP's 

imprecise parameters. DM may choose to ignore the loss of 

fuzziness from the input information when the returns are 

clear values, which would encourage management based on 

unjustifiably optimistic choices. The proposed method, on 

the other hand, was shown in this research to be totally 

capable of preserving the fuzziness that was connected to 

the ambiguous APP data, particularly by expressing the 

objective value with membership functions rather than with 

crispy values. As a result, when compared to prior studies, 

the suggested approach is able to produce more logical 

solutions for imprecise parameters, providing the DM with 

information that other approaches are unable to. For 

instance, If the optimal output is where the MR is equal to 

MC, any other cost is irrelevant. So the analysis also tells 

DM what not to consider when making decisions about 

future resource allocation. This APP strategy could not 

ensure an overall optimal solution, but the result is near to 

optimal, and it can significantly improve the likelihood that 

an aggregate plan can have feasible family disaggregation 

plans under various conditions, particularly in the presence 

of uncertain demands. Future studies will take into account 

the advancement of multiobjective FGP decision-making 

techniques considering loss of productivity, quality of 

products etc. 
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