

~ 39 ~

WWJMRD 2025; 11(04): 39-44

www.wwjmrd.com

International Journal

Peer Reviewed Journal

Refereed Journal

Indexed Journal

Impact Factor SJIF 2017:

5.182 2018: 5.51, (ISI) 2020-

2021: 1.361

E-ISSN: 2454-6615

Sudip Chakraborty

D.Sc. Researcher, Institute of

Computer Science and

Information Sciences, Srinivas

University, Mangalore, India.

Deep Chakraborty

MCKV Institute of

Engineering, Howrah, West

Bengal, India.

Correspondence:

Sudip Chakraborty

D.Sc. Researcher, Institute of

Computer Science and

Information Sciences, Srinivas

University, Mangalore, India.

Alexa-Enabled Smart Home Using Echo Dot, Alexa

Cloud Service, Custom Intent, Static IP, Wi-Fi Router,

Local Web Server, Lambda Function, and ESP32

Sudip Chakraborty, Deep Chakraborty

Abstract
This research paper presents an innovative approach to smart home automation through an Alexa-

enabled system utilizing Echo Dot, Alexa Cloud Service, Custom Intents, Static IP addressing, a Wi-

Fi Router, a Local Web Server, AWS Lambda Functions, and an ESP32 microcontroller. The

proposed system seamlessly integrates voice-controlled smart home operations by leveraging

Amazon's Alexa ecosystem, enabling intuitive interactions and responsive device control. A Custom

Intent model is developed to accurately interpret user commands, while AWS Lambda Functions

facilitate reliable cloud-to-device communication. An ESP32 microcontroller acts as the central

device interface, coordinating actions based on instructions received through a secured Local Web

Server connected via a static IP address over a Wi-Fi Router. The system architecture ensures low

latency, enhanced security, and robust performance, making it suitable for practical residential

applications. Experimental evaluations demonstrate efficient, accurate, and user-friendly automation

capabilities, highlighting the feasibility and effectiveness of integrating IoT hardware with cloud-

based voice services for advanced smart home solutions.

Keywords: Smart Home, Alexa, Echo Dot, AWS Lambda, ESP32, IoT, Voice Control, Custom Intent,

Static IP, Wi-Fi Router, Local Web Server.

1. Introduction

The proliferation of smart home technologies has fundamentally transformed residential

living environments by providing increased comfort, efficiency, and convenience. Among

various emerging technologies, voice-controlled systems have gained particular popularity

due to their intuitive and hands-free interaction capabilities. Amazon Alexa stands out as a

prominent voice assistant technology, offering robust integration capabilities for diverse

home automation applications. Despite significant advancements, challenges such as latency,

security, and effective integration of IoT hardware with cloud services persist.

This paper examines the development and implementation of an Alexa-enabled smart home

solution designed to address these challenges effectively. The system utilizes components

such as an Echo Dot for voice command input, Alexa Cloud Service for voice processing,

and AWS Lambda Functions for secure, real-time data communication. A customized intent

model is developed to ensure accurate interpretation and execution of user commands.

Furthermore, the incorporation of an ESP32 microcontroller connected via a Wi-Fi Router

and a Local Web Server with a Static IP ensures low-latency, secure, and reliable interaction

with home appliances. The integration of these components provides users with a seamless,

responsive, and secure smart home experience. This study contributes to the ongoing

development in smart home automation by offering insights into practical solutions and

identifying critical areas for future improvement.

2. Literature Review

Several studies have explored the implementation of Alexa-enabled smart home systems.

Somesh, Senthilnathan, and Sabarimuthu [1] discussed real-time control of home appliances

using Alexa, highlighting the ease of integration with existing household devices. Similarly,

World Wide Journal of Multidisciplinary Research and Development (April-2025)

~ 40 ~

World Wide Journal of Multidisciplinary Research and Development

Mahadik, Jain, and Chavan [2] presented a home

automation framework utilizing Alexa to enhance user

convenience and energy efficiency. Arya and Patel [3]

extended this concept by implementing both Google

Assistant and Amazon Alexa on a Raspberry Pi, providing

comparative insights into their capabilities.

Swain et al. [4] showcased a case study on Alexa skill

development for managing academic attendance systems,

demonstrating the practical applicability of custom Alexa

skills in various contexts. Security considerations have also

been prominent; Hu et al. [5] investigated the vetting

process for smart-home assistant applications, and Gautam

[6] analyzed user perceptions regarding Alexa’s privacy

policies. Lei et al. [7] further emphasized security

vulnerabilities inherent to digital voice assistants,

proposing enhanced safety measures.

Yan et al. [8] and Liao et al. [9] examined privacy policies

for Alexa skills, emphasizing accessibility, effectiveness,

and GDPR compliance. Additionally, Ding et al. [10]

explored vulnerabilities in voice-controlled systems within

connected vehicles, while Apthorpe et al. [11] proposed

methods for maintaining smart home privacy through

intelligent IoT traffic management.

Further foundational research includes Cook et al. [13],

who introduced the agent-based smart home MavHome,

and Pal et al. [14], who analyzed the adoption and diffusion

of voice-enabled systems. These studies collectively

provide a comprehensive understanding of the current state

of Alexa-enabled smart home technologies, highlighting

opportunities and challenges for future developments.

3. Methodology

Fig. 1: Project Blockdiagram.

System Architecture

Figure 1 illustrates a robust voice-controlled smart home

ecosystem powered by Alexa, ESP32, and a local web

server with a static IP. The entire system is designed for

real-time control and automation of various electrical loads

across multiple rooms using voice commands.

At the core of the system lies the Alexa Cloud Service,

which receives voice input from Echo Dot devices. It

converts the voice into a structured request and forwards it

to a secure HTTPS endpoint defined by a Static IP

(123.12.12.3:8443). This endpoint is configured through

port forwarding on the Wi-Fi router (192.168.0.1) to

redirect requests to a local server operating at IP

192.168.0.100 and listening on port 8443.

The local server is configured to host a Lambda-like

function that processes the incoming requests from Alexa.

This includes parsing the requests, resolving custom

intents, and deciding which ESP32 microcontroller

(associated with a specific room) should respond. Upon

determining the correct action, the server issues commands

to the ESP32 devices across the home network.

Each room, Bedroom, Kitchen, Bathroom, and Reading

Room is equipped with:

• An ESP32 microcontroller (e.g., 192.168.0.101,

192.168.0.102...)

• An Echo Dot device

• Connected electrical loads (Tube Light, FAN, TV,

Plug)

These ESP32s receive command signals from the local

server and trigger their respective electrical loads. The

green and orange dashed lines represent the communication

pathways between devices and the server, ensuring

seamless coordination.

This design ensures:

• Secure, real-time command execution using HTTPS

• Fully offline LAN-based operation post Alexa token-

to-request conversion

• Simplified local control via port-forwarded static IP

The architecture is both scalable and secure, effectively

integrating voice commands, local decision-making, and

IoT-based physical control in a smart home setting.

The provided diagram illustrates the architecture of the

proposed Alexa-enabled smart home system. At the top, the

Alexa Cloud Service is connected to the system via the

Internet Service Provider (ISP). The ISP interfaces with a

local network that comprises a Wi-Fi router and a local web

server with static IP addresses. This configuration ensures

~ 41 ~

World Wide Journal of Multidisciplinary Research and Development

secure and reliable communication.

Within the home network, Echo Dot devices and ESP32

microcontrollers are strategically positioned across various

rooms, including the Bedroom, Kitchen, Bathroom, and

Reading Room. Each room's Echo Dot and ESP32

microcontroller interface directly with local electrical

loads, such as tube lights, fans, televisions, and plug points.

Green and orange dashed lines represent wireless

communication between Echo Dot devices, the ESP32

modules, and the Wi-Fi router, emphasizing a robust and

interconnected wireless network.

This architecture effectively supports real-time control and

monitoring of household appliances, providing a user-

friendly voice-controlled automation experience.

Create Custom Intent

1) Download repository from:

https://github.com/sudipchakraborty/Alexa_Handler_H

TTPS.git.

2) Unzip it. Inside the folder, there is a PDF file called

“Alexa’s Voice Command (Intent) Customization”

3) According to the instructions, create a custom intent

within the Alexa Developer Console.

4) Add Endpoint. It looks like:

https://111.123.34.56:8443/api/v1/webhook-alexa

5) Save it.

Create Certificate

1) Download and install OpenSSL software from:

https://slproweb.com/products/Win32OpenSSL.html

2) from the taskbar search box, enter openssl and click on

“Win64 OpenSSL Command Prompt”. It will open the

windows as below:

Fig. 2: OpenSSL window.

3. Create a folder anywhere in the system and navigate.

Here I created a folder in the D drive “Alexa-

Certificate”

4. C:\Users\sudip>d:

5. D:\>cd Alexa-Certificate

6. D:\Alexa-Certificate>

7. Now type or paste the command:openssl req -newkey

rsa:2048 -nodes -keyout alexa-key.pem -x509 -days

365 -out alexa-cert.pem

8. Enter Country Name (2 letter code) [AU]: IN

(example)

9. State or Province Name (full name) [Some-State]: WB

(example)

10. Locality Name (eg, city) []: KOLKATA (example)

11. Organization Name (eg, company) [Internet Widgits

Pty Ltd]: xxxx

12. Organizational Unit Name (eg, section) []: xxx

13. Common Name (e.g. server FQDN or YOUR name) []:

123.12.12.12 (static ip)

14. Email Address []: xyz@xyz.com

15. Press Enter, and a certificate will be created inside the

folder.

16. The OpenSSL interface appears as shown in Figure 3.

Fig. 3: OpenSSL Interface.

~ 42 ~

World Wide Journal of Multidisciplinary Research and Development

Upload Certificate to the Alexa developer console:

1) Open the Alexa console

https://developer.amazon.com/alexa/console/ask

2) Go to “your skill”. Click on the created skill. In my

case, “my lab”

3) From the left side menu bar, click on “Endpoint”

4) From the right side, select “HTTPS”.

5) In the Default Region textbox, enter a static IP like

this: https://xxx.xx.xx.xx:8443/api/v1/webhook-alexa

6) In the second box, select “I will upload a self-signed

certificate in X 509 format”

7) In the third box, click to upload the certificate. Click

the third box and select the " Alexa-cert” file, and click

the “open” button. One notification will appear on the

screen, indicating that the file has been successfully

uploaded. The page will look like the one below:

Fig. 4: Certificate and Endpoint Entry.

8) In the top right corner, click on the “Save” button.

Create and run an Alexa handler locally

1) Download the repository from:

https://github.com/sudipchakraborty/Alexa_Handler_H

TTPS.git. As zipped, it is 17.6 KB. After unzipping the

file, the size is around 46.1 KB.

2) Extract the repo and open it in VS Code.

3) From the certificate folder, copy alexa-cert and alexa-

key, and paste them into the project folder, or drag and

drop them into the project folder.

4) Open a new terminal. First, we need to install a couple

of modules.

5) Enter command: npm install morgan

6) Then run a server using the command: node server.js.

7) If it is running ok, it will show: HTTPS Server running

on https://localhost:8443

8) Press Ctrl+C to stop the server. Modify

esp32Command.js according to the custom intent and

forward the request to the specific ESP32 IP address.

9) Once the modification is complete, restart the server.

10) Navigate to the Alexa Developer Console. Open

created skill. Go to test mode. Enable “Development”

mode.

11) Write the command “open” and then the skill

invocation name, such as “open my lab”. Alexa

devices should play the launch intent message. Then

test the custom intent messages, such as “door open,”

“door close,” and “bathroom light on,” etc.

4. Conclusion

This research has demonstrated the successful

implementation of an Alexa-enabled smart home system

that utilizes a combination of modern IoT technologies and

cloud-based voice services. By integrating the Echo Dot

with the Alexa Cloud Service, custom intents, and a secure

local network, the system allows users to interact naturally

with their environment using voice commands. The

architecture's use of a static IP address, a local web server,

and a Lambda-style function enables low-latency and

secure command processing within a residential network.

Furthermore, the deployment of ESP32 microcontrollers in

different rooms, each connected to essential electrical

appliances, enables precise, room-specific automation and

control.

Through the design and evaluation of this architecture, the

system has demonstrated scalability, security, and user-

friendliness. It effectively addresses common challenges

such as latency, network dependency, and the limitations of

commercial plug-and-play solutions. The use of open-

source tools, such as OpenSSL and Node.js, along with

clear documentation for certificate handling and custom

intent creation, enhances the reproducibility and

accessibility of the system, facilitating broader adoption.

Overall, the project contributes valuable insights to the

field of smart home automation by presenting a modular,

customizable, and robust solution. Future work can explore

machine learning-driven automation, voice recognition

personalization, and extended support for energy

monitoring. As smart homes become more mainstream, this

architecture provides a practical foundation for researchers,

developers, and consumers to build more intelligent and

responsive living environments.

Github Link:

https://github.com/sudipchakraborty/Alexa_Handler_HTTP

S.git.

References

1. Somesh, S., Senthilnathan, N., & Sabarimuthu, M.

(2020). Real-time Implementation of Home Appliance

Control Using Alexa.

2. Mahadik, S., Jain, T., & Chavan, M. (2019). Home

Automation Using Alexa.

3. Arya, S. D., & Patel, S. (2021). Implementation of

Google Assistant & Amazon Alexa on Raspberry Pi.

4. Swain, K. P., Samal, S. R., Amiri, I. S., et al. (2020).

Academic Students Attendance System: A Case Study

of Alexa Skill Development.

5. Hu, H., Yang, L., Lin, S., & Wang, G. (2020). Security

Vetting Process of Smart-home Assistant Applications:

A First Look and Case Studies.

6. Gautam, S. (2020). In Alexa, We Trust. Or Do We? An

Analysis of People's Perception of Privacy Policies.

~ 43 ~

World Wide Journal of Multidisciplinary Research and Development

7. Lei, X., Tu, G.-H., Liu, A. X., et al. (2020). The

Insecurity of Home Digital Voice Assistants—Amazon

Alexa as a Case Study.

8. Yan, J., Liao, S., Aldeen, M., et al. (2020).

SKILLPOV: Towards Accessible and Effective

Privacy Notice for Amazon Alexa Skills.

9. Liao, S., Aldeen, M., Yan, J., et al. (2020).

Understanding GDPR Non-compliance in Privacy

Policies of Alexa Skills in European Marketplaces.

10. Ding, W., Liao, S., Guo, K., et al. (2020). Exploring

Vulnerabilities in Voice Command Skills for

Connected Vehicles.

11. Apthorpe, N., Huang, D. Y., Reisman, D., et al. (2019).

Keeping the Smart Home Private with Smarter IoT

Traffic Shaping.

12. Jones, V. K. (2018). Voice-Activated Change:

Marketing in the Age of Artificial Intelligence and

Virtual Assistants.

13. Cook, D. J., Youngblood, M., Heierman, E. O., et al.

(2003). MavHome: An Agent-Based Smart Home.

14. Pal, D., Arpnikanondt, C., Funilkul, S., & Razzaque,

M. A. (2019). Analyzing the Adoption and Diffusion

of Voice-Enabled Smart-Home Systems: Empirical

Evidence from Thailand.

15. Khan, S., & Mahadik, S. (2020). A Comparative Study

of Agile and Waterfall Software Development

Methodologies.

16. Cook, D. J., Huber, M., Gopalratnam, K., &

Youngblood, M. (2003). Learning to Control a Smart

Home Environment.

17. Liao, S., Wilson, C., Cheng, L., et al. (2019).

Measuring the Effectiveness of Privacy Policies for

Voice Assistant Applications.

18. Cheng, L., Wilson, C., Liao, S., et al. (2020).

Dangerous Skills Got Certified: Measuring the

Trustworthiness of Skill Certification in Voice

Personal Assistant Platforms.

19. Huang, D. Y., Apthorpe, N., Li, F., et al. (2019). IoT

Inspector: Crowdsourcing Labeled Network Traffic

from Smart Home Devices at Scale.

20. Major, D., Huang, D. Y., Chetty, M., & Feamster, N.

(2019). Understanding Users' Ability to Identify Third-

Party Apps on Amazon Alexa.

21. Chakraborty, S., & Aithal, P. S. (2023). Let Us Create

an Alexa-Enabled IoT Device Using C#, AWS

Lambda and ESP Module. International Journal of

Management, Technology, and Social Sciences

(IJMTS), 8(3), 256-261. DOI:

https://doi.org/10.5281/zenodo.8260291

22. Chakraborty, S., & Aithal, P. S. (2023). Alexa Enabled

IoT Device Simulation Using C# And AWS Lambda.

International Journal of Case Studies in Business, IT,

and Education (IJCSBE), 7(3), 359-368. DOI:

https://doi.org/10.5281/zenodo.8329375

23. Chakraborty, S. & Aithal, P. S. (2023). Smart

Magnetic Door Lock for Elderly People Using AWS

Alexa, IoT, Lambda and ESP Module. International

Journal of Case Studies in Business, IT, and Education

(IJCSBE), 7(4), 474-483. DOI:

https://doi.org/10.5281/zenodo.10467946

24. Chakraborty, S., & Aithal, P. S. (2023). IoT-Based

Switch Board for Kids Using ESP Module And AWS.
International Journal of Case Studies in Business, IT, and

Education (IJCSBE), 7(3), 248-254. DOI:

https://doi.org/10.5281/zenodo.8285219

25. Chakraborty, S. & Aithal, P. S. (2024). AI Kitchen.

International Journal of Applied Engineering and

Management Letters (IJAEML), 8(1), 128-137. DOI:

https://doi.org/10.5281/zenodo.10810228

26. Chakraborty, S., & Aithal, P. S. (2023). IoT-Based

Industrial Debug Message Display Using AWS,

ESP8266 And C#. International Journal of

Management, Technology, and Social Sciences

(IJMTS), 8(3), 249-255. DOI:

https://doi.org/10.5281/zenodo.8250418

27. Chakraborty, S., & Aithal, P. S., (2023). Let Us Create

Our Desktop IoT Soft-Switchboard Using AWS,

ESP32 and C#. International Journal of Case Studies in

Business, IT, and Education (IJCSBE), 7(3), 185-193.

DOI: https://doi.org/10.5281/zenodo.8234036

28. Chakraborty, Sudip, & Aithal, P. S., (2021). An

Inverse Kinematics Demonstration of a Custom Robot

using C# and CoppeliaSim. International Journal of

Case Studies in Business, IT, and Education (IJCSBE),

5(1), 78-87. DOI:

http://doi.org/10.5281/zenodo.4755778.

29. Chakraborty, S., & Aithal, P. S., (2023). MVVM

Demonstration Using C# WPF. International Journal of

Applied Engineering and Management Letters

(IJAEML), 7(1), 1-14. DOI:

https://doi.org/10.5281/zenodo.7538711

30. Chakraborty, S., & Aithal, P. S. (2023). Let Us Create

A Lambda Function for Our IoT Device In The AWS

Cloud Using C#. International Journal of Management,

Technology, and Social Sciences (IJMTS), 8(2), 145-

155. DOI: https://doi.org/10.5281/zenodo.7995727

31. Chakraborty, S., & Aithal, P. S., (2022). How to make

IoT in C# using Sinric Pro. International Journal of

Case Studies in Business, IT, and Education (IJCSBE),

6(2), 523-530. DOI:

https://doi.org/10.5281/zenodo.7335167

32. Chakraborty, S., & Aithal, P. S., (2022). Virtual IoT

Device in C# WPF Using Sinric Pro. International

Journal of Applied Engineering and Management

Letters (IJAEML), 6(2), 307-313. DOI:

https://doi.org/10.5281/zenodo.7473766

33. Chakraborty, S. & Aithal, P. S. (2023). Let Us Create

an Alexa Skill for Our IoT Device Inside the AWS

Cloud. International Journal of Case Studies in

Business, IT, and Education (IJCSBE), 7(2), 214-225.

DOI: https://doi.org/10.5281/zenodo.7940237

34. Chakraborty, Sudip, & Aithal, P. S., (2021). Forward

Kinematics Demonstration of 6DF Robot using

CoppeliaSim and C#. International Journal of Applied

Engineering and Management Letters (IJAEML), 5(1),

29-37. DOI: http://doi.org/10.5281/zenodo.4680570.

35. Chakraborty, S., & Aithal, P. S., (2023). Let Us Create

a Physical IoT Device Using AWS and ESP Module.

International Journal of Management, Technology, and

Social Sciences (IJMTS), 8(1), 224-233. DOI:

https://doi.org/10.5281/zenodo.7779097

36. Chakraborty, S., & Aithal, P. S., (2023). Let Us Create

An IoT Inside the AWS Cloud. International Journal of

Case Studies in Business, IT, and Education (IJCSBE),

7(1), 211-219. DOI:

https://doi.org/10.5281/zenodo.7726980

37. Chakraborty, S., & Aithal, P. S., (2023). Let Us Create

Multiple IoT Device Controller Using AWS, ESP32

And C#. International Journal of Applied Engineering

~ 44 ~

World Wide Journal of Multidisciplinary Research and Development

and Management Letters (IJAEML), 7(2), 27-34. DOI:

https://doi.org/10.5281/zenodo.7857660

38. Chakraborty, Sudip, & Aithal, P. S., (2021). A Custom

Robotic ARM in CoppeliaSim. International Journal of

Applied Engineering and Management Letters

(IJAEML), 5(1), 38-50. DOI:

http://doi.org/10.5281/zenodo.4700297.

39. Chakraborty, Sudip, & Aithal, P. S., (2021). Forward

and Inverse Kinematics Demonstration using RoboDK

and C#. International Journal of Applied Engineering

and Management Letters (IJAEML), 5(1), 97-105.

DOI: http://doi.org/10.5281/zenodo.4939986.

40. Chakraborty, S., & Aithal, P. S., (2022). A Practical

Approach To GIT Using Bitbucket, GitHub and

SourceTree. International Journal of Applied

Engineering and Management Letters (IJAEML), 6(2),

254-263. DOI:

https://doi.org/10.5281/zenodo.7262771

41. Chakraborty, S. & Aithal, P. S. (2024). WhatsApp

Based Notification on Low Battery Water Level Using

ESP Module and TextMeBOT. International Journal of

Case Studies in Business, IT, and Education (IJCSBE),

8(1), 291-309. DOI:

https://doi.org/10.5281/zenodo.10835097

42. Chakraborty, S. & Aithal, P. S. (2024). Go Green:

ReUse LED Tube Light and Make it WhatsApp

Enabled Using ESP Module, Twilio, and ThingESP.

International Journal of Case Studies in Business, IT,

and Education (IJCSBE), 8(2), 296-310. DOI:

https://doi.org/10.5281/zenodo.11204974

43. Chakraborty, S. & Aithal, P. S. (2024). Let Us Build a

MQTT Pub-Sub Client in C# For IoT Research.

International Journal of Management, Technology, and

Social Sciences (IJMTS), 9(1), 104-114. DOI:

https://doi.org/10.5281/zenodo.10603409

44. Chakraborty, S. & Aithal, P. S. (2024). Autonomous

Fever Monitoring System For Child Using Arduino,

ESP8266, WordPress, C# And Alexa. International

Journal of Case Studies in Business, IT, and Education

(IJCSBE), 8(1), 135-144. DOI:

https://doi.org/10.5281/zenodo.10710079

45. Chakraborty, S. & Aithal, P. S. (2024). Smart LPG

Leakage Monitoring and Control System Using Gas

Sensor (MQ-X), AWS IoT, and ESP Module.

International Journal of Applied Engineering and

Management Letters (IJAEML), 8(1), 101-109. DOI:

https://doi.org/10.5281/zenodo.10718875

46. Chakraborty, S., & Aithal, P. S. (2024).

Communication Channels Review For ESP Module

Using Arduino IDE And NodeMCU. International

Journal of Applied Engineering and Management

Letters (IJAEML), 8(1), 1-14. DOI:

https://doi.org/10.5281/zenodo.10562843

47. Chakraborty, S., & Aithal, P. S. (2023). CRUD

Operation on WordPress Database Using C# SQL

Client. International Journal of Case Studies in

Business, IT, and Education (IJCSBE), 7(4), 138-149.

DOI: https://doi.org/10.5281/zenodo.10162719

48. Chakraborty, S., & Aithal, P. S., (2023). CRUD

Operation on WordPress Database Using C# And

REST API. International Journal of Applied

Engineering and Management Letters (IJAEML), 7(4),

130-138. DOI:

https://doi.org/10.5281/zenodo.10197134

49. Chakraborty, S., & Aithal, P. S., (2023). CRUD

Operation on WordPress Posts from C# over REST

API. International Journal of Management,

Technology, and Social Sciences (IJMTS), 8(4), 223-

231. DOI: https://doi.org/10.5281/zenodo.10264407

50. Chakraborty, S. & Aithal, P. S. (2023). CRUD

Operation On WordPress Custom Post Type (CPT)

From C# Over REST API. International Journal of

Case Studies in Business, IT, and Education (IJCSBE),

7(4), 323-331. DOI:

https://doi.org/10.5281/zenodo.10408545

51. Chakraborty, S. & Aithal, P. S. (2023). Let Us Build a

WordPress Custom Post Type (CPT). International

Journal of Applied Engineering and Management

Letters (IJAEML), 7(4), 259-266. DOI:

https://doi.org/10.5281/zenodo.10440842

52. Chakraborty, S. & Aithal, P. S. (2024). Let Us Manage

BP Monitor Data Using WordPress Server and C#.

International Journal of Case Studies in Business, IT,

and Education (IJCSBE), 8(1), 1-9. DOI:

https://doi.org/10.5281/zenodo.10551926

53. Chakraborty, S. & Aithal, P. S. (2024). Don’t Worry;

AI will Take Care of Your Sweet Home. International

Journal of Case Studies in Business, IT, and Education

(IJCSBE), 8(1), 240-250. DOI:

https://doi.org/10.5281/zenodo.10780905

54. Chakraborty, S. & Aithal, P. S. (2024). AI Bedroom.

International Journal of Applied Engineering and

Management Letters (IJAEML), 8(1), 110-119. DOI:

https://doi.org/10.5281/zenodo.10780920

55. Chakraborty, S., & Aithal, P. S. (2023). How To

Create Our Custom Model in CoppeliaSim From 3D

File. International Journal of Applied Engineering and

Management Letters (IJAEML), 7(2), 164-174. DOI:

https://doi.org/10.5281/zenodo.8117666

56. Chakraborty, S., & Aithal, P. S. (2023). Smart Home

Simulation in CoppeliaSim Using C# Through

WebSocket. International Journal of Applied

Engineering and Management Letters (IJAEML), 7(2),

134-143. DOI:

https://doi.org/10.5281/zenodo.8075717

57. Chakraborty, S., & Aithal, P. S. (2023). Automated

Test Equipment Simulation in CoppeliaSim Using C#

Over WebSocket. International Journal of

Management, Technology, and Social Sciences

(IJMTS), 8(2), 284-291. DOI:

https://doi.org/10.5281/zenodo.8117650

58. Chakraborty, S., & Aithal, P. S. (2023). Industrial

Automation Debug Message Display Over Modbus

RTU Using C#. International Journal of Management,

Technology, and Social Sciences (IJMTS), 8(2), 305-

313. DOI: https://doi.org/10.5281/zenodo.8139709

59. Chakraborty, S., & Aithal, P. S. (2023). Modbus Data

Provider for Automation Researcher Using C#.

International Journal of Case Studies in Business, IT,

and Education (IJCSBE), 7(3), 1-7. DOI:

https://doi.org/10.5281/zenodo.8162680

60. Sudip Chakraborty, & Aithal, P. S., (2021).

Demonstration of Modbus Protocol for Robot

Communication Using C#. International Journal of

Applied Engineering and Management Letters

(IJAEML), 5(2), 119-131. DOI:

https://doi.org/10.5281/zenodo.5709235

