
 

~ 1 ~ 

 
WWJMRD 2016; 2(2): 1-6 

www.wwjmrd.com 

e-ISSN: 2454-6615 

 

 

Rebecca S. Andrade 

Departamento de Engenharia 

Química, Universidade Federal 

da Bahia, Salvador, Brasil  

 

Robson Magalhaes 

Departamento de Engenharia 

Química, Universidade Federal 

da Bahia, Salvador, Brasil 

 

Miguel Iglesias 

Departamento de Engenharia 

Química, Universidade Federal 

da Bahia, Salvador, Brasil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Correspondence: 

Miguel Iglesias 

Departamento de Engenharia 

Química, Universidade Federal 

da Bahia, Salvador, Brasil 

 

 

Artificial neural network model to predict 

thermodynamic properties of low molar  

mass protic ionic liquid  
 

Rebecca S. Andrade, Robson Magalhaes, Miguel Iglesias 
 
Abstract 
This paper presents a model based on artificial neural networks (ANNs) to predict density and 

ultrasonic velocity of short aliphatic chain protic ionic liquids. An experimental database was used for 

developing the model, where the input variables in the network were temperature, number of carbon, 

hydrogen, nitrogen and oxygen atoms into each compound, as well as, the number of specific 

functional groups. The learning task was done through a nonlinear activation function of sigmoid and 

hyperbolic tangent nature. Correlation coefficients of 0.9783–0.9830 and mean squared error (MSE) of 

1.2328·10-4 and 2.5783·10-6 were obtained for density and ultrasonic velocity, respectively, which 

suggests that the proposed ANNs model shows robust and accurate character for prediction of physical 

properties of these new promising chemicals. 
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Introduction 
Thermodynamic data play a key role in the understanding, design and optimization of 

chemical processes and they should be obtained by experimental procedures or non-

experimental techniques. Experimental techniques belong to the most correct, accurate and 

reliable, but require expensive technical equipment, qualified researchers and long time 

necessary for experiment. If due to any of these items, the corresponding experiments cannot 

be realized, different theoretical estimation procedures should be applied. These methods 

include empirical relationships (correlations of the required property with different variables, 

geometrical molecular characteristics, different constants, etc), those based on theory 

(statistical thermodynamics) and several procedures based on an additive principle (mainly 

functional groups contribution methods).  

A different approximation to this problem was derived from computational model for 

artificial neural networks (ANNs) based on mathematics and algorithms called threshold 

logic 
[1].

 In modern software implementations of ANNs, the approach inspired by biology has 

been largely abandoned for a more practical based on statistics concepts and signal 

processing. There is no single formal definition of what a neural network is but usually it 

gathers two main characteristics, contains sets of adaptive weights (tuning parameters that 

should be modified by a learning algorithm), and capability of approximating non-linear 

functions of their data inputs. They are essentially simple mathematical models but 

sometimes they are also associated with a particular learning algorithm or rule. A common 

use of ANNs model is really referring to the interconnections between the neurons in the 

different layers of each system. An example system has three layers, the first layer has input 

neurons which send data via synapses to the second layer of neurons, and then via more 

synapses to the third layer of output neurons. More complex systems will have more layers 

of neurons, some having increased layers of input neurons and output neurons. The synapses 

store parameters called "weights" that manipulate the data in the computations. 

This modern approach of computation has been applied in various disciplines which includes 

engineering, environmental science, business, chemical technology, computing or 

nanotechnology, being ANNs a very useful model for problem solving and machine learning. 

Recently, it has aroused great interest in academic and industrial areas related to neoteric 

substances as ionic liquids, due to their functionality on technology and their amazing 

properties, which probably it will result in a complete renovation of core chemical processes  
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in a next future 
[2]

. A serious handicap that is delaying the 

widespread use of these compounds on an industrial level is 

the huge lack of thermodynamic information and the 

absence of reliable prediction methods for simulation 

studies.  

With these facts in mind, continuing previous studies 
[3-6],

 

in this work, we apply an artificial neural network (ANNs) 

model to predict density and ultrasonic velocities of a new 

group of protic ionic liquids (2-hydroxyethylammonium 

acetate (2-HEAA), 2-hydroxydiethylammonium acetate  

(2-HDEAA), 2-hydroxytriethylammonium acetate  

(2-HTEAA), 2-hydroxyethylammonium propionate  

(2-HEAPr), 2-hydroxydiethylammonium propionate  

(2-HDEAPr) and 2-hydroxytriethylammonium propionate 

(2-HTEAPr)) at different temperature.  

These compounds gather an inverse dependence on the 

temperature for density and ultrasonic velocity, pointing 

out the particular form of packaging and the strong 

dependence of the kinetics of ions.  

The main advantages of ANNs for thermodynamic 

properties estimation are that they should model without 

requiring any assumptions about the nature of 

phenomenological mechanisms, their ability to learn from 

the linear and nonlinear relationships between variables 

from a set of examples, their multiple modeling capability 

of simultaneously outputs and a reasonable application of 

the model to sparse data sets 
[7].

  

The obtained results for these new promising chemicals 

were of high accuracy, despite the strong interactions 

among ions and the high non-ideal trend of both physical 

properties. 
 

Experimental 

Preparation of the ionic liquids 

The amine compounds (monoethanolamine, 

diethanolamine or triethanolamine, Merck Synthesis, better 

than 99%) were placed in a threenecked flask all-made-in-

glass equipped with a reflux condenser, a PT-100 

temperature sensor for controlling temperature and a 

dropping funnel. The flask was mounted in a thermal bath. 

A slight heating is necessary for increasing miscibility 

between reactants and then allow reaction. The organic acid 

(acetic or propionic acid, Merck Synthesis, better than 

99%) was added dropwise to the flask under stirring with a 

magnetic bar. Stirring was continued for 24 h at laboratory 

temperature, in order to obtain a final viscous liquid. Figure 

1 shows the structures of the studied protic ionic liquids in 

this work. 
 

Materials and equipment 

During the course of the experiments, the purity of ionic 

liquids was monitored by density, ultrasonic velocity and 

ionic conductivity measurements. The pure ionic liquids 

were stored in sun light protected form, constant humidity 

and low temperature. Usual manipulation and purification 

in our experimental works was applied 
[5, 6].

 The densities 

and ultrasonic velocities of pure components were 

measured with an Anton Paar DSA-5000 vibrational tube 

densimeter and sound analyzer, with a resolution of 10
-5

 

gcm
-3

 and 1 ms
-1

. Apparatus calibration was performed 

periodically in accordance with vendor instructions. 

Accuracy in the measurement temperature was better than 

10
-2 

K. The molar mass, experimental and literature data 

of the studied protic ionic liquids at 298.15 K are gathered 

in Table 1 
[8-10]. 

Results and discussion 

Neural Networks 

Artificial Neural Networks (ANNs) are a powerful tool for 

modeling data with high-efficiency for physical properties 

of fluids and solutions. For the measured data of the studied 

protic ionic liquids 
[6],

 each database was randomized and 

partitioned into three groups: training (65%), cross 

validation (15%) and testing (20%). The cross-validation 

data set was used to test the performance of the network 

while training was in progress as an indicator of the level of 

generalization. Testing data set was used to examine the 

network generalization capability. To improve the 

behaviour of the ANN, input and output data were 

normalized according to Eq. 1 
[11]. 
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where ub and lb are the limits normalized value and maxi 

and mini, are the maximum and minimum values found 

within variable i. 

 

Description of the ANN architecture 

The ANN used in this work is a Multi-Layer Perceptron 

model (MLP) and supervised learning. It consists of the 

one input layer, one more hidden layer and one output 

layer. This is the most common flexible and general-

purpose kind of ANN 
[11, 12].

 The selection of the number of 

the hidden layers and the number of processing elements 

(neurons) in hidden layers, was performed using the 

method of trial and error until a good behavior of the 

networks is obtained. In this work, the number of hidden 

neurons varied from 2 to 6, with only one hidden layer. The 

information between layers is processed through a transfer 

or activation function. This function is typically a nonlinear 

activation function of sigmoid and hyperbolic tangent 

nature. In the most applications, hyperbolic tangent 

function behaves better as compared to sigmoid function 
[11, 

13].
  

Figure 2 shows an ANN with two neuron in the input layer, 

three neurons in the hidden layer and two neurons in the 

output layer. Coefficients associated with the hidden layer 

(weights and biases) are grouped in the matrices P1 and B1 

and coefficients associated with the output layer are 

grouped in the matrices P2 and B2. Using de matrix 

notation, the output of neural networks can be represented 

by the expression 
[11]: 

 

  211122 BBXWfWfY 
  (2) 

 

The performance of the networks was measured by mean 

square error (MSE) and regression coefficient (r²) between 

the predictive values of the network and the target or 

experimental values, as follows. 
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During the learning process, training and validating data 

sets were simultaneously used to avoid over-fitting. This 

was done by 4-fold-cross-validation and in each cross 

validation, three initial weights were randomly selected. 

The learning stopped after 3000 iterations. Then, average 

MSE and average r² from four cross validation were 

calculated to find the best network. The best network model 

was that of minimum MSE and maximum r² using the 

normalized predicted and target data, and this network was 

not over-fitting the data. This network was then used to 

predict outputs using the testing data set to further check if 

the network achieved good generalization. To predicted 

density and ultrasonic velocities values, the ANN model 

can be implemented using the algebraic system of 

equations, which is obtained by substitution of the 

corresponding weights and coefficient matrices in Eq. 2. 

 

ANN Processing Elements or Neurons (PE) in hidden 

layer 

The optimum number of hidden nodes was chosen upon 

minimized the difference between predicted ANN values 

and desired outputs, using r² and MSE during testing as 

performance indicators (Table 2). It may be important to 

point out that the optimal number of neurons in the hidden 

layer is four, and greater numbers of PE only to increase 

the structure complexity but do not improve the network 

behaviour.  

 

ANN Performance 

Prediction performance of ANN model (density and 

ultrasonic velocity) for training and testing data sets is 

shown in Figure 3a-3f.  

The predicted values were very close to the desired values 

for both density and ultrasonic velocity. The mean of 

residuals was 1.15 10
-5

 and 2.24 10
-4

 for density and 

ultrasonic velocity, respectively. These results show a good 

approximation to a normal distribution around zero with 

99% to find residuals below 6 10
-3

 gcm
-3

 for density and 3 

ms
-1

 for ultrasonic velocities, which means a good 

generalization ability of ANN model for the range of values 

of these properties. 

 

Conclusions 

An ANN – based model was developed for prediction of 

density and ultrasonic velocity of the studied protic ionic 

liquids for wide range of temperatures. The model was able 

to predict successfully volumetric and acoustical properties 

of these compounds. The obtained results suggest that the 

proposed ANNs model shows robust and accurate character 

for prediction of physical properties of these new promising 

chemicals. 

 
Table 1: Comparison of densities, ultrasonic velocities and ionic conductivities for the studied pure protic ionic liquids at 298.15 K and other 

relevant information. 
 

 M/(gmol-1)* ρ/(gcm-3) u/(ms-1) 3/(mScm-1) 

  Exp. Lit. Exp. Lit. Exp. Lit. 

2-HEAA 121.1352± 

0.0070 

1.148360 1.146220[10] 1.149039[9] 1790.94 1790.73[9] 554.4 NA 

2-HDEAA 165.1877± 

0.0099 

1.167483 1.170200[8] 1863.35  1051.38 NA 

2-HTEAA 209.2402± 

0.0128 

1.188917  1833.25  236.61 NA 

2-HEAPr 135.1617± 

0.0083 

1.092595  1636.90  462.33 NA 

2-HDEAPr 179.2142± 

0.0112 

1.134793  1730.48  542.52 NA 

2-HTEAPr 223.2667± 

0.0141 

1.141970  1663.73  252.45 NA 

*Expressed in intervals of molar mass, NA: not available

 
Table 2: Effect of the number of hidden nodes on MSE and r2 for density and ultrasonic velocity during testing. 

 

Neurons in the Hidden Layer ρ (gcm-3) u 10-3 (ms-1) 

MSE r² MSE r² 

1 2.6788 10-4 0.9812 1.7835 10-2 0.9770 

2 4.4035 100 0.8901 1.2112 10-3 0.8863 

3 1.2328 10-4 0.9830 1.2749 10-3 0.9782 

4 1.1500 10-5 0.9825 2.2400 10-5 0.9783 

5 1.0728 10-4 0.9820 8.7143 10-5 0.9778 

6 5.3758 10-5 0.9823 6.9088 10-5 0.9781 

7 3.6750 10-2 0.9122 7.1583 10-1 0.9083 

8 1.3288 10-7 0.9825 2.5883 10-6 0.9783 

9 1.6505 10-1 0.8901 2.5783 10-6 0.9783 

10 8.5716 10-2 0.7249 1.6696 100 0.7218 
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Fig 1: Chemical structures of the studied protic ionic liquids (a) 2-hydroxyethylammonium acetate (2-HEAA), (b) 2-

hydroxyethylammonium propionate (2-HEAPr), (c) 2-hydroxydiethylammonium acetate (2-HDEAA), (d) 2-hydroxydiethylammonium 

propionate (2-HDEAPr), (e) 2-hydroxytriethylammonium acetate (2-HTEAA) and (f) 2-hydroxytriethylammonium propionate (2-HTEAPr) 

 

 
 

Fig 2: ANN architecture with two neuron in the input layer (x), 

three neurons in the hidden layer and two neurons in the output 

layer (y).

 
 

Fig 3a: Residual analysis of the estimated data ((○) density and 

(△) ultrasonic velocity) from the network for 2-

hydroxyethylammonium acetate (2-HEAA). 
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Fig 3b: Residual analysis of the estimated data ((○) density and 

(△) ultrasonic velocity) from the network for 2-

hydroxydiethylammonium acetate (2-HDEAA). 

 

 
 

Fig 3c: Residual analysis of the estimated data ((○) density and 

(△) ultrasonic velocity) from the network for 2-

hydroxytriethylammonium acetate (2-HTEAA). 

 

 
 

Fig 3d: Residual analysis of the estimated data ((○) density and 

(△)ultrasonic velocity) from the network for 2-

hydroxyethylammonium propionate (2-HEAPr). 

 

 
 

Fig 3e: Residual analysis of the estimated data ((○) density and 

(△) ultrasonic velocity) from the network for 2-

hydroxydiethylammonium propionate (2-HDEAPr). 

 

 
 

Fig 3f. Residual analysis of the estimated data ((○) density and 

(△) ultrasonic velocity) from the network for 2-

hydroxytriethylammonium propionate (2-HTEAPr). 
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