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Abstract 
In this paper, Bayesian estimation of the unknown parameter of inverse size biased (ISB) p-

dimensional (p-dim) Rayleigh distribution under Type-II censored samples is considered. The Bayes 

estimate of the parameter is obtained under squared error, LINEX and general entropy loss functions 

with natural conjugate prior by Lindley’s approximation method. Further, the comparison of Bayes 

estimators with corresponding maximum likelihood estimators have been carried out through 

simulation study. 
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1. Introduction 

In this paper, the Rayleigh distribution is considered as a useful life time distribution. It plays 

an important role in statistics and operations research. Rayleigh model is applied in several 

areas such as health, agriculture, biology and physics. It is often used in physics, to model 

processes such as sound and light radiation, wave heights, as well as in communication 

theory to describe hourly median and instantaneous peak power of received radio signals. 

The model for frequency of different wind speeds over a year at wind turbine sites and daily 

average wind speed are considered under the Rayleigh model. The Rayleigh distribution was 

introduced by Lord Rayleigh in1980; and used in reliability theory and survival analysis 

because of its simplicity. Soliman (2000) obtained the Bayes estimators for the parameter, 

the reliability function, and failure-rate function of the Rayleigh distribution based on 

complete or type-II censored samples. 

The p-dimensional Rayleigh distribution was introduced by Cohen and Whitten (1988). The 

ISB p-dim Rayleigh distribution was introduced by Pandey and Kumari (2016) under 

different loss functions with Hartigan prior for Bayesian estimation with complete data set. 

The ISB p-dim Rayleigh distribution is a new life time distribution. The probability and 

cumulative density functions of the ISB p-dim Rayleigh distribution is defined as follows 
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Where, p is a positive known quantity and α>0. This is upper incomplete gamma function. 

Censoring, defined as the loss of observations on the lifetime variable of interest, in 

theprocess of investigation, may occur in life testing experiment due to lack of time, scarcity 

of funds or any other unavoidable reasons. In type-II censoring scheme some units (say, n) 
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are placed on test and the test is terminated after observing 

the lifetime of a prefixed number, say m(≤ n) units. Thus 

out of n, the lifetimes of m units are observed and n-m units 

are considered as censored. The prior distribution for the 

parameter of the model has been taken as a natural 

conjugate prior. The squared error, LINEX and general 

entropy loss functions for parameter α is given by 
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where, b and k are shape and scale parameters of the loss 

function. The squared-error loss function (SELF) is a 

symmetric function such that the losses due to 

overestimation and underestimation of equivalent extent are 

regarded as equally risky. Nonetheless, such a limitation is 

not always equally realistic. Square error loss function is 

seen as a specific case of Linear Exponential Loss Function 

(LINEX) loss function for an individual choice of the loss 

function. Asymmetric loss function is introduced by Varian 

(1975), called LINEX loss function, has been advocated by 

Zellner (1986), Basu and Ebrahimi (1991), Soliman (2002), 

and Singh et al. (2005). An alternative to the modified 

LINEX loss function is the general entropy loss function 

(GELF) proposed by Calabria and Pulcini in 1994. This 

function rises exponentially on one side of zero and 

becomes roughly linear on the opposite side. 

In this paper, the ISB p-dim Rayleigh distribution with 

MLEs and Bayes estimator procedure for the one parameter 

under squared error, LINEX and general entropy loss 

functions, using type-II censored data are derived. We 

present the derivation of the maximum likelihood 

estimation of the unknown parameter in section 2. In 

Section 3, we develop the Bayes estimator of the unknown 

parameter. The approximate Bayes estimator based on 

Lindley’s approximation, under square error, LINEX and 

general entropy loss functions are also considered in 

sections 4. Simulation and conclusion study is provided for 

numerical results in section 4. 

  

2. Maximum Likelihood Estimator 

Let myyy ,...,, 21  be the lifetimes of the m units subjected 

to life test. With type II censoring plan, one observes the 

primary m order statistics, myyy  ...21  from the 

sample nyyy ,...,, 21 . Based on the censored data 

myyy ,...,, 21 the likelihood function is 
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Using equations (1.1) and (1.2) the likelihood function 

(2.1) can be expressed as 
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where, ),......,,( 21 myyyy  . Natural logarithmic of the 

likelihood function is taken for equation (2.2) and after 

simplification; the corresponding log likelihood function is 

given by 
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The MLE of α obtained by the setting the first partial 

derivatives of equation (2.3) equal to zero with respective 

to α, respectively, these simultaneous equations is, 
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where, ̂  represent of MLE. Newton Raphson iterative 

algorithm is used to compute the sample estimate ̂ as 

equation (2.4) cannot be solved analytically. 

 

2.1 Asymptotic Confidence Interval 

To obtain the asymptotic confidence interval (ACI), Fisher 

information matrix I(α) is used and given as: 
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does not exist; hence, the concept of large sample theory is 
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 Confidence interval of the 

unknown parameter α is given by 

)ˆvar(ˆ]ˆ,ˆ[ 2/ MLMLUL Z    

where, 2/Z  is the upper 
th)2/( percentile of the 

standard normal distribution. 

 

3. Bayesian Estimation 

This section deals with Bayes estimate for unknown 

parameter α under squared error, LINEX and general 

entropy loss functions. 

Prior distribution of parameter α is taken as natural 

conjugate prior is taken as non-informative uniform prior 

by which is of the form 
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Now the joint posterior density function   y  as from 

equation (2.2) and (3.1) we get,
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In the next section, the well-known method, Lindley’s 

Approximation is used to obtain Bayes estimates of 

individual parametric function in closed form. 

 

3.1 Lindley’s Approximation Method 

In this paper, we consider a problem of ISB p-dim Rayleigh 

distribution using Lindley’s approximation method for 

bayes estimator. The approach developed by Lindley 

(1980), provides a simplified form of bayes estimator 

which is easy to use in practice. Lindley’s Approximation 

method I(y) can be approximated as  
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where, p(α) = function of α, 

)( yl  = the log likelihood function, 

  , = log of prior distribution of α. 
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Now, the Bayes estimator under the SELF of the parameter 

α from equation (3.4) is computed in the following forms: 

 

(i) Bayes estimate of α under SELF 

If p (α) =α, then 0,1   pp , the Bayes estimate of α 

under SELF is given by 
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The Bayes estimator under the LINEX loss function of the 

parameter α from equation (3.4) is compute. We obtain the 

following form: 

(ii) Bayes estimate of Parameter α under LINEX 

If
 kep )( ,then


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Bayesian estimate of α under LINEX loss function is given by 
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Next, the Bayes estimator under the general entropy loss 

function of the parameters α from equations (3.4) is 

compute. The following form is obtained: 

 

 

 

(iii) Bayes estimate of α under GELF 

If
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)2()1( )1(,   qq qqpqp   ,the Bayes 

estimate of α under GELF loss function is given by 
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Simulation Study and conclusion 

Mathematical expression for maximum likelihood and 

Bayes estimators of unknown parameter for ISB p-dim 

Rayleigh distribution under type-II censoring is obtained in 

this paper. MLE and each of the proposed Bayes estimate is 

empirically computed based on Lindley approximation with 

three loss functions (square error, LINEX and general 

entropy). In our simulation study we have generated a 

sample of size n=20, 40, 60 to observe the effect of small, 

median and large samples on the estimators. The results are 

replicated 5000 times and the average of the results has 

been presented in the tables. 
 

Table. 1: Average values of ML and Bayes estimate of the parameter  with respective MSEs (in Bracket) under for different values of (n, m). 
 

n m 
ML̂

 BSL~
 

LBL1

~
 

LBL2

~
 

LBG1

~
 

LBG2

~
 

 

20 

10 1.5264 

(0.0613) 

1.5082 

(0.0343) 

1.4485 

(0.0313) 

1.5563 

(0.0372) 

1.4927 

(0.0335) 

1.5736 

(0.0437) 

20 1.5836 

(0.0568) 

1.5537 

(0.0315) 

1.5234 

(0.0268) 

1.5864 

(0.0365) 

1.5864 

(0.0287) 

1.6114 

(0.0395) 

 

 

 

40 

10 1.4667 

(0.0624) 

1.4475 

(0.0436) 

1.4126 

(0.0374) 

1.4586 

(0.0469) 

1.4398 

(0.0385) 

1.4624 

(0.0527) 

20 1.5625 

(0.0603) 

1.5374 

(0.0381) 

1.4196 

(0.0344) 

1.5063 

(0.0423) 

1.4636 

(0.0396) 

1.5496 

(0.0469) 

30 1.6281 

(0.0569) 

1.5864 

(0.0326) 

1.4903 

(0.0265) 

1.5863 

(0.0358) 

1.5299 

(0.0262) 

1.6327 

(0.0416) 

40 1.6673 

(0.0523) 

1.6083 

(0.0278) 

1.5779 

(0.0229) 

1.6492 

(0.0335) 

1.5906 

(0.0268) 

1.6738 

(0.0347) 

 

 

 

 

 

60 

10 1.4637 

(0.0615) 

1.4262 

(0.0371) 

1.3736 

(0.0319) 

1.4898 

(0.0386) 

1.4137 

(0.0355) 

1.4974 

(0.0435) 

20 1.4743 

(0.0603) 

1.4581 

(0.0346) 

1.3875 

(0.0275) 

1.4672 

(0.0384) 

1.4265 

(0.0332) 

1.4765 

(0.0415) 

30 1.5378 

(0.0565) 

1.4783 

(0.0327) 

1.4266 

(0.0258) 

1.5135 

(0.0359) 

1.4395 

(0.0285) 

1.5287 

(0.0387) 

40 1.5852 

(0.0526) 

1.5562 

(0.0279) 

1.5285 

(0.0238) 

1.5735 

(0.0327) 

1.5398 

(0.0254) 

1.5812 

(0.0368) 

50 1.6276 

(0.0487) 

1.5824 

(0.0245) 

1.5426 

(0.0216) 

1.5868 

(0.0305) 

1.5545 

(0.0227) 

1.6134 

(0.0321) 

60 1.6863 

(0.0431) 

1.6175 

(0.0215) 

1.5658 

(0.0185) 

1.6357 

(0.0253) 

0.5814 

(0.0209) 

1.6735 

(0.0316) 

 

The Bayes estimate based on Type-II censored data relative 

to square error BSL~ , LINEX BLL~  and general entropy 

BGL~  loss functions are found to be more efficient in terms 

of having lower MLE and hence, are regarded as being 

superior to MLE, for all permutations of n and m. 
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