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Abstract 
In work on the basis of the rod theory, bending vibrations of a visco elastic pipeline are considered by 

the action of an inner ideal fluid. 
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Introduction 

Polymer pipes are widely used in many areas of the national economy. In this case, as a rule, 

during operation they are in contact with a liquid or gaseous medium and are subjected to 

dynamic influences. Of particular relevance dynamic tasks have in the field of modern 

robotics with flexible hinge less manipulators, which due to their design features are very 

sensitive to external loads and capable of breaking under the influence of internal pressure 

[1,2,3]. 

 

Statement of problem and methods of solution. 

When investigating flexural vibrations of a tube with a fluid flowing inside, we use a model 

in the form of an unprismatic beam and a hypothesis of plane cross sections. In this case, for 

the analysis of oscillations, the differential equations  
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Where ),( txw  - equation of the elastic axis of the beam with respect to its unreformed state 

under the action of a transverse specified load ),( txq . Let the bending stiffness be constant 

along the axis of the tube EJ , weight of pipe length unit 1m  and the mass of the liquid 

volume 2m , filling the unit length of the pipe. In accordance with the Dalamber principle, the 

inertial forces arising during oscillations (Fig. 1) can be considered as a transverse load for 

the beam, then  
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Where 1  - absolute speed of the pipe element, а 2  - absolute velocity of a fluid. 
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Fig 1: The calculation scheme 

 

For a steady flow, the pressure along the tube axis does not 

change, and the velocity of the fluid V  does not depend on 

the vibrations of the tube. Then the inertial load can be 

written in the form 
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Here the first term is the force of inertia of the pipe 

element, which arises during its transverse oscillations; 

since the liquid element performs a complex motion 

(portable motion with speed iV  element of the pipe, 

relative - with speed V  ), the remaining terms in (2) reflect 

its inertia forces-the inertial force of the mobile motion, the 

normal component of the inertia force of the relative 

motion and the inertial force of Carioles, respectively. 

When calculating the acceleration components of a fluid 

element, it is taken into account that the curvature of the 

beam
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Substituting (2) in (1), we obtain the differential equation 

of transverse oscillations of the pipeline axis relative to the 

initial rectilinear position: 
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The solution of equation (3) can be obtained by one of the 

approximate analytical methods. We use the Bubnov-

Galerkin method, representing the solution of the equation 

in the form of a product of two function
tiexXtxw )(),(      (4) 

Solution (3) must satisfy the four boundary conditions 

corresponding to the options for securing the ends of the 

pipeline. The substitution of (4) in (3) allows for the 

function to obtain the ordinary differential equation:
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substitution of which into equations (5), followed by 

multiplication by )......
2

sin(),sin(
l

x

l

x 
 and integration 

under boundary conditions from x=0 до x=l, leads to a 

system of linear homogeneous equations with respect to 

unknown constants A1,A2,A3….. Equating the determinant 

of the system to zero, we obtain an equation for 

determining the vibration frequencies of the pipeline к . In 

studying the oscillations that arise, the answer to the 

question of the value of the critical velocity pkV  flow (the 

flow rate of the fluid at which the pipeline may lose static 

stability). This value can be found from the condition that 

the first frequency of oscillations is equal to zero (which, in 

turn, occurs when the term that does not contain the 

frequency in the equation for determining the frequencies is 

zero). As an example, consider a section of a viscous elastic 

pipeline with hinged supports at its ends, flowing at a 

constant speed секмV /10  ideal incompressible fluid. 

Average diameter of the pipeline section мD 09.0 , 

pipeline wall thickness м025.0 , length of section

мl 1 , material density
3

1 /2700 мкг , elastic 

modulus ГПаЕ 75 . Mass of liquid
3

2 /64.15 мкг . Determine the first two frequencies 

of the transverse oscillations of the pipeline with a resting 

and flowing liquid without taking into account the action of 

the static forces of weight. We use the differential equation 

(3), where  Dm 11   - the mass of a unit of pipe 

length, and 
2

22 )(   Dm  - mass of unit length of 

liquid. To obtain the solution, we use the Bubnov-Galerkin 

method. Assuming that
tiexXtxw )(),(  , after 

substituting the assumed solution in (5) and performing 

fairly simple transformations, for equation (5) we obtain 

the coefficients
2004.0,08.0,014.0 VcVba  . 

The solution of equation (5) must satisfy the boundary 

conditions: 
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We seek a solution of equation (5) in the form  

 )/2sin()/sin( 21 lxAlxAX   .  

We substitute this solution in (5) and successively multiply 

the resulting expression by )/sin( lx  и )/2sin( lx . 
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The obtained relations are integrated in the interval 

from 0x  before lx   taking into account the 

boundary conditions. As a result of the performed 

operations, we arrive at an algebraic system of two linear 

homogeneous equations with respect to 

unknowns 21, АА  :  
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Equating the determinant of this system to zero, we obtain 

an equation of the form 0221

4  aa   for 

determination of two frequencies of transverse oscillations 

of the pipeline.  

 

Numerical results  

When 0V , секрадсекрад /9.98,/9.24 21     

At ,/10 секмV 

секрадсекрад /7.101,/2.24 21   . The 

critical flow rate of a liquid arises when one of the 

vibration frequencies is equal to zero, as is the case when

   0)/(4)/( 22

2  clcla  , where

22
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c  . Hence the value of the minimum critical 

speed (Vкр) will be

2m

JE
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
 . The results of 

calculations of bending vibrations along the z axis and time 

t are shown in Fig. 2 and 3. 

 

 
 

Fig 2: Moving the piping section point as a function of distance 

and time 
 

 
 

Fig 3: Moving the section point of the cantilever pipeline as a 

function of distance. 

Based on the developed approximate mathematical model 

of bending vibration movements of the pipeline, its free 

oscillations were investigated. It is established that with 

increasing internal pressure, an increase in the amplitude of 

free bending vibrations simultaneously increases and an 

increase in the frequency of free rotational vibrations of the 

tube. 
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