

~ 80 ~

WWJMRD 2018; 4(12): 80-84

www.wwjmrd.com

International Journal

Peer Reviewed Journal

Refereed Journal

Indexed Journal

Impact Factor MJIF: 4.25

E-ISSN: 2454-6615

H. Santhi

School of Computer Science

and Engineering, Vellore

Institute of Technology (VIT),

Vellore, Tamil Nadu, India

G. Gopichand,

School of Computer Science

and Engineering, Vellore

Institute of Technology (VIT),

Vellore, Tamil Nadu, India

Gayathri P

School of Computer Science

and Engineering, Vellore

Institute of Technology (VIT),

Vellore, Tamil Nadu, India

Correspondence:

Gayathri P

School of Computer Science

and Engineering, Vellore

Institute of Technology (VIT),

Vellore, Tamil Nadu, India

Case Study on Graph Processing Using Graph Engine

H. Santhi, G. Gopichand, Gayathri. P

Abstract
We face various challenges in computing for managing and mining large amounts of data. Each day,

data on the World Wide Web keeps on increasing. Maintaining the data and making it accessible to

users is a complex problem. In this paper, we have focused on a particular database management

system, called the Graph Engine, developed by Microsoft. This organizes data in a graph format on

multiple machines, making it a distributed database. Graph Engine is applied on large graph

databases such as the World Wide Web or a large social network. We have highlighted various

modules in the Graph Engine such as partitioning of a billion node graph, subgraph matching

operation, query processing and online community search. We have discussed in detail our

observations on each module and gaps identified. A comparative analysis has been present to state

the uniqueness of our paper.

Keywords: Graph Engine, distributed memory cloud, billion node, subgraph operation, trinity

architecture, query processing

1. Introduction

In the present generation of computing, a large amount of research has been inclined towards

displaying and managing communities in various forms on networking systems. Data

processing in a computing device is the result of efficient query processing and optimization

of data. Data can be present is different types and one of the types is an Abstract Data Type.

This type of data consists of trees, hashes, heaps, graphs and so on. Each of these has its own

particular focal points and detriments. When using real life applications of using an abstract

data type, a graph is the preferred due to its ability to handle large amounts of interconnected

data, to provide a sustainable relationship amongst data and to navigate between nodes in a

constant amount of time [11]. To manage data networks such as the World Wide Web

(WWW) or any social network, a data handling database system was built by Microsoft

called Trinity, later renamed as Graph Engine [7]. This paper focuses on the outline of this

database handling system and the modules it consists such as distributed Graph Engine over

a memory cloud, Trinity file system, partitioning of a billion-node graph and so on.

The rest of the paper is organized in the following way. Section 2 describes literature review.

Section 3 consists of the gaps identified in modules of the Graph Engine, suggestions for

improvement and observations made. Section 4 entails the conclusions that we have

identified.

2. Literature Review

The architecture of the Graph Engine was built upon a cluster of interconnected machines.

For the storage infrastructure, the Graph Engine systematizes the memory into various

available machines. This is called a memory cloud or a distributed memory address space to

maintain large graph systems. The Graph Engine is inclined towards offline analytical

applications and online query processing. It consists of three components that communicate

with one another. They are: clients and libraries, proxies and slaves. The client application

enables the user to interact with the Graph Engine cluster machines. The slaves store the data

and perform specific computations such as message processing. The proxy servers are

different from the slaves in such a way that they only handle message passing to clients from

slaves and vice versa. They are known as the message aggregators. The libraries help the

World Wide Journal of Multidiscip linary Research and Development

~ 81 ~

World Wide Journal of Multidisciplinary Research and Development

clients to communicate with the slaves and proxies through

APIs. The Graph Engine modules consist of a memory

cloud. This enables the data to be hosted on a number of

machines. A key-value pair is created that forms the main

data structure of the whole graph system. This is supported

by a consistent hashing mechanism to locate a particular

key-value pair. An addressing table is linked to the hashing

mechanism to store the given address and locate it on a

machine. Thus, the key-value pair is located [8].

Applications of the real life scenarios and comparative case

studies were explained using complex algorithms. The

problem of overlapping of communities in social networks

was taken and described as a NP-hard problem and

appropriate algorithms for the overlapping community

search by taking certain parameters into account such as the

community density, overlapping awareness and type of

relationship and consistency of the search. Ambiguous

search result problem was solved by taking the two factors

into account to get the most approximate search result.

They were: the ambiguous names degree and the

overlapping communities [1].

The Trinity graph system is an infrastructure which is

spread over a number of machines and proposes a cohesive

memory space for user programs. In this paper, the authors

propose an approach to partition a billion node graph on a

general distributed memory system created on the RAM of

a computing device. They used a multilevel propagation

approach to recursively make the web scale graph smaller

and smaller to create a final segregation of the graph. The

advantages of using this technique are highlighted along

with their complex algorithms. This method is efficient and

effective over large graph systems. The authors conducted

various experiments on real life billion node graphs and

applied their algorithms to partition the graphs. The results

were successful with effective time and space efficiencies

[11].

Managing and mining large graph data has proved of

essential importance in the present day situation. This paper

highlights the challenges posed by a large graph system, the

specific architectural design requirements for different

types of data and its application needs in today’s world

along with various programming models and an insight on

developing patterns and algorithms to curb this problem.

The authors have taken real world examples of the

Facebook Social Graph, US Road Graph and a Web Graph

system by showing the complexity of the data space and

advantages of a distributed memory system on the Graph

Engine built by Microsoft. They have compared a number

of graph systems such as Google’s Pregel and Neo4j to

look for differences and disadvantages [9].

In real life web scale graph database applications, accessing

the stored data is an important aspect. Therefore, path

reachability indexing scheme is an essential part of

obtaining data. The authors have specified certain

parameters to update delete and search a graph database in

an efficient manner to reduce the complexity and get the

desired result. They have provided a detailed description of

the various models of path tree reachability and extraction

of the particular key-value pair. Insights into the given

module using diagrams and algorithms have made it easier

to comprehend. As we obtain an efficient mechanism for

searching for the data, the query processing within the large

graph becomes simpler and resourceful [5].

3. Gaps Identified, Suggestions and Observations

made

The gaps identified are as follows:

 While partitioning the graph, mappings of the graph

and the partitions are stored on different locations. This

causes a delay as any access to a particular vertex of

the graph need to first retrieve the structure and then

access the data. This problem is hard to fix and is

present in almost all distributed memory databases.

 Sometimes partitioning causes duplication of data and

imbalance of distribution onto multiple machines.

Certain machines get a large partition whereas some

get a smaller partition.

 Subgraph matching operation can be very costly if the

graph is stored in an RDBMS or a key-value store as it

would require join operations also. There are also some

exceptions in which certain queries do require join

operations. In such a case, we have to also add the join

algorithm code. Hence, making the source code larger

and harder increasing the computation work by each

machine.

Taking this in notice, many database systems tend to use

the indexing scheme instead of the proposed one.

 Subgraph matching is also based upon a 2-hop index

mechanism [6]. Its complexity is O (n
4
), where n is the

number of vertices. This is a large complexity and thus

not very efficient for large graph databases.

To manage sensitive and important information is

extremely necessary. We have noticed that there was no

reference paper regarding the security systems in Graph

Engine. As this is a distributed system containing sensitive

information, there needs to be a structured security

mechanism to protect the data. Thus, our group suggests

some measures to be taken to protect this system.

 Authentication and authorization to control the number

of valid users.

 Data encryption should be in the following manner: the

user interface should encrypt any inputs by a valid user

and then store it in the graph database. This is to make

sure that information is kept safe and reliable.

 Each system should have a security measure that

checks each input to update the database. If not

validated in a proper format, it may result in cross site

scripting problems or a buffer overrun.

The Graph Engine should have the ability to recover the

information in case of a failure. Thus, we suggest a data

inspecting operation within the Graph System to recover to

a valid state when a system failure occurs. This should be

present for each machine within the network to maintain

data integrity.

Table 1 presents our suggestions for improvement of existing

works.

~ 82 ~

World Wide Journal of Multidisciplinary Research and Development

Table 1: Suggestions for improvement

Modules Reference Papers Suggestions

Billion node partitioning Graph exploration method [8, 11]
A combination of join operations and graph exploration

methodology

Query processing Using Trinity Specification Language [8] Adding a spin lock mechanism for consistency of data

Online overlapping

community search

Hybrid of online community search (OCS) and

online community detection (OCD) [1]
Only the online community search technique

Distributed memory

storage mechanism

Distributed Graph Engine for web scale RDF

data [12]

Simple partitioning of data and storing on machines

connected through efficient message and query processing

Recovery and Backup

mechanism
- Data inspecting operation

Security methods

-
Data encryption, authorization and authentication

Upon proper insight into the Graph Engine, we have come

across various models and implementations of the same.

There have been some observations we would like to place

in through this paper. The Graph Engine is made for the

biggest databases in this world such as the World Wide

Web. Such data cannot be stored in a single machine

because of two reasons. First, it would take a long time to

access data independent of the algorithm used. Second,

there will be a high chance of the machine getting

corrupted as continuous query processing would take place.

An alternative to such disadvantage would be to use

multiple machines and distribute the memory over a cloud.

In this method, the data would be partitioned into various

machines and have a minimal chance of getting degraded.

Our observations on analysis of a billion node graph,

matching sub graphs from the data, memory storage in a

cloud, query processing and online search of overlapping

community are as follows:

3.1 Analysis of billion node graphs

To store the billion node graph into multiple machines, we

will first have to partition it. This requires complex

algorithms. Before Graph Engine, there had been no

accurate and standard way of partitioning billion node

graphs. Converting such graphs in one format to another for

different systems was an extremely tedious and expensive

process. Also, there was no method of using sub graph

matching or efficient query processing technique to split

the graph.

Thus, Multi-Level Propagation technique has been used

along with certain algorithms to implement partitioning of a

graph on a distributed network. This is a Label Propagation

technique. It runs as follows:

 Each vertex is assigned a unique label id by iteration.

 Upon updating, each vertex is assigned the prevalent

label in the locality and this process keeps continuing.

 Process stops when no more changes occur.

 Vertices that have the same label name belong to a

particular partition.

The advantage of this mechanism is that it does not contain

any intermediate step, unlike the indexing scheme which

makes it a lightweight code and results in a more feasible

partitioning algorithm.

However, there are a few disadvantages that come along

with this technique. It is not the most efficient algorithm

used as there would be a number of progressive iterations

could also result in an imbalance of memory storage on

some machines, that is, some machine might contain a very

large partition of the graph whereas the rest would contain

a tiny portion of the graph. As a number of machines are

involved in this process, there tends to be a communication

lag between each step if continuous switching occurs [9].

3.2. Subgraph matching operation

After the partitioning is performed, we have to match the

subgraph to any of the machines to search for any data.

This has been done by the in-memory graph explorations

on a memory cloud [8]. This method does not use any

indexing scheme for the subgraph mechanism to save space

and time. Though it results in loss of performance, it does

become lesser expensive in terms of the join conditions

used with the indexing scheme.

Looking into some details, these are major differences of

the join and graph exploration method. In the join

operation, a number of intermediate steps results in an

increased memory space and further applies to major

complexities and finally joins all intermediary steps to

traverse the graph. On the other hand, the graph exploration

method uses the label ids that were assigned to each vertex

while partitioning the graph. It forms a link from one node

to another to traverse through the graph and produces much

lesser intermediary steps than the join operation [10].

Why do we use a subgraph matching operation in Graph

Engine? The reason is that it uses computations that apply

to the specified vertex, that is, vertex-centric computations

[11]. This is a restrictive model and communication

between vertices is within a fixed set and thus, it uses a

predictable iteration to optimize this operation and hence,

the Graph Engine overcomes the performance loss.

3.3. Memory Storage on a cloud

We know that the data is stored after partitioning on a

number of machines. But what forms to memory cloud?

Each partition is further divided using subgraph operation

and a part of this is stored on a section of the machine’s

primary memory, that is, the RAM [8]. All these are

connected and any message passed or query executed is

transferred through and efficient communication system.

These results in easier accessing of large data stored in bits

and pieces.

Advantages of this system are:

 Since all the machines are interconnected, any update

in data can be initiated easily from any machine.

 Lesser corruption of data and integrity is maintained

 Any data can be accessed by the user even if it is

located on different machines. The Graph Engine user-

interface displays the data as if it is present locally.

~ 83 ~

World Wide Journal of Multidisciplinary Research and Development

3.4. Query Processing

Message passing and query processing is a very essential

part of a database model. An efficient model will lead to

better communication and result in high performance of the

system. Thus, for the Graph Engine, a high level language

was built for data and network communication called the

Trinity Specification Language (TSL) [8].

In a graph database, the communication pattern is

dissimilar to other types of databases, thus, TSL makes this

easier. Here are some of the following characteristics of

TSL:

 It gives a structured interface between the internal and

external models in the DBMS, that is, it gives a

representation how nodes in a graph system are linked

to a relational table.

 It gives an object-oriented data manipulation for the

data present in the memory cloud.

TSL also reproduces fast network communication. As

graph databases are large and it becomes tedious for user to

pass different queries each time for synchronous and

asynchronous protocols, TSL initializes an intuitive way of

passing message programs for any graph computation.

Our observation is that there needs to be a spin lock

mechanism for the same. Spin locks is a mechanism used

for concurrency control, that is, to govern the ability of the

number of processes to access the same key-value pair on

the memory cloud. Therefore, a spin lock mechanism must

guarantee that a particular key-value pair is locked to a

fixed memory position in order to protect the data that the

threads are accessing.

3.5. Online Search of Overlapping Community

In computing terminology, a community is a cluster of

vertices well connected to each other. When we take a real

life social network, it would consist of various

inconsistencies which would make it hard to implement.

Such is an example of the online search of overlapping

community problem. Current algorithms have some

drawbacks:

 They have predetermined criteria to search for a

particular data on a graph. But in a real life application

each node or vertex of a graph might a different

characteristic.

 They cannot search on an evolving framework of data,

that is, regular updating and continuously growing

databases cannot be searched.

 They are not efficient and costly. [12]

Generally some database networks use the overlapping

community detection system just to find out the number of

overlapping communities in a network. Upon research we

have listed out some of the drawbacks of this system:

 It is a tedious process to figure out all the overlapping

communities on a large graph containing billions of

nodes.

 It is hard to support dynamically evolving graph

databases.

To overcome such drawbacks, researchers used the

overlapping community search method. This takes an input

as value of the vertex and outputs the overlapping

communities containing the particular vertex. This provides

a suitable outcome to the user.

Our observation is that this is a unique and efficient method

of searching through a large database for a specific

category, that is, an overlapping community. It is useful

and extremely essential for a social networking database.

Conclusion

Microsoft’s Graph Engine is a very vast topic to research

on and we as a group have made is effort to cover as many

modules as possible. We have listed advantages and

disadvantages of the same and have developed a deep

insight on how to manage and display such large amount of

information. We have done a complete overview on certain

modules such as partitioning of billion node graphs,

subgraph matching operations, memory storage on a cloud,

query processing and online community search. We have

highlighted the gaps identified in the reference papers we

used and some suggestions related to the security measures

and recovery options. Overall, this paper gives an important

insight to an upcoming topic in research, that is, distributed

and parallel computing.

References

1. Cui, W., Xiao, Y., Wang, H., Lu, Y., & Wang, W.

(2013, June). Online search of overlapping

communities. In Proceedings of the 2013 ACM

SIGMOD international conference on Management of

data (pp. 277-288). ACM.

2. J. Baumes, M. Goldberg, and M. Magdon-ismail,

(2008, April). “Effecient identification of overlapping

communities,” in In IEEE International Conference on

Intelligence and Security Informatics (ISI, 2005, pp.

27–36.

3. J. Dean and S. Ghemawat. (2010, March). Mapreduce:

Simplified data processing on large clusters. OSDI ’04,

pages 137–150.

4. Jin, R., Liu, L., Ding, B., & Wang, H. (2011).

Distance-constraint reachability computation in

uncertain graphs. Proceedings of the VLDB

Endowment, 4(9), 551-562.

5. Jin, R., Ruan, N., Xiang, Y., & Wang, H. (2011). Path-

tree: An efficient reachability indexing scheme for

large directed graphs. ACM Transactions on Database

Systems (TODS), 36(1), 7.

6. R. Bramandia, B. Choi, and W. K. Ng. Incremental

maintenance of 2-hop labelling of large graphs. TKDE,

22(5):682–698, 2010.

7. Shao, B., Wang, H., & Li, Y. (2012). The trinity graph

engine. Microsoft Research, 54.

8. Shao, B., Wang, H., & Li, Y. (2013, June). Trinity: A

distributed graph engine on a memory cloud. In

Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data (pp. 505-516).

ACM.

9. Shao, B., Wang, H., & Xiao, Y. (2012, May).

Managing and mining large graphs: systems and

implementations. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of

Data (pp. 589-592). ACM.

10. Sun, Z., Wang, H., Wang, H., Shao, B., & Li, J.

(2012). Efficient subgraph matching on billion node

graphs. Proceedings of the VLDB Endowment, 5(9),

788-799.

~ 84 ~

World Wide Journal of Multidisciplinary Research and Development

11. Wang, L., Xiao, Y., Shao, B., & Wang, H. (2014,

March). How to partition a billion-node graph. In Data

Engineering (ICDE), 2014 IEEE 30th International

Conference on (pp. 568-579). IEEE.

12. Zeng, K., Yang, J., Wang, H., Shao, B., & Wang, Z.

(2013, February). A distributed graph engine for web

scale RDF data. In Proceedings of the VLDB

Endowment (Vol. 6, No. 4, pp. 265-276). VLDB

Endowment.

