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Abstract 
This study aims to design a mathematical cost model for Blockchain Technology-enabled Supply 

Chain System (BT-enabled SCS), which may assist some companies that tend to evaluate the costs of 

BT as the main database in their SC system. We, therefore, identified the cost components of BT-

enabled SCS based on the related literature review. The second purpose is to minimize the costs of 

the designed BT-enabled SCS model through Evolutionary Computation algorithms (CS/ACO/GA) 

as optimization techniques. To generate raw data for the model, the authors revised the Operations 

Research model and Inventory Management model as a mathematical formulation in Pharmaceutical 

Supply Chain. This mathematical formulation helps studies with a limitation of finding real data sets 

generate raw data in healthcare fields. Comparing CS/ACO/GA algorithms, the best solutions for the 

BT-enabled SCS cost model are CS and ACO with the higher Total Ranking Score (TRS) (scored by 

MSE, RMSE, and ROC), followed by GA standing in the second step. The more noteworthy finding 

is that all three algorithms have been able to find the global minimum for the BT-enabled SCS cost 

model with acceptable accuracy obtained from ROC. 

 

Keywords: BT-enabled SCS, Cuckoo Search, Genetic Algorithm, Ant Colony Optimization, 

Blockchain Technology. 

 

1. Introduction 

Cost control is an important practice of identifying and reducing production expenses to 

increase business profits. Blockchain Technology-enabled Supply Chain System (BT-

enabled SCS) promises to provide trustworthy transactions, better-managed operations, and 

traceability, but similar to other emerging technologies, the costs of BT-enabled SCS 

deployment are still largely undefined. BT-enabled SCS is the system using BT to improve 

the transparency, security, durability, and process integrity of SC. Azzi et al. (2019) consider 

that centralized SC systems expose SC to corruption, fraud, and tampering. Blockchain has 

been introduced in SC areas to make the chain more economic, reducing the total costs of the 

system. Implementing blockchain could improve efficiency in logistics and SCs since the 

technology accelerates the transfer of data streams between parties [1]. BT-enabled SC 

reduces the workload and ensures traceability, while increasing efficiency, reducing cost, and 

securing more confidence that the products are genuine and of high quality [2]. Helo and Hao 

believe it is interesting to note that blockchain is well suited to address the challenges of SCs, 

and therefore it is vital to adopt BT, with its features of immutability, transparency, and 

trustworthiness, to provide more visibility and security in the SC [2]. The necessity of 
carrying this study out is to introduce the cost components and the mathematical cost model 

of BT-enabled SCS to some companies that may prefer using BT in the SC system instead of 

their current database systems. Several papers investigate various aspects of SCS in an 

organization or the implementation of BT in a company; but limited research has been 

carried out into modeling the BT-enabled SCS cost problems from a mathematical point of 

view. Therefore, this research helps readers better understand the components and the 

mathematical model for this system.  
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The second purpose of this research is to minimize the total 

costs of the designed mathematical model for the BT-

enabled SCS through Evolutionary Computation (EC) 

algorithms as optimization techniques. To generate the raw 

data for the model, we revised and designed a mathematical 

formulation of the Operations Research (OR) model for 

Pharmaceutical Supply Chain (PSC) and Inventory 

Management model for a single pharmaceutical company 

and a single hospital. Using this formulation as a newly 

designed model, the authors simulated raw data for the BT-

enabled SCS model as there is no real data for our BT-

enabled SCS model. In the next step, we applied Cuckoo 

Search (CS), Genetic Algorithm (GA), and Ant Colony 

Optimization (ACO) algorithms to optimize the main total 

cost model. This research used a score-based ranking 

system called Total Ranking Score (TRS) to determine the 

most reliable predictive algorithms. Our research question 

is which EC algorithms (among three applied algorithms: 

ACO/GA/CS) are the best solution(s) for our designed 

mathematical cost model (BT-enabled SCS), minimizing 

this total cost model. The outline of this article is as 

follows: Section 2 reviews the literature on BT-enabled 

SCS, Private/Public/Hybrid Blockchain, and Evolutionary 

Computation (ACO/GA/CS). Section 3 contains the 

Proposed BT-enabled SCS model, and the next section 

shows Case Study: Healthcare System. The Research 

Results is in the following section and, finally, we draw a 

Conclusion and a recommendation for future studies in 

Section 6. 

 

2. Literature Review 
3. BT-enabled SCS  

SCS works in a total systems approach to manage the entire 

flow of information, materials, and services in satisfying 

customer demand [44,53]. Lambert, Cooper, and Pagh 

(1998) introduce the comprehensive explanation of SCS as 

“the integration of key business processes from end-user 

through original suppliers, which provides product, service, 

and information that add value for customers and other 

stakeholders” [3]. Therefore, SC is an organization's 

network that may have various formats extended from two 

to more levels, one to more suppliers, or one to more 

products [44,60]. Li and Wang mention the network 

structure of SCS for a large-scale production or inventory 

system. BT performs and shares a distributed database of a 

public ledger of all transactions, records, or digital events 

among parties’ participation [4]. The Internet is different 

from BT as the Internet moves information (not value) as 

well as copies of things (not original information) [5]. 

Crosby, et al. also notice BT may play a role as a new 

engine of growth in the digital economy because we 

increasingly use the Internet to conduct digital commerce 

and share our data and life events. To verify ownership of 

an asset and also trace the transaction history, they assert 

that BT can register assets to identify by one or more 

identifiers that are difficult to destroy or replicate. Saberi et 

al. consider that many SC industries pay special attention to 

traceability as it is an urgent requirement and a 

fundamental differentiator (SC industries such as the agri-

food sector, pharmaceutical/medical products, and high-

value goods). They believe BT is the proper response to 

this question that whether the current SC information 

systems can support the information being necessary for the 

timely origin of services and goods. This, according to 

them, results in improving SC transparency, security, 

durability. As the technology accelerates the transfer of 

data streams between parties, Wang et al. (2019) explain 

that BT can improve efficiency in SCS as well [6]. Wang et 

al. continue that BT also can improve inventory 

management, and ultimately reduce waste and cost by 

reducing the time products spend in the transit process. 

Therefore, the benefits of BT for enhancing management of 

the SC include: a) reducing or eliminating fraud and errors, 

b) reducing delays from paperwork, c) improving inventory 

management, d) identifying issues more rapidly, e) 

minimizing courier costs, and f) increasing consumer and 

partner trust [7]. 

 

2.2 Private/Public/Hybrid Blockchain 

Saberi et al. (2018) assert blockchain design can be the 

network players and the rules to maintain the blockchain. A 

blockchain is essentially a distributed database of records, 

or a public ledger of all transactions or digital events that 

have been executed and shared among participating parties 

[4]. Each transaction in the public ledger, according to 

them, is verified by the consensus of a majority of the 

participants in the system. Once entered, information can 

never be erased [4]. There are three types of BT based on 

the technology application: open type (permissionless) or 

public; closed type (permssioned) or private or corporate; 

mixed-type or hybrid, an open–type blockchain that uses 

closed-type platform building technologies to achieve 

consensus [8].  

In a private, unlike in an SC network with known entities 

working to produce and distribute products, the parties 

know each other and there is no anonymity [5]. To 

increases performance and improve scalability in private, 

the number of distributed nodes added blocks to the chain 

is small [9]. Toufaily, Zalan, and Dhaou introduce a 

weakness of private/centralized blockchain that private 

more exposed to fraud risk because the administration and 

system design remain focused with one or few. Private 

blockchain may require different levels of access needs to 

be crafted for different roles of usage permission [10]. Lai 

and Chuen state that approval for access permission for 

participants is necessary meaning that private blockchain 

networks are for members only. Yang et al. (2020) mention 

that there is a very high transaction processing rate with 

very few authorized participants in a private blockchain. 

Therefore, to get the consensus for the network, a shorter 

time is used and more transactions can be processed within 

a second [11]. Private blockchain, according to Yang et al., 

has very strong data privacy as all nodes should agree by 

consensus to change data in a private one.  

On a public blockchain, companies can easily interact with 

each other like on the public Internet, as long as privacy, 

security, scalability, and all other technical challenges 

identified by interviewees are resolved network [9]. Saberi 

et al. (2018) suggest that public blockchain uses 

cryptographic methods to let users enter the network and 

record their transactions, maintaining trust with many 

anonymous users. Without any providing forms of 

identification or asking for permission, public blockchain 

assumes joining or leaving from the blockchain network is 

possible for anyone from the public Internet [10]. On the 

other hand, Yang et al. (2020) highlights the entire node 

must agree on any change in public blockchain as it records 

the same information. Therefore, it takes more time to mine 
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just one block to the blockchain because any change should 

be recorded in all succeeding blocks [11].  

A combination of public and private blockchain is known 

as Hybrid blockchain or Consortium blockchain which has 

a semi-decentralized and semiprivate structure and has a 

controlled user group but works across various 

organizations [12]. To verify the transaction processes, in 

the hybrid system, a named leader is assigned instead of a 

single entity, which is a significant difference of this 

system [11]. In other words, a hybrid network is a kind of 

federated blockchain constituted of the low-trust (public 

blockchain) and the single highly trusted entity model 

(private blockchain) [11]. 

The most obvious differences between public and private 

blockchain can be explained by the type of blockchain 

adopted – permissioned blockchain: the established 

organizations (the private and public sectors) and 

permissionless blockchain in start-ups [9] although they are 

both decentralized and shared among their users to record 

all peer-to-peer transactions [11]. Compared to a private or 

public blockchain, the speed of validation on a public 

blockchain is likely to be slow [11]. Yang et al. also asserts 

in a public blockchain, each of the transactions is open for 

the public to verify. However, to verify and validate 

transactions, only the trusted parties can be presented in the 

network in a private blockchain, according to them. 

Controlling the users in uploading information, according 

to them, is another issue with a public blockchain. For 

instance, there is no way to change sensitive information 

uploaded into the system by anyone in the system [11]. 
 

2.3  Evolutionary Computation: ACO/GA/CS 

Evolutionary Computation (EC) algorithms are 

optimization methods and heuristic in nature [13]. EC uses 

evolutionary principles for automated and parallel problem 

solving (Drugan, 2019; Jong, 2006). In Heuristic methods, 

trial and error are used to search for solutions, but it seems 

EC methods are at a higher level than heuristic methods 

using information and solutions selection to guide the 

search process [14]. Three are the main goals for Modern 

Metaheuristic algorithms to carry out a global search: 

solving problems faster, solving large problems, and 

obtaining robust algorithms [16,54]. These algorithms try 

to find near-optimal solutions as they are a state-of-the-art 

and efficient strategy [15] and to find a solution that is 

“good enough” in a computing time that is “small enough” 

[13]. The obvious efficiency of EC algorithms is that they 

imitate the best features in nature, in which the fittest 

selection in biological systems evolves through natural 

selection over millions of years [16]. There are various EC 

algorithms for optimization problems including Genetic 

Algorithms, Simulated Annealing, Ant Colony 

Optimization, Bat Algorithm, Particle Swarm Optimization, 

Harmony Search, Firefly Algorithm, Flower Pollination 

Algorithm, Cuckoo Search, and so forth [14]. 
 

2.3.1 Ant Colony Optimization (ACO) 

The Ant Colony Optimization (ACO) algorithm came from 

the collective performance of real-life ant colonies [17,56]. 

To solve optimization problems, Colorni, Dorigo, 

Maniezzo, and Trubian (1994) as well as Dorigo and 

Gambardella (1997) proposed the idea of employing a 

colony of simple cooperating agents. The simulation 

approach uses the described behavior of real ant colonies to 

solve these problems with artificial ants, searching the 

solution space, simulating real ants, and searching their 

environment [17]. The next step, according to Nourelfath et 

al., is to adapt ant colonies with the other combinatorial 

optimization problems such as the vehicle routing problem, 

telecommunication networks management, graph coloring, 

constraint satisfaction, and Hamiltonian graphs [18]. 

 

2.3.2 Genetic Algorithm (GA) 

GA algorithms, as a powerful tool, solve search and 

optimization problems based on natural selection 

principles, natural genetics, and evolution [19]. GA 

algorithms, as part of Evolutionary optimization 

techniques, are largely used for engineering problems [20]. 

They introduce three operators as the procedure of GAs: 

selection, crossover, and mutation. GA consists of five 

distinct parts; initialization, fitness assignment, selection, 

crossover, and mutation [19].  

These are five steps to explain the GA process: (a) at each 

step, the GA process selects individuals from the current 

population to play the role of parents and produce the 

children for the next generation; (b) the selection process 

gives preference to the fittest individuals to let them pass 

the quality genes to the next generation; (c) a fitness 

function is used to evaluate the potential solutions and a 

fitter solution is the one with a better fitness value; (d) this 

fitness function can be identical to the objective function; 

(e) a new population of solutions is created using genetic 

operators [21]. Pourrajabian, Dehghan, and Rahgozar 

consider that the mutation operator is employed to avoid 

algorithm converging to local optima, maintaining the 

genetic diversity. 

 

2.3.3 Cuckoo Search (CS) 

Cuckoo Search (CS), as a population-based technique, 

simulates the parasitic and brooding behavior in some 

cuckoo species to solve effectively complex optimization 

problems [22]. Although CS is a quite new nature-inspired 

EC optimization algorithm, engineering applications 

extensively use CS as it is highly efficient in solving 

complex nonlinear problems [23]. CS algorithm has fewer 

key parameters than other similar algorithms and is easy to 

implement [22]. Yang (2014) explains that this algorithm is 

enhanced by the behavior of the so-called Lévy flight of 

some birds (a kind of swarm intelligence algorithm), rather 

than by simple isotropic (standard) random walks. CS can 

explore the search space more efficiently than other 

algorithms using standard Gaussian processes as Lévy 

flights have infinite mean and variance [24]. A possible 

solution in the algorithm is a nest of a cuckoo, and the 

position of the nest is constantly updated by the 

combination of the algorithm with Lévy flight, finding a 

potentially better solution to be a new cuckoo’s nest [22]. 

According to Afshari, Dehkordi, and Akbari (2016), the 

main influence for the development of this algorithm is the 

interesting and different lifestyle as well as egg-laying of a 

cuckoo. This bird can clearly deceive other birds and make 

them participate in its own survival [25]. These cuckoos 

dump some eggs in some nests of host birds: those eggs 

with more similarity to the host bird’s eggs have a better 

chance of growing into a mature cuckoo, and the rest are 

identified and killed by the host bird [26]. 

 

3. Proposed BT-enabled SCS model 

In this section, a mathematical model is proposed to 
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minimize the cost of BT-enabled SCS. It needs to consider 

at least two different cost components to cover the total 

costs of the system. Therefore, the total cost for BT-

enabled SCS (CTotal) includes these two main components: 

Supply Chain System cost (CSCS) and Blockchain 

Implementation cost (CBlockchain): 

 
CTotal = CSCS + CBlockchain                                                 (1) 

3.1 Cost elements of SCS 

Revising the economic model by Belmokaddem and 

Benatek (2012) as well as the model by Li (2014), there are 

four components in our formulation of the Supply Chain 

System cost (CSCS). These components are Production Cost, 

Procurement Cost, Inventory Cost, and Delivery Cost. 

Figure 1 illustrates the structure of the SCS in a healthcare 

system, which is a revised Healthcare SC structure from 

Mustaffa and Potter's (2009) research. 

 

 

 

 
 

Fig. 1: The SCS structure in a healthcare system. 

Therefore, the CSCS can be expressed as follows: 

 

CSCS =  ∑ [𝑖∈𝑁 𝐶𝑖,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑞𝑖  +  𝐶𝑖,𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑟𝑖  + 𝐶𝑖,𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦ℎ𝑖 + 𝐶𝑖,𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑓𝑖]                (2) 

 

Where 𝐶𝑖,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑞𝑖 represents the Production costs 

(𝐶𝑖,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  is the cost of producing one unit of product i; 

qỉ is the order quantity for the ith product), 𝐶𝑖,𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑟𝑖 

is the Procurement costs (𝐶𝑖,𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡  is the supply cost 

of one unit of i; ri is the amount of raw material i that must 

supply per day), 𝐶𝑖,𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦ℎ𝑖 is the Inventory costs 

(𝐶𝑖,𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 is the storage cost of product i; hi is the stock 

level of product i), 𝐶𝑖,𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑓𝑖 is the Delivery costs 

(𝐶𝑖,𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦  is the quantity of finished product i distributed 

per day; fỉ is the distribution cost of one unit of i). 

 

3.2 Cost elements of Blockchain Implementation 

We then designed the mathematical part for the Blockchain 

Implementation cost (CBlockchain) with two components 

including Blockchain Transaction cost (CBT_Transaction) and 

Blockchain Installation cost (CBT_Installation). Identifying the 

available blockchain platforms is the first step for selecting 

a blockchain platform to develop a business solution [27]. 

Various blockchain platforms have been introduced to 

deploy smart contracts and provide enterprise solutions to 

issues in numerous industries [27]. Depending on the 

system requirements of the blockchain application that is 

developed, a suitable blockchain platform should be 

selected [27]. In this study, according to the advantages of 

the Public blockchain in section 2.2, the Public type of 

Blockchain platform is selected for the SCS as a hosting 

platform according to our literature section. To select a 

Blockchain platform, we assumed that the system decides 

to use the platforms available in the market instead of 

designing and developing a Blockchain platform. 

 

CBlockchain = CBT_Transaction + CBT_Installation                   (3) 

 

To measure the Blockchain Transaction cost (CBT Transaction) 

within the network, it seems necessary to use an agreed 

method for transmitting value. There is a transaction fee for 

a blockchain participant who wants to execute a transaction 

[28]. To address this issue, Wood (2014) mentions 

Ethereum is a kind of currency called Ether (ETH) where 

there is a fee for all programmable computation in 

Ethereum. The most popular consensus protocol in the 

public blockchain is Proof-of-Work (PoW), such as in 

Bitcoin and Ethereum [29]. Two parts determine the cost of 

the transaction: gasLimit and gasPrice. To calculate the 

cost of the Ethereum blockchain, Longo et al. state it is 

necessary to do this calculation based on the gas used by a 

transaction.  

Wood introduces gasLimit as a scalar value equal to the 

maximum amount of gas that should be used in executing 

this transaction. Every BT transaction includes a specific 

amount of gas named gasLimit (purchased from the 

sender's account balance) in which any unused gas is 

refunded at the end of the transaction (at the same rate of 

purchase) to the sender's account [30]. It seems necessary 

to evaluate gasPrice for every transaction in the Ethereum 

blockchain if a BT will be used in a real SC context [28]. 

Wood explains gasPrice (a scalar value) is the number of 

Wei to be paid for each unit of gas including all 

computation costs incurred as a result of the execution of 

this transaction. Longo et al. also point out the Ethereum 

blockchain's software defines and hard-codes the gasPrice 

for each operation [30]. A given amount of gas is 

associated with a transaction after submitting a transaction 

[28]. Wood (2017) introduces this calculation used by the 

platform to pay miners: Transaction fee = Total gasUsed × 

gasPrice paid [62,28]. 

 

E × g × 365 + s × Cs                        (4) 
 

E × g is the BT Transaction costs (CBT_Transaction) (E is the 

amount of Ether as gasUsed per day; g is the of gWei to be 

paid for gasUsed (per unit of gas/per day). Wei is the unit 

of ETH typically used to denominate gas prices. We used 

ETH Gas Station to calculate E × g to incentivize 

computation within the network [31,62] (See Figure 2). The 

authors assumed the amount 65000 as gasUsed and 26 and 
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333 gWei as gasPrice to calculate E × g cost through the 

ETH Gas Station website. Based on these ranges, the ETH 

Gas Station proposes the cost of $3.36 to $43.07 per day 

for E × g. 
 

 
 

Fig. 2: Transaction cost by ETH Gas Station [31]. 

 

Longo et al. (2019) define two costs for BT transaction cost 

from a simple ether transaction to the execution of a smart 

contract's function: the gas (the cost of each operation 

performed on the blockchain) and the storage of data on the 

blockchain. s × Cs is the storage cost which is a secured 

cloud-based warehouse to store the actual data off-chain. 

As IBM Cloud came in with the lowest prices across 67 

cloud computing scenarios to beat out Microsoft, Google, 

and AWS [32], we used this service for the storage cost 

part. IBM Cloud website proposes a price of $0.1400 for 

Public outbound bandwidth (USD/GB) with the range of 0 

and 50 TB [33]. The authors, based on the IBM Cloud 

website, assumed $1680 (USD/TB) per year (Cs) for Public 

outbound bandwidth service. s also represents the storage 

size to store the data ranging from 180 TB to 420 TB per 

year. Table 1 represents the parameters and constraints 

(come from variance sources and our imagination) for the 

BT Transaction costs. 
 

Table 1: Parameters and constraints for the BT Transaction costs. 
 

Parameters Explanation Constrains 

Wei The unit of ETH typically used to denominate gas prices --- 

E The amount of Ether as gasUsed 
$3.36 ≤ E × g ≤ $43.07 

g Number of gWei to be paid for gasUsed per day 

s The data storage size 180 TB/yr ≤ s ≤ 420 TB/yr 

Cs Cost storage per year (USD/TB) $1680 

 

The basic mathematical part of the Blockchain Installation 

cost (CBT_Installation) in our model comes from the recent 

research proposed by Gopalakrishnan, Hall, and Behdad 

(2021). CBT_Installation is the cost of utilizing BT for SCS, and 

this cost needs to consider at least four different cost 

elements including a Fixed cost, Onboarding cost, 

Maintenance cost, and Monitoring cost. 

 

cfixed + (conboarding U + cmc + cmo) × avg.(qi)                      (5) 

 

where the initial Fixed cost (cfixed) is associated with the 

utilization of Blockchain; the Onboarding cost (as a 

function of conboarding) is to train suppliers and clients into 

active users of a product or service; the Maintenance cost 

and Monitoring cost are based on the unit Maintenance 

(cmc) and Monitoring (cmo) cost; qi expresses the order of 

products; U is the number of Blockchain users (different 

types of users) based on consensus protocol in the 

Blockchain platform. The Maintenance and Monitoring 

costs occur yearly and contribute to 15–25 percent of the 

project value [67,64]. The third-party services are used for 

parts such as mobile apps, admin and web interfaces, and 

tracking services products [66,64]. Onboarding cost (such 

as onboarding and training) is any expenses and costs 

related to integrating new employees into a company to 

learn and train about BT. We also assumed that SCS uses 

the platforms available in the market. Table 2 illustrates the 

parameters and constraints (come from variance sources 

and our imagination) for the Blockchain Installation cost. 

 

Table 2: Parameters and constraints for the Blockchain Installation cost. 
 

Parameters Explanation Constrains 

cfixed The initial fixed cost per year 860 ≤ cfixed ≤ 1160 

conboarding The Onboarding cost $180 ≤ conboarding ≤ $260 

cmc The unit Maintenance cost 
$25 ≤ cmc + cmo ≤ $45 

cmo The unit Monitoring cost 

U The number of Blockchain users 4 

M Number of products controlled in the Supply Chain Decision variables 122 

qi Order quantity for the ith product (i = 1, 2, 3, . . . , M) 50 ≤ qi ≤ 100  (integer) 

 

3.3 Optimization Function of BT-enabled SCS 

Updating the Eq. (2) by applying the Blockchain costs in 

Eq. (4) and Eq. (5), the objective function (6) is to 

minimize the nonlinear BT-enables SCS costs and can be 

expressed as follows: 
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CTotal = [CSCS] + [CBlockchain] 

CTotal = [CProduction + CProcurement + CInventory + CDelivery] + [CBT_Transaction + CBT_Installation] 

min (∑ [𝑖∈𝑁 𝐶𝑖,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑞𝑖  +  𝐶𝑖,𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑟𝑖  + 𝐶𝑖,𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦ℎ𝑖 + 𝐶𝑖,𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑓𝑖 + 𝐶𝑖,𝐵𝑇_𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛  +  𝐶𝑖,𝐵𝑇_𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛])        (6) 

 

4 Case Study: Healthcare System 

4.1 Model of SC in Healthcare System 

As the BT-enabled SCS model introduced in this study is 

newly designed, there is no specific case study matched 

with its parameters. To generate data for our model, we, 

therefore, revised the OR model for PSC and Inventory 

Management for a single pharmaceutical company and a 

single hospital published by Uthayakumar and Priyan 

(2013).  

A wide range of methodologies that can help healthcare 

systems including hospitals and can significantly improve 

their operations is presented in OR [34]. We deeply 

selected some elements of Model 2, 3, and 7 from 

Uthayakumar and Priyan’s research related to our BT-

enabled SCS cost model. As mentioned before, our model 

contains two different cost components to cover the total 

costs of the system: Supply Chain System (SCS) cost and 

Blockchain Implementation cost. Applying simulation 

technique, this section tries to redesign models for the SCS 

part of our model (to simulate raw data) which contains 

four main elements: Production Cost, Procurement Cost, 

Inventory Cost, and Delivery Cost. Therefore, we present 

the mathematical formulation in healthcare facilities for 

each element (using some parts of models in Uthayakumar 

and Priyan’s paper) to generate raw data, evaluating our 

BT-enabled SCS model, and find the best optimization 

approach in the result section. PSC can be defined as “the 

integration of all activities associated with the flow and 

transformation of drugs from raw materials through to the 

end-user, as well as the associated information flows, 

through improved SC relationships to achieve a sustainable 

competitive advantage” [34,132]. The three main players of 

PSC are producers, purchasers, and pharmaceutical 

providers. After receiving the hospital orders of some 

products (with qi size), the pharmaceutical company, in 

each production cycle, starts to produce the product i with 

the size of nqi, and then send the order in n lots each of size 

qi (i = 1, 2, 3, . . . , M) to the hospital. 

The following model in Eq. (7) shows the elements of the 

Production Cost: the Set-up Cost for all finished products 

in the pharmaceutical company (
𝑠𝑖 𝑑𝑖 

𝑛𝑞𝑖 
), the Production Cost 

for all finished products in the pharmaceutical company 

(𝑑𝑖 𝑝𝑐𝑖 (𝑞𝑖 )), the Screening Cost for all raw materials in the 

pharmaceutical company (
𝑠𝑐𝑖 𝑞𝑤𝑖 𝑑𝑖 

𝑛𝑞𝑖 
), and the Revenue from 

imperfect raw materials in the pharmaceutical company 

 

 (
𝑠𝑑𝑖 avg.(β𝑖 ) 𝑞𝑤𝑖 𝑑𝑖  

𝑛𝑞𝑖 
).  

 

∑ [𝑀
𝑖=1

𝑠𝑖 𝑑𝑖 

𝑛𝑞𝑖 
  + 𝑑𝑖 𝑝𝑐𝑖 (𝑞𝑖 ) + 

𝑠𝑐𝑖 𝑞𝑤𝑖 𝑑𝑖 

𝑛𝑞𝑖 
  −  

𝑠𝑑𝑖 avg.(β𝑖 ) 𝑞𝑤𝑖 𝑑𝑖  

𝑛𝑞𝑖 
]                    (7) 

 

The following function, in Eq. (8), represents the 

Procurement Cost including the Cost Order for all M 

products in the hospital (
𝑑𝑖 

𝑞𝑖 
 𝑎𝑖), the Cost Order for all raw 

materials in the pharmaceutical company (
𝑎𝑤𝑖 𝑑𝑖 

𝑛𝑞𝑖 
), and the 

Labor Cost for order handling and receipt for all raw 

materials in the pharmaceutical company (
𝑑𝑖 𝑞𝑤𝑖 𝑣𝑤𝑖  

𝑛𝑞𝑖 
). 

 

∑ [𝑀
𝑖=1

𝑑𝑖 

𝑞𝑖 
 𝑎𝑖 +

𝑎𝑤𝑖 𝑑𝑖 

𝑛𝑞𝑖 
  +

𝑑𝑖 𝑞𝑤𝑖 𝑣𝑤𝑖  

𝑛𝑞𝑖 
]                                   (8) 

 

The following cost function called Inventory Cost in Eq. 

(9) for a product i involves: the Holding Cost for all M 

products in the hospital (
ℎ𝑏𝑖 𝑞𝑖 

2
), the Holding Cost for all 

finished products in the pharmaceutical company 

(
ℎ𝑣𝑖 𝑞𝑖 

2
[𝑛(1 − 

𝑑𝑖 

𝑝𝑖 
 ) − 1 + 

2𝑑𝑖 

𝑝𝑖 
]), the Holding Cost for 

perfect raw materials in the pharmaceutical company 

(
𝑑𝑖 (1 − avg.(β𝑖 )) 𝑞𝑤𝑖 ℎ𝑤𝑖 

𝑛 𝑞𝑖 
), the Holding Cost for imperfect raw 

materials in the pharmaceutical company 

(
ℎ𝑤𝑖  avg.(β𝑖 ) 𝑞𝑤𝑖 𝑞𝑤𝑖 𝑑𝑖  

𝑟𝑠𝑖 𝑛 𝑞𝑖 
), the Safety Stock Cost for all M 

products in the hospital ((ℎ𝑏𝑖 +𝑝ℎ𝑖 I𝑐 ) 𝑘𝑖 𝜎𝑖 √L), the Expiry 

Cost for all M products in the hospital ( 𝑑𝑖 (𝑧𝑖 𝑐𝑑𝑖 (L)  +
𝑣𝑖 )), and the Expiry Cost for all finished products in the 

pharmaceutical company (𝑞𝑖 𝑑𝑐𝑖 𝑐𝑑𝑐𝑖 [(
𝑑𝑖 

𝑝𝑖 
+ (𝑛 −  1)) −

𝑛𝑑𝑖 

2𝑝𝑖 
]).  

 

∑ [
ℎ𝑏𝑖 𝑞𝑖 

2
 +𝑀

𝑖=1
ℎ𝑣𝑖 𝑞𝑖 

2
[𝑛(1 −  

𝑑𝑖 

𝑝𝑖 
 ) − 1 + 

2𝑑𝑖 

𝑝𝑖 
] + 

𝑑𝑖 (1 − avg.(β𝑖 )) 𝑞𝑤𝑖 ℎ𝑤𝑖 

𝑛 𝑞𝑖 
 + 

ℎ𝑤𝑖  avg.(β𝑖 ) 𝑞𝑤𝑖 𝑞𝑤𝑖 𝑑𝑖  

𝑟𝑠𝑖 𝑛 𝑞𝑖 
 + (ℎ𝑏𝑖 +𝑝ℎ𝑖 I𝑐 ) 𝑘𝑖 𝜎𝑖 √L 

+ 𝑑𝑖 (𝑧𝑖 𝑐𝑑𝑖 (L)  + 𝑣𝑖 ) + 𝑞𝑖 𝑑𝑐𝑖 𝑐𝑑𝑐𝑖 [(
𝑑𝑖 

𝑝𝑖 
+ (𝑛 −  1)) −

𝑛𝑑𝑖 

2𝑝𝑖 
]]       (9) 

 

The Delivery Cost function (Eq. (10)) for a product i has 

also these elements: the Transportation and Labor Cost for 

all M products in the hospital (
𝑑𝑖 

𝑞𝑖 
 F) and the Transportation 

Cost for all raw materials in the pharmaceutical company 

(
F𝑤 𝑑𝑖 

𝑛𝑞𝑖 
). 

 

∑ [𝑀
𝑖=1

𝑑𝑖 

𝑞𝑖 
 F + 

F𝑤 𝑑𝑖 

𝑛𝑞𝑖 
]                                                   (10) 

 

It is assumed that the hospital and the pharmaceutical company, in practice, pay a fixed transportation cost of Fw 
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and F respectively.  

The parameters and constraints (come from variance 

sources and our imagination) for the Blockchain 

Installation cost are shown in Table 3. 
 

Table 3. Parameters and constraints for the Blockchain Installation cost. 
 

Parameters Explanation Constrains 

M Number of products controlled in the Supply Chain Decision variables 35 

qi Order quantity for the ith product per year (i = 1, 2, 3, . . . , M) 50 ≤ qi ≤ 100 (integer) 

di Average demand for the ith product per year 45 ≤ di ≤ 75 (integer) 

L Lead time (days) for all products (days) 12 

n 
Total number of lots of M products delivered by the pharmaceutical company to the hospital per 

year 
50 ≤ n ≤ 100 (integer) 

zi Expiry rate for the ith product at the hospital 1.04% ≤ zi ≤ 4.21% 

hbi Holding cost per year excluding interest charges for the ith product 45 ≤ hbi ≤ 75 

ai Ordering cost per order for the ith product 65 ≤ ai ≤ 85 

Ic Interest charge paid per $ in stock to the bank for all products per year Ic = 0.03 

phi Purchase price per unit for the ith product 5 ≤ phi ≤ 10 

ki The safety factor for a product i 
25 ≤ ki ≤ 35      

(integer) 

σi√L where σi is the standard deviation for the demand per year for the ith product 1% ≤ σi ≤ 100% 

F Fixed transportation cost for all products per delivery per year 4500 

hvi Holding cost for the ith finished product per year 20 ≤ hvi ≤ 40 

si Set-up cost for the ith finished product per year 12 ≤ si ≤ 25 

pi Production rate for the ith finished produce 45 ≤ di ≤ pi ≤ 75 

pci Production cost for a product i per year 80 ≤ pci ≤ 120 

vi A labor cost for a product i per year 145 ≤ vi ≤ 195 

dci Expiration rate for the ith finished product 1.2%  ≤ dci ≤ 9.21% 

cdci Cost of expiry for the ith finished product 25 ≤ cdci ≤ 55 

cdi(L) Cost of expiry of a linear function of the lead time 2.6 ≤ cdi(L) ≤ 5.3 

qwi Replenishment quantity for the ith raw material for production 20 ≤ qwi ≤ 27 

awi Ordering cost for the ith raw material 15 ≤ awi ≤ 25 

hwi Holding cost per year for the ith raw material 10 ≤ hwi ≤ 15 

Fw Fixed transportation cost for all raw materials per year 3500 

vwi Labor cost for order handling and receipt for the ith raw material per year 16 ≤ vwi ≤ 28 

βi Defect rate for the ith raw material in an order lot, βi ∈ [0, 1], a random variable 0 ≤ βi ≤ 1 

sci Screening cost per year for the ith raw material 8 ≤ sci ≤ 13 

sdi Imperfect cost per year for the ith raw material 11 ≤ sdi ≤ 15 

rsi Screening rate per year for the ith raw material 1.04% ≤ rsi ≤ 7.2% 

fi Storage space for the ith product 0.2 ≤ fi ≤ 0.6 

W Total space available for the M products (m2) 750 

 

4.2 Data simulation 

The authors used Python software to simulate raw data for 

our main BT-enabled SCS model. Then, the following 

equations (formulas) were turned into a program in Python: 

CBT_Transaction (4), CBT_Installation (5), CProduction (7), CProcurement 

(8), CInventory (9), and CDelivery (10). Table 4 illustrates 100 

series of the simulated raw data for all six parts of the BT-

enabled SCS model, as well as the total cost which is the 

added values of these parts. 

 

Table 4: The simulated raw data. 
 

No. CInventory CProduction CProcurement CDelivery CBT_Installation CBT_Transaction CTotal 

1 34205632 16237091.8 2195 126074.7 626075.9 69665.5 51266734.8 

2 30357880.1 15845852 2255.8 124662.2 516547 72833.7 46920030.9 

3 29933928.7 15531782.3 2190 121330.2 393267.6 80529.6 46063028.4 

4 32670868.7 14744994.3 2402.5 135365.9 608133.1 63095 48224859.4 

5 28002373 14803589.5 2439.8 135819.9 494836.4 60739.1 43499797.7 

6 30977577.9 16652002.2 2392.2 134673.6 443365.7 67517.2 48277528.9 

7 31995018.8 14577183.9 2396.7 134074.1 392981.6 64410.6 47166065.7 

8 30459533.7 15496064.7 2360.7 130421.2 358494 81618.7 46528493 

9 34056545.6 16311475 2309.6 128984.6 651725.2 61472 51212512 

10 30625708.4 15581742.8 2360.9 132063.1 532966.4 79484.8 46954326.5 

11 31719090.9 15874779.4 2261.3 125837.4 433030.8 74109.6 48229109.5 

12 30662660.7 14874716.6 2377.5 133099.1 375081 67564.4 46115499.4 

13 31667434.9 14608197.4 2509.6 141334.4 604832.5 58502.5 47082811.4 

14 30928928.9 14641305.6 2488.4 134759.1 348223.8 71313.9 46127019.8 

15 27843036.9 16763910.4 2243.8 125604.9 671907 82445.9 45489148.9 

16 28107666.6 15141932.4 2323.6 130532.1 499639.6 80121.3 43962215.6 

17 31127976.4 14797422.1 2253.9 127416 476840.2 71717.2 46603625.8 

18 26396159 16647587.5 2328.9 129259 654216.4 63852.6 43893403.5 

19 29239131.8 16219659.8 2326.7 127447.6 572750.9 81698.2 46243015 
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20 32097476.7 15003667 2298.5 129400.2 627322.8 77526.2 47937691.5 

21 27388614 15111947.7 2462.7 139478 707911.8 75526.5 43425940.5 

22 25865617.3 14731218.5 2567.8 142081.8 474579.2 57752 41273816.7 

23 28129379.5 15075683.3 2493.2 135721.1 670929.8 66633.7 44080840.7 

24 30489457.9 16091938.2 2423.6 136101.7 690577.6 62644.2 47473143.2 

25 26933370.1 13747712.9 2490.2 136637.8 645330.4 54824 41520365.3 

26 28911628.1 15040243.1 2435.9 135176.7 474735.2 67537.3 44631756.3 

27 25463762.2 15771536.8 2459.2 136056.9 586608 62841 42023264.1 

28 32441669.1 15618856.5 2234.6 126544.9 478327.2 61344.1 48728976.3 

29 33566323.1 15095432.1 2323.7 129341.9 316771.4 69333.2 49179525.4 

30 33934607.1 16534362.4 2246.1 125258.2 387109.8 68895.3 51052478.9 

31 28209557.1 14805188.1 2637.2 147349.7 479269.8 63357.8 43707359.7 

32 29705452.8 14339504.7 2206.7 122619.2 558445.5 76121.4 44804350.3 

33 36580291.6 16181546.1 2392.6 133699.5 660288.8 77088.9 53635307.4 

34 28112507.9 15358455.9 2460.4 138993 710751.4 61218.5 44384387.1 

35 30621108.3 15102483.5 2484.4 139704 353043.2 55889.1 46274712.6 

36 26250290.9 14342230.6 2495.9 137424.9 594539.8 69308.6 41396290.7 

37 30451447 14811299.7 2486.4 136616.3 499045.9 67946.7 45968842 

38 30102521.8 16119401.4 2213.7 122253.8 466893.3 79908.6 46893192.7 

39 28212776.4 15072332.9 2367.4 134776.6 420176.5 72916 43915345.7 

40 29756054 15209552.4 2268.4 128393.7 352996.8 63421.5 45512686.8 

41 35511865.4 17023416.7 2220.3 123564.8 586474.6 84587 53332128.8 

42 32742466.6 15502586.7 2346.5 131198.5 698460.6 73913 49150971.9 

43 28041675 15520558 2379.5 131017.8 686771.6 73667 44456068.8 

44 27868224.9 14538944.1 2361.8 132353 473121.9 62478.4 43077484.1 

45 25138267.1 14498531.8 2418.8 133340.5 429997.7 73025.2 40275581 

46 33903273.2 14843685.1 2190.1 122936.1 657740.7 75601 49605426.4 

47 32658182.7 16528934.5 2435.9 135122.7 455216.6 75259.4 49855151.8 

48 29316115.2 14479719.4 2355.1 129284.7 330160 76900.3 44334534.7 

49 29638526.6 15003849.6 2498.6 139762.5 448294.2 68760.5 45301692 

50 39431225.1 15607043.6 2346.5 130057.5 541215.2 72307.5 55784195.4 

51 31770224.5 15876658.5 2416 133934.1 704207.6 75721.5 48563162.3 

52 30196007.2 14726152.6 2459.3 136025.2 462498 64719.3 45587861.6 

53 30530882.3 14846816.7 2372.6 131849.1 323393.5 69171.6 45904485.8 

54 31211679.7 15003477.7 2425.1 133985 529138.2 68095.1 46948800.9 

55 31269236.8 15863408.1 2296.8 127144.2 700439.8 63846.3 48026372.1 

56 32604149.8 15641553.6 2324.7 128006.1 325478.6 67069.7 48768582.5 

57 32234013.6 16102422.6 2365.3 128372.1 574306.4 80467.7 49121947.7 

58 29129877.2 15961793.5 2422.6 134983.7 321547 73399.6 45624023.5 

59 28221603.6 15457885.9 2376.6 132111.4 347047.6 77520.4 44238545.5 

60 27212213.3 15724100.6 2439.3 135402 566283.1 72732.1 43713170.3 

61 29870533.5 15971459.4 2256.8 128006.4 620724.3 66427.4 46659407.8 

62 26672049.5 16131430.2 2385.6 133646.6 664295.8 81136.3 43684944 

63 33021546.7 17175247.7 2233.3 124059.1 380208.2 84083 50787378 

64 28750663.5 17275414.5 2251.3 127511.4 363001.8 71930.4 46590772.9 

65 27844381.4 14302035.9 2684.4 145798.4 557882.4 53156.5 42905939 

66 30480853.3 14425754 2413.9 133978.9 661035.4 74608 45778643.5 

67 26493526.9 14552405.1 2432.6 134991.1 554266.2 71181.3 41808803.3 

68 31404442.3 15193556.7 2171.2 122453 565541.4 72736.7 47360901.2 

69 35103962 14753769 2491.3 138429.4 603369.5 61108.5 50663129.7 

70 29964223 15373950.7 2363.5 131837.7 466420.8 78620.6 46017416.3 

71 31702820.7 15606633.1 2386.4 132534.8 630582.3 58976.3 48133933.6 

72 33677043.6 14660117.7 2309.2 128910.4 485745.3 76091.7 49030217.9 

73 32997265.9 16121673.2 2379.8 129836.5 573036.2 63660.9 49887852.5 

74 34291083.4 16491803.9 2301.4 128558.7 458485 68307.7 51440540.1 

75 30380474.3 15636928.5 2334.8 131246.8 535224.2 74939.6 46761148.1 

76 28025073.9 16577959.8 2209.8 124666.6 641002.8 80443.3 45451356.2 

77 34019579.6 15299169.4 2384.9 130724.3 534574.8 66855.1 50053288.1 

78 30057766 15109794.1 2550.2 139937.9 529526.8 57744.9 45897319.9 

79 26378002.7 15056295.6 2423.8 132090 448880.2 78585 42096277.2 

80 32608045.9 15274089.5 2393.2 131587.9 669156 66599.4 48751871.8 

81 32892334.8 14772104.2 2341.7 130339.3 699368.4 73155.8 48569644.2 

82 28619045.2 14930728.6 2304.5 128353.1 398739 66638.8 44145809.1 

83 34773199.3 15403756.1 2340.9 131420.1 569824.2 63052 50943592.7 

84 32404360.5 14630619.5 2345.6 132779.6 351720.9 66038 47587864.1 

85 32592666.7 15651688.3 2416.2 135802.4 667067.8 78175 49127816.5 

86 35076072.9 16434465.6 2350 131117.7 497422 62368.1 52203796.3 

87 34654944.2 15344798.7 2363.3 128813.5 569373.3 65059.6 50765352.6 
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88 31828350.6 15289168 2461.8 135044 620357 58050.3 47933431.8 

89 35330852.7 15157112.2 2192.1 123594 526796.6 78525.9 51219073.5 

90 27668419.9 15804944.6 2464.4 134198.8 359864.8 59100.5 44028992.9 

91 30694869.4 14799528.6 2303 129747.7 400770.4 69272.1 46096491.4 

92 25309801.9 14252068.8 2363.8 130939.6 410981.2 64948.3 40171103.4 

93 31046568.6 16204955.4 2353.5 130186.5 586550.6 69458 48040072.5 

94 29334682.1 15410773.8 2507 141074.3 622363.2 55116.5 45566516.8 

95 25397027.8 16246241.5 2475.4 136051.2 546832.5 81396.5 42410024.8 

96 31220403.8 15553609.4 2313.5 130399.1 342061.6 58052 47306839.5 

97 31589283.6 15509291 2349.1 130248.6 481801 80611.2 47793584.6 

98 30067878.8 15531262.5 2251.3 125644 354213.2 61303.3 46142553.2 

99 32174028.5 15879305.6 2184.2 123438.8 501891.6 78208.3 48759057 

100 29001793.5 16148213 2283.9 129633.7 426225.2 64571.8 45772721.3 

 

5 Results 

In this section, we used three EC algorithms (CS, GA, and 

ACO) to find the minimum total cost for our BT-enabled 

SCS model, using the simulated data, as our case study in 

section 3.5. Therefore, to optimize the parameters of the 

model, Eq. (11), which is the revised version of Eq. (6), 

calculated total costs for all 100 series of simulated data 

(Table 4) through three mentioned EC algorithms coded in 

Matlab. The objective function of EC algorithms is Eq. (11) 

which should be minimized: 

 

min (∑ [𝑖∈𝑁 𝐶𝑖,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛Q +  𝐶𝑖,𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡R + 𝐶𝑖,𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦H + 𝐶𝑖,𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦F + C𝑖,𝐵𝑇_𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛  +  C𝑖,𝐵𝑇_𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛]) (11) 

0 ≤  i ≤ 100                                                                          (12) 

R ≤ F                                                                                  (13) 

Q ≤ F                                                                                   (14) 

F + R ≤ H                                                                             (15) 

Q + R ≤ H                                                                            (16) 

 

Where 𝐶𝑖,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛Q represents the Production costs in the 

pharmaceutical company (𝐶𝑖,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  is the cost of 

producing all products in the ith series of data; Q is the 

order quantity of a hospital for each series of data); 

𝐶𝑖,𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡R is the Procurement costs (𝐶𝑖,𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡 is 

the cost order for all products in the hospital in the ith series 

of data; R is the amount of all products in the hospital for 

each series of data); 𝐶𝑖,𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦H is the Inventory costs in 

both hospital and pharmaceutical companies (𝐶𝑖,𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 is 

the storage cost of all products in the ith series of data; H is 

the stock level of each series of data); 𝐶𝑖,𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦F is the 

Delivery costs to both hospital and pharmaceutical 

companies (𝐶𝑖,𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦  is the distribution cost to both 

hospital and pharmaceutical companies in the ith series of 

data; F is the quantity of all finished products for each 

series of data); and BT cost (Ci,BT_Transaction) and Blockchain 

Installation cost (Ci,BT_Installation) are the costs for the ith 

series of data. The authors, based on constraints, assumed 

the following parameters as constants with these values 

before running the selected algorithms: R = 30; F = 35; Q = 

25; H = 75. 

The performance of the applied algorithms is evaluated by 

some well-known accuracy criteria, namely the Mean 

Square Error (MSE), Root Mean Square Error (RMSE), R2, 

and Area Under the ROC Curve (AUC-ROC or simply 

AUROC). The MSE was defined as the objective function 

to measure the performance error after each try. A code 

written by Matlab was used for the optimization procedure, 

and the maximum number of iterations is set to 2000 for all 

three algorithms. The reason behind evaluating various 

criteria is that the problem with MSE and RMSE, not even 

getting deep into the details, stems from the fact that they 

are just based on an error assessment, while the models 

should be treated holistically based on their all capabilities 

[35]. To compare the declining trend of the error, the 

convergence curves of training error of all three algorithms 

(CS, GA, and ACO) are presented in Figure 3. The 

convergence curve of both GA and ACO remained steady 

on the MSE of around 0.09 after iteration 1000. However, 

CS shows an MSE of around 0.075 after iteration 1000, 

which has the minimum training error and better results 

compared to the other algorithms even in the low number 

of iteration. The baseline, in this figure, also illustrates the 

minimum training error as an indicator for comparison. 

 

 
 

Fig. 3: The convergence curves of training error for CS, GA, and ACO. 
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Figure 4 illustrates the cost minimization results for all 

three algorithms. As depicted in this figure, there is a 

significant difference in the convergence rates between 

ACO and the rest functions. Algorithms CS and GA 

converge similarly, slightly cheaper than ACO. Now it is 

seen that ACO has not been able to find the global 

minimum in 2000 iterations, but CS has reached a global 

minimum at the 800th iteration. 
 

 
 

Fig. 4: Comparison of convergence curves for the cost function of CS, GA, and ACO. 

 

Figure 5 shows the comparison of running time results 

(seconds) over 2000 iterations for CS, GA, and ACO 

algorithms. As it can be seen in the figure, CS has been 

converged with a high speed and in the lower number of 

iteration, less than 900, can attain a better solution 

compared to others. ACO and GA also take longer to find a 

solution. 

 

 
 

Fig. 5: Running time comparison (seconds) of CS, GA, and ACO. 

 

The performance of the applied algorithms is evaluated by 

some criteria, namely MSE, RMSE, Error Mean, and Error 

St.D. in Figure 6. The simulated data were randomly 

examined via 70:30 partitioned data sets where a testing 

dataset was 70% for training the models and the remaining 

30% was used for the validation 

purpose. 
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Fig. 6: The results were obtained for 1- CS, (b) 2- GA, and 3- ACO in which (a, c, d) and (b, e, f) were allocated to training and testing 

phases respectively. 

 

The combination of an ANFIS model and a NARX 

structure called the ANFIS–NARX method provide a 

powerful system to create an accurate and transparent 

identification method, which is the combination of 

universal approximation capability, transparency of fuzzy 

inference system, and training ability of neural networks 

with an adaptive and predictive potential of NARX 

structure [36]. They assert that the main reason for ANFIS–

NARX selection is its interpretability, transparency, and 

readability as well as better estimation accuracy that are 

important characteristics playing a significant role in the 

performance of the system and its superiority. We, 

therefore, used a combination of ANFIS-NARX with three 

EC algorithms called CS-ANFIS–NARX, GA-ANFIS–

NARX, and ACO-ANFIS–NARX to compare the accuracy. 

After training ANFIS–NARX by EC algorithms, the 

Receiver Operating Characteristic (ROC) curves for testing 

predictions of the three algorithms were plotted in Figure 7. 

To assess the performance of algorithms, the results are 

analyzed, and the prediction accuracy of the employed 

ensembles is evaluated by ROC. The ROC curve is a 

common method to determine the accuracy of a diagnostic 

test, and it is considered as a graphical representation of the 

trade-off between the false-negative (X-axis) and false 

positive (Y-axis) rates for every possible cut-off value [35]. 

The Area Under the ROC Curve (AUC-ROC or simply 

AUROC) represents the prediction value of an algorithm 

(and the accuracy of the prediction) characterized by its 

ability to compare quantitatively between various ROC 

curves and estimate the true positive and negative events. 

This value summarizes the corresponding ROC curve into a 

single value between 0 and 1. According to these figures, 

all of the obtained ROCs in the testing phase show a high 

accuracy (>80%) for the EC-ANFIS-NARX. In detail, the 

highest accuracy, among three algorithms, for predicting 

(83.9 % accuracy) was obtained by the ACO-ANFIS-

NARX, followed by the CS-ANFIS–NARX 83.3 %), and 

the GA-ANFIS-NARX (81.9 %). Part (d), as the Total 

Average for all algorithms, illustrates the accuracy which is 

higher than the accuracy of the three algorithms to produce 

the reasonable global minimum outputs for the BT-enabled 

SCS cost model. The parameter sets used in CS, GA, and 

ACO are also compared in Table 5. 

 

 
 

Fig. 7: The ROC curves were plotted for the testing dataset and obtained from the ensembles of (a) CS-ANFIS-NARX, (b) GA-ANFIS-

NARX, and (c) ACO-ANFIS-NARX. 
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The results of the optimization for three algorithms are 

summarized in Table 5. There are two approaches to train 

and test the data set and then to evaluate the used model 

through CS, GA, and ACO algorithms. In both Ensemble 

and Network approaches, the results illustrate the ranking 

score in both training and testing phases for ROC are 

similar, showing a good accuracy of the used model. ACO 

has the better accuracy (ROC) in both approaches and 

phases, and GA stands in the third level. Therefore, all 

three algorithms have an acceptable accuracy obtained 

from ROC to perform consistently in both 

approaches/phases and reach the global minimum for the 

BT-enabled SCS cost model. MSE in both approaches and 

phases indicates the minimum amount in CS except in the 

testing phase of the Network approach where it has the 

maximum amount. The table denotes that while the CS in 

both phases of the Ensemble approached reached the lowest 

RMSE, ACO kept decreasing the RMSE in Network 

approach in both phases. Having a look at MSEs and 

RMSEs values in the training phase indicates that CS is 

genuinely doing better than other approaches in learning 

the pattern. All obtained results from MSEs and RMSEs 

show a good capability of the used models for predicting 

the unseen costs. To determine the most reliable predictive 

algorithms, a score-based ranking system called Total 

Ranking Score (TRS) is finally used [37]. In this procedure, 

each model receives a score based on the calculated MSE, 

RMSE, and ROC in both approaches and phases. 

Eventually, the ranking position of each model is allocated 

to the summation of all acquired scores states [37]. In TRS, 

the lowest MSE and RMSE receive the highest scores and 

the highest ROC has the highest score (and vice versa). The 

overall results of this study show that both CS and ACO 

algorithms have performed better than the compared 

algorithm and achieved the first position in terms of all 

criteria with a TRS of 27, followed by GA with a TRS of 

18. 

 

Table 5: The developed ranking system based on MSE, RMSE, and ROC criteria. 
 

Algorithms 

Ensemble medels Network results 

TRS Rank Training phase Testing phase Training phase Testing phase 

MSE RMSE ROC MSE RMSE ROC MSE RMSE ROC MSE RMSE ROC 

CS 0.086 0.294 0.833 0.08 0.284 0.833 0.075 0.275 0.835 0.069 0.277 0.830   

GA 0.088 0.297 0.818 0.081 0.285 0.819 0.077 0.278 0.819 0.065 0.276 0.818   

ACO 0.087 0.295 0.841 0.084 0.29 0.839 0.078 0.269 0.840 0.066 0.275 0.839   

 

Ranking 

score 

CS 3 3 2 3 3 2 3 2 2 1 1 2 27 1 

GA 1 1 1 2 2 1 2 1 1 3 2 1 18 2 

ACO 2 2 3 1 1 3 1 3 3 2 3 3 27 1 

 

6 Conclusion 

This paper introduces the cost components of BT-enabled 

SCS including the Production costs (in the pharmaceutical 

company), Procurement costs, Inventory costs (in both 

hospital and pharmaceutical company), Delivery costs (to 

both hospital and pharmaceutical company), Blockchain 

Transaction cost (gasUsed and gasPrice), and Blockchain 

Installation cost (Fixed cost, Onboarding cost, Maintenance 

cost, and Monitoring cost). To evaluate the total costs of 

the system, these components are useful for companies and 

organizations that tend to use Public BT as the main 

database in their SC system. Another advantage of this 

paper is to model the mathematical formulation for the BT-

enabled SCS based on the mentioned components. The 

simulated raw data for the main BT-enabled SCS model is 

another output for this research, which comes from the 

designed mathematical formulation in healthcare facilities 

(the OR model for PSC and Inventory Management for a 

single pharmaceutical company and a single hospital). This 

mathematical formulation helps other studies that have a 

limitation of finding real data generate raw data in a 

healthcare field for their research. According to Yang 

(2014), there are many optimization algorithms in the 

literature and no single algorithm is suitable for all 

problems.  

This paper found out that both CS and ACO algorithms 

fulfill the BT-enabled SCS cost model with the higher TRS 

(including MES, RMSE, and ROC) than the GA. 

Compared with other metaheuristic algorithms, CS seems 

to be more generic and robust for some optimization 

problems [16]. The results also show GA, based on TRS, 

stands in the second step for this case. While the ROC of 

ACO is higher than others, CS comes in the second level, 

followed by GA. The more interesting finding is that all 

three applied algorithms produce reasonable global 

minimum outputs for the BT-enabled SCS cost model. This 

means that our cost model can fulfill all three mentioned 

algorithms as the accuracy of the three algorithms to 

produce the reasonable global minimum outputs for the 

BT-enabled SCS cost model seems acceptable. According 

to reaching the reasonable global minimum outputs for the 

BT-enabled SCS cost model by the three algorithms, we 

also find out that the designed mathematical formulation in 

healthcare facilities is able to give us the reliable simulated 

dataset as it ends up with the high ROCs and low 

MESs/RMSEs in the main model.  

The authors suggest examining this mathematical model 

with a private or hybrid BT system for future research. This 

results in changing some parts and components of the 

Blockchain Implementation cost (these components in our 

case are the Blockchain Transaction cost and the 

Blockchain Installation cost). In this regard, the future 

study will be able to compare the costs of this study with 

the new one to show which direction has the lowest cost. 

One remaining question is to examine this model using our 

simulated data with some other metaheuristics algorithms 

to identify and compare it with our three results of CS, 

ACO, and GA. Therefore, readership can understand which 

algorithm is more suitable for the mentioned model. Last 

but not least, it is needed to investigate the performance of 

the BT-enabled SCS cost model in real problems after 

proving in test cost functions. 

 

Reference 

1. Y. Wang, M. Singgih, J. Wang and M. Rit, "Making 

sense of blockchain technology: How will it transform 

supply chains?" International Journal of Production 

Economics, vol. 211, p. 221–236, 2019.  



 

~ 39 ~ 

World Wide Journal of Multidisciplinary Research and Development 
 

2. P. Helo and Y. Hao, "Blockchains in operations and 

supply chains: A model and reference 

implementation," Computers & Industrial Engineering, 

vol. 136, 2019.  

3. R. Manzini, M. Gamberi, E. Gebennini and A. 

Regattieri, "An integrated approach to the design and 

management of a supply chain system," Int J Adv 

Manuf Technol, vol. 37, p. 625–640, 2008.  

4. M. Crosby, Nachiappan, P. Pattanayak, S. Verma and 

V. Kalyanaraman, "BlockChain Technology: Beyond 

Bitcoin," Applied Innovation Review, no. 2, 2016.  

5. S. Saberi, M. Kouhizadeh, J. Sarkis and L. Shen, 

"Blockchain technology and its relationships to 

sustainable supply chain management," International 

Journal of Production Research, 2018.  

6. D. Bedell, "Landmark Trade Deal Uses Blockchain 

Technology," 2016. [Online]. Available: 

https://www.gfmag.com/magazine/october-

2016/landmark-trade-deal-uses-blockchain-technology. 

7. K. A. Clauson, E. A. Breeden, C. Davidson and T. K. 

Mackey, "Leveraging Blockchain Technology to 

Enhance Supply Chain Management in Healthcare: An 

exploration of challenges and opportunities in the 

health supply chain," Blockchain in Healthcare Today, 

vol. 1, pp. 1-12, 2018.  

8. Y. Mesengiser and N. Miloslavskaya, "Problems of 

Using Redactable Blockchain Technology," Procedia 

Computer Science, vol. 190, pp. 582-589, 2021.  

9. E. Toufaily, T. Zalan and S. B. Dhaou, "A framework 

of blockchain technology adoption: An investigation of 

challenges and expected value," Information & 

Management, vol. 58, no. 3, 2121.  

10. R. Lai and D. L. K. Chuen, "Chapter 7 - Blockchain – 

From Public to Private," in Handbook of Blockchain, 

Digital Finance, and Inclusion, Volume 2, London, 

Elsevier Inc., 2018, pp. 145-177. 

11. R. Yang, R. Wakefield, S. Lyu, S. Jayasuriya, F. Han, 

X. Yi, X. Yang, G. Amarasinghe and S. Chen, "Public 

and private blockchain in construction business 

process and information integration," Automation in 

Construction, vol. 118, 2020.  

12. C. Komalavalli, D. Saxena and C. Laroiya, "Chapter 

14 - Overview of Blockchain Technology Concepts," 

Handbook of Research on Blockchain Technology, pp. 

349-371, 2020.  

13. F. Glover and K. Sörensen, "Metaheuristics," 

Scholarpedia, vol. 10, no. 4, 2015.  

14. X.-S. Yang, "Cuckoo Search and Firefly Algorithm: 

Overview and Analysis," in Cuckoo Search and Firefly 

Algorithm, vol. 516, Switzerland, Studies in 

Computational Intelligence, 2014.  

15. A.Telikani, A. H. Gandomi and A. Shahbahrami, "A 

survey of evolutionary computation for association 

rule mining," Information Sciences, 2020.  

16. H. Gandomi, X.-S. Yang and A. H. Alavi, "Cuckoo 

search algorithm: a metaheuristic approach to solve 

structural optimization problems," Engineering with 

Computers, vol. 29, pp. 17-35, 2013.  

17. M. Nourelfath, N. Nahas and B. Montreuil, "Coupling 

ant colony optimization and the extended great deluge 

algorithm for the discrete facility layout problem," 

Engineering Optimization, vol. 39, no. 8, p. 953–968, 

2007.  

 

18. Bullnheimer, R. F. Hartl and C. Strauss, "Applying the 

ANT System to the Vehicle Routing Problem," Meta-

Heuristics, pp. 285-296, 1999.  

19. M. Safaei, H. Rezayan, P. Zeaiean Firouzabadi and J. 

Sadidi, "Optimization of species distribution models 

using a genetic algorithm for simulating climate 

change effects on Zagros forests in Iran," Ecological 

Informatics, vol. 63, 2021.  

20. Pourrajabian, M. Dehghan and S. Rahgozar, "Genetic 

algorithms for the design and optimization of 

horizontal axis wind turbine (HAWT) blades: A 

continuous approach or a binary one?" Sustainable 

Energy Technologies and Assessments, vol. 44, 2021.  

21. Fahimnia, H. Davarzani and A. Eshragh, "Planning of 

complex supply chains: A performance comparison of 

three meta-heuristic algorithms," Computers and 

Operations Research, vol. 89, p. 241–252, 2018.  

22. P.-C. Song, J.-S. Pan and S.-C. Chu, "A parallel 

compact cuckoo search algorithm for three-

dimensional path planning," Applied Soft Computing, 

vol. 94, 2020.  

23. Tsipianitis and Y. Tsompanakis, "Improved Cuckoo 

Search algorithmic variants for constrained nonlinear 

optimization," Advances in Engineering Software, vol. 

149, 2020.  

24. X.-S. Yang, "Cuckoo Search and Firefly Algorithm: 

Overview and Analysis," in Cuckoo Search and Firefly 

Algorithm, vol. 516, Switzerland, Studies in 

Computational Intelligence, 2014.  

25. M. H. Afshari, M. N. Dehkordi and M. Akbari, 

"Association rule hiding using cuckoo optimization 

algorithm," Expert Systems with Applications, vol. 64, 

pp. 340-351, 2016.  

26. M. Bahmani, A. GhasemiNejad, F. Nazari Robati and 

N. Amani Zarin, "A novel approach to forecast global 

CO2 emission using Bat and Cuckoo optimization 

algorithms," MethodsX, vol. 7, 2020.  

27. S. Nanayakkara, M. Rodrigo, S. Perera, G. 

Weerasuriya and A. A. Hijazi, "A methodology for 

selection of a Blockchain platform to develop an 

enterprise system," Journal of Industrial Information 

Integration, vol. 23, 2121.  

28. F. Longo, L. Nicoletti, A. Padovano, G. d'Atri and M. 

Forte, "Blockchain-enabled supply chain: An 

experimental study," Computers & Industrial 

Engineering, vol. 136, p. 57–69, 2019.  

29. X. Wang, W. iNi, X. Zha, G. Yu, R. P. Liu, N. 

Georgalas and A. Reeves, "Capacity analysis of public 

blockchain," Computer Communications, vol. 177, pp. 

112-124, 2021.  

30. G. Wood, "Ethereum: A Secure Decentralised 

Generalised Transaction Ledger," Ethereum project 

yellow paper, 2019.  

31. "ETH Gas Station," 2021. [Online]. Available: 

https://ethgasstation.info/calculatorTxV.php. 

32. M. Fork, "Cloud Vendor Costs: IBM Has Lowest, 

AWS Remains Pricey," 2020. [Online]. Available: 

https://www.ibm.com/cloud/blog/ibm-has-lowest-

cloud-vendor-costs. 

33. IBM, "IBM Cloud," 2021. [Online]. Available: 

https://cloud.ibm.com/objectstorage/create#pricing. 

34. R. Uthayakumar and S. Priyan, "Pharmaceutical 

supply chain and inventory management strategies: 

Optimization for a pharmaceutical company and a 



 

~ 40 ~ 

World Wide Journal of Multidisciplinary Research and Development 
 

hospital," Operations Research for Health Care, p. 52–

64, 2013.  

35. S. V. Razavi Termeh, A. Kornejady, H. R. 

Pourghasemi and S. Keesstra, "Flood susceptibility 

mapping using novel ensembles of adaptive neuro 

fuzzy inference system and metaheuristic algorithms," 

Science of The Total Environment, vol. 615, pp. 438-

451, 2018.  

36. M. Annabestani and N. Naghavi, "Nonlinear 

identification of IPMC actuators based on ANFIS–

NARX paradigm," Sensors and Actuators A: Physical, 

vol. 209, pp. 140-148, 2014.  

37. H. Moayedi, M. Mehrabi, D. T. Bui, B. Pradhan and L. 

K. Foong, "Fuzzy-metaheuristic ensembles for spatial 

assessment of forest fire susceptibility," Journal of 

Environmental Management, vol. 260, 2020.  

38. G. R. Raidl, "A Unified View on Hybrid 

Metaheuristics," in Hybrid Metaheuristics. HM 2006. 

Lecture Notes in Computer Science, vol. 4030, F. 

Almeida, M. J. B. Aguilera, A. Roli and M. Sampels, 

Eds., Berlin, Springer, 2006, pp. 1-12. 

39. Holzinger, "Introduction to Machine Learning & 

Knowledge Extraction (MAKE)," Machine Learning & 

Knowledge Extraction, vol. 1, no. 1, pp. 1-20, 2019.  

40. Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," 

Nature, vol. 521, p. 436–444, 2015.  

41. McCue, "Identification, Characterization, and 

Modeling," in Data Mining and Predictive Analysis: 

Intelligence Gathering and Crime Analysis, 

Butterworth-Heinemann, 2015, pp. 137-155. 

42. M. Talabis, R. McPherson, I. Miyamoto and J. Martin, 

"Analytics Defined," in Information Security 

Analytics: Finding Security Insights, Patterns, and 

Anomalies in Big Data, Syngress, 2014, pp. 1-12. 

43. G. Shobha and S. Rangaswamy, "Machine Learning," 

in Computational Analysis and Understanding of 

Natural Languages: Principles, Methods and 

Applications, vol. 38, V. N. Gudivada and C. Rao, 

Eds., Elsevier, 2018, pp. 197-228. 

44. X. Li and Q. Wang, "Coordination mechanisms of 

supply chain systems," European Journal of 

Operational Research, vol. 179, p. 1–16, 2007.  

45. Tapscott and D. Tapscott, "How Blockchain Is 

Changing Finance," Harvard Business Review, 2017.  

46. M. M. Drugan, "Reinforcement learning versus 

evolutionary computation: A survey on hybrid 

algorithms," Swarm and Evolutionary Computation 

BASE DATA, vol. 44, pp. 228-246, 2019.  

47. Colorni, M. Dorigo, V. Maniezzo and M. Trubian, 

"Ant system for job-shop scheduling," JORBEL-

Belgian J. Operat. Res. Stat. Comput. Sci., vol. 34, no. 

1, p. 39–53, 1994.  

48. El Naqa and M. Murphy, "What Is Machine 

Learning?" in Machine Learning in Radiation 

Oncology, I. El Naqa, R. Li and M. J. Murphy, Eds., 

Springer, 2015, pp. 3-11. 

49. W. T. d. Junior, J. A. B. Montevechi, R. d. C. Miranda, 

M. L. M. d. Oliveira and A. T. Campos, "Shop floor 

simulation optimization using machine learning to 

improve parallel metaheuristics," Expert Systems with 

Applications, vol. 150, no. 15, 2020.  

50. R. S. Sutton and A. G. Barto, Reinforcement Learning: 

An Introduction, 2nd ed., London: MIT Press, 2015.  

 

51. F. Chan and H. Chan, "The future trend on system-

wide modelling in supply chain studies," Int J Adv 

Manuf Technol, vol. 25, no. 7-8, p. 820–832, 2005.  

52. Lambert, M. Cooper and J. Pagh, "Supply chain 

management: implementation issues and research 

opportunities," Int J Logist Manag, vol. 9, no. 2, p. 1–

20, 1998.  

53. R. B. Chase and N. J. Aquilano, Production and 

Operations Management: Manufacturing and Services, 

8 ed., Irwin/McGraw-Hill, 1998, p. 889. 

54. E.-G. Talbi, Metaheuristics: From Design to 

Implementation, vol. 74, John Wiley & Sons, 2009, p. 

624. 

55. A. D. Jong, Evolutionary Computation: A Unified 

Approach, illustrated ed., MIT Press, 2006, p. 256. 

56. Deneubourg and J. Pasteels, "Probabilistic behaviour 

in ants: A strategy of errors?" Journal of Theoretical 

Biology, vol. 105, no. 2, pp. 259-271, 1983.  

57. Kubat, An Introduction to Machine Learning, Springer, 

Cham, 2017.  

58. T. Wuest, D. Weimer, C. Irgens and K.-D. Thoben, 

"Machine learning in manufacturing: advantages, 

challenges, and applications," Production & 
Manufacturing Research, vol. 4, no. 1, pp. 23-45, 2016.  

59. Dorigo and L. Gambardella, "Ant colony system: a 

cooperative learning approach to the traveling 

salesman problem," IEEE Trans. Evolution. Comput., 

vol. 1, no. 1, p. 53–66, 1997.  

60. W. L. Maxwell and J. A. Muckstadt, "Establishing 

Consistent and Realistic Reorder Intervals in 

Production-Distribution Systems," Operations 

Research, vol. 33, no. 6, pp. 1316-1341, 1985.  

61. C. Li, "An analytical method for cost analysis in multi-

stage supply chains: A stochastic network model 

approach," Applied Mathematical Modelling, vol. 38, 

no. 11–12, pp. 2819-2836, 2014.  

62. Jabbar and S. Dani, "Investigating the link between 

transaction and computational costs in a blockchain 

environment," International Journal of Production 

Research, vol. 58, no. 11, p. 3423–3436, 2020.  

63. G. Wood, "Ethereum: A Secure Decentralised 

Generalised Transaction Ledger," Ethereum project 

yellow paper, 2014.  

64. P. K. Gopalakrishnan, J. Hall and S. Behdad, "Cost 

analysis and optimization of Blockchain-based solid 

waste management traceability system," Waste 

Management, vol. 120, pp. 594-607, 2021.  

65. "Leeway," 2021. [Online]. Available: 

https://www.getleeway.com/en/pricing. 

66. "LeewayHertz," 2021b. [Online]. Available: 

https://leewayhertz.outgrow.us/Blockchain-Cost-

Calculator. 

67. "LeewayHertz," 2021a. [Online]. Available: 

https://www.leewayhertz.com/cost-of-blockchain-

implementation/. 

68. Belmokaddem and O. Benatek, "Mathematical and 

Economical Modeling of Supply Chain, Case Study: 

Dairy RIO - Algeria," Journal of social and economic 

statistics, vol. 1, no. 1, 2012.  

69. Garg, "A Comparison between Memetic algorithm and 

Genetic algorithm forthe cryptanalysis of Simplified 

Data Encryption Standard algorithm," International 

Journal of Network Security & Its Applications, vol. 1, 

no. 1, pp. 34-42, 2009.  



 

~ 41 ~ 

World Wide Journal of Multidisciplinary Research and Development 
 

70. T. Ito and M. R. Salleh, "A blackboard-based 

negotiation for collaborative supply chain system," 

Journal of Materials Processing Technology, vol. 107, 

p. 398±403, 2000.  

71. V. Gopalakrishna-Remani, J. R. Brown, M. Shanker 

and M. Hu, "An information supply chain system view 

for managing rare infectious diseases: The need to 

improve timeliness," Information & Management, vol. 

55, p. 215–223, 2018.  

72. Sahin and E. Robinson, "Flow coordination and 

information sharing in supply chains: review, 

implications, and directions for future research," Decis 

Sci, vol. 33, no. 4, p. 505–536, 2002.  

73. C. Jiang and Z. Sheng, "Case-based reinforcement 

learning for dynamic inventory control in a multi-agent 

supply-chain system," Expert Systems with 

Applications, vol. 36, p. 6520–6526, 2009.  

74. H.-M. Chi, O. K. Ersoy, H. Moskowitz and J. Ward, 

"Modeling," and optimizing a vendor managed 

replenishment system using machine learning and 

genetic algorithms, vol. 180, no. 1, p. 174–193, 2007.  

75. W.-Y. Liang and C.-C. Huang, "Agent-based demand 

forecast in multiechelon supply chain," Decision 

Support Systems, vol. 42, p. 390–407, 2006.  

76. K. Moinzadeh, "A multi-echelon inventory system 

with information exchange," Management Science, 

vol. 48, no. 3, p. 414–426, 2002.  

77. Glover, "Future Paths for Integer Programming and 

Links to Artificial Intelligence," Computers & 

Operations Research, vol. 13, no. 5, pp. 533-549, 1986.  

78. K. Devika, A. Jafarian and V. Nourbakhsh, "Designing 

a sustainable closed-loop supply chain network based 

on triple bottom line approach: A comparison of 

metaheuristics hybridization techniques," European 

Journal of Operational Research, vol. 235, p. 594–615, 

2014.  

79. J. Parejo, J. Racero, F. Guerrero, T. Kwok and K. 

Smith, "FOM: A Framework for Metaheuristic 

Optimization," in Computational Science - ICCS 2003, 

4 ed., P. M. Sloot, D. Abramson, A. V. Bogdanov, J. J. 

Dongarra, A. Y. Zomaya and Y. E. Gorbachev, Eds., 

Springer Science & Business Media, 2003, pp. 886-

895. 

80. S. Voß, S. Martello, I. H. Osman and C. Roucairol, 

Eds., Meta-Heuristics: Advances and Trends in Local 

Search Paradigms for Optimization, New York: 

Springer Science & Business Media, LLC, 2012, p. 511. 

81. M. Petersen, N. Hackius and B. von See, "Mapping the 

sea of opportunities: Blockchain in supply chain and 

logistics," it - Information Technology, vol. 60, no. 5-

6, p. 263–271, 2018.  

82. Lapinskaitė and J. Kuckailytė, "The Impact of Supply 

Chain Cost on the Price of the Final Product," 

Business, ManageMent and education, vol. 12, no. 1, 

p. 109–126, 2014.  

83. Establish and H. Davis, "Logistics Cost and Service 

2008 Report," CSCMP 2008, Denver, 2008. 

84. J. Vogt and P. W. C. de Wit, Business Logistics 

Management, New York: Oxford University Press, 

2007, p. 392. 

85. Sadler, Logistics and Supply Chain Integration, Los 

Angeles, London, New Delphi, Singapore: SAGE 

Publications, 2007, p. 288. 

 

86. S. Chopra and P. Meindl, Supply Chain Management, 

New Jersey: Prentice Hall, 2007, p. 557. 

87. T. Vierasu and M. Balasescu, "Supply chain 

components," Bulletin of the Transilvania. University 

of Brasov.Economic Sciences.Series V, vol. 4, no. 53, 

pp. 73-78, 2011.  

88. Holzinger, "Introduction to MAchine Learning & 

Knowledge Extraction (MAKE)," Machine Learning & 

Knowledge Extraction, vol. 1, no. 1, pp. 1-20, 2019.  

89. M. Weigelt, A. Mayr, J. Seefried, P. Heisler and F. 

Jörg, "Conceptual design of an intelligent ultrasonic 

crimping process using machine learning algorithms," 

Procedia Manufacturing, vol. 17, pp. 78-85, 2018.  

90. B. J. Erickson, P. Korfiatis, Z. Akkus and T. L. Kline, 

"Machine Learning for Medical Imaging," 

RadioGraphics, vol. 37, no. 2, p. 505–515, 2017.  

91. D. Goldberg and J. H. Holland, "Genetic algorithms 

and machine learning," Machine Learning, vol. 3, no. 

2, p. 95–99, 1988.  

92. R. Abujamra and D. Randall, "Chapter Five - 

Blockchain applications in healthcare and the 

opportunities and the advancements due to the new 

information technology framework," Advances in 

Computers, vol. 115, pp. 141-154, 2019.  

93. Rosenblatt, Principles of Neurodynamics: Perceptrons 

and the Theory of Brain Mechanisms, Washington, 

DC: Spartan Books, 1962.  

94. B. Widrow and M. E. Hoff, Adaptive switching 

circuits, New York: WESCON Convention Record 

Part IV, 1960, pp. 96-104. 

95. S. C. Yusta, "Different metaheuristic strategies to solve 

the feature selection problem," Pattern Recognition 

Letters, vol. 30, p. 525–534, 2009.  

96. Brownlee, Clever Algorithms: Nature-inspired 

Programming Recipes, LuLu, 2011, p. 438. 

97. U. A. Badawi and M. K. S. Alsmadi, "A Hybrid 

Memetic Algorithm (Genetic Algorithm and Great 

Deluge Local Search) With Back-Propagation 

Classifier for Fish Recognition," International Journal 

of Computer Science Issues, vol. 10, no. 2, pp. 348-

356, 2013.  

98. N. Nahas, A. Khatab, D. Ait-Kadi and M. Nourelfath, 

"Extended great deluge algorithm for the imperfect 

preventive maintenance optimization of multi-state 

systems," Reliability Engineering and System Safety, 

vol. 93, p. 1658–1672, 2008.  

99. M. Nadipally, "Optimization of Methods for Image-

Texture Segmentation Using Ant Colony 

Optimization," in Intelligent Data Analysis for 

Biomedical Applications, Elsevier Inc., 2019, pp. 21-47. 

100. B. Liu, "Supervised Learning," in Data-Centric 

Systems and Applications, M. Carey and S. Ceri, Eds., 

Berlin, Heidelberg, Springer, 2011, pp. 63-132. 

101. Wittek, Quantum Machine Learning: What Quantum 

Computing Means to Data Mining, Academic Press, 

2014.  

102. B. C. Love, "Comparing supervised and unsupervised 

category learning," Psychonomic Bulletin & Review, 

vol. 9, p. 829–835, 2002.  

103. B. Mosbah and T.-M. Dao, "Optimimization of Group 

Scheduling Using Simulation with the Meta-Heuristic 

Extended Great Deluge (EGD) Approach," IEEE, 

2010.  

 



 

~ 42 ~ 

World Wide Journal of Multidisciplinary Research and Development 
 

104. Dueck, "New Optimization Heuristics: The Great 

Deluge Algorithm and the Record-to-Record Travel," 

Journal of Computational Physics, vol. 104, no. 1, pp. 

86-92, 1993.  

105. M. Dorigo and L. Gambardella, "Ant colony system: a 

cooperative learning approach to the traveling 

salesman problem," IEEE Trans. Evolution. Comput., 

vol. 1, no. 1, p. 53–66, 1997a.  

106. Y. Rubinstein, "Optimization of computer simulation 

models with rare events," European Journal of 

Operational Research, vol. 99, no. 1, pp. 89-112, 1997.  

107. M.-C. Chiu and G. E. Okudan, "An Investigation of 

Product Modularity and Supply Chain Performance at 

the Product Design Stage," International Design 

Engineering Technical Conferences & Computers and 

Information in Engineering Conference, pp. 681-689, 

2011.  

108. Tönnissen and F. Teuteberg, "Analysing the impact of 

blockchain-technology for operations and supply chain 

management: An explanatory model drawn from 

multiple case studies," International Journal of 

Information Management, vol. 52, 2020.  

109. N. Kshetri, "1 Blockchain’s roles in meeting key 

supply chain management objectives," International 

Journal of Information Management, vol. 39, pp. 80-

89, 2018.  

110. F. Wamba and M. M. Queiroz, "Blockchain in the 

operations and supply chain management: Benefits, 

challenges and future research opportunities," 

International Journal of Information Management, vol. 

52, 2020.  

111. C. G. Schmidt and S. M. Wagner, "Blockchain and 

supply chain relations: A transaction cost theory 

perspective," Journal of Purchasing and Supply 

Management, vol. 25, no. 4, 2019.  

112. V. Venkatesh, K. Kang, B. Wang, R. Y. Zhong and A. 

Zhang, "System architecture for blockchain based 

transparency of supply chain social sustainability," 

Robotics and Computer Integrated Manufacturing, vol. 

63, 2020.  

113. S. Kamble, A. Gunasekaran and R. Sharma, "Modeling 

the blockchain enabled traceability in agriculture 

supply chain," International Journal of Information 

Management, vol. 52, 2020.  

114. G. Perboli, S. Musso and M. Rosano, "Blockchain in 

Logistics and Supply Chain: A Lean Approach for 

Designing Real-World Use Cases," IEEE Access, vol. 

6, pp. 62018-62028, 2018.  

115. M. Imran, C. Kang and M. B. Ramzan, "Medicine 

supply chain model for an integrated healthcare system 

with uncertain product complaints," Journal of 

Manufacturing Systems, vol. 46, p. 13–28, 2018.  

116. Lucchese, A. Marino and L. Ranieri, "Minimization of 

the Logistic Costs in Healthcare supply chain: a hybrid 

model Healthcare supply chain: a hybrid model," 

Procedia Manufacturing, vol. 42, pp. 76-83, 2020.  

117. Z. Miao and K. Xu, "Modeling and simulation of lean 

supply chain with the consideration of delivery 

consolidation," Key Engineering Materials, Vols. 467-

469, pp. 853-858, 2011.  

118. G. Tripathi, M. A. Ahad and S. Paiva, "S2HS- A 

blockchain based approach for smart healthcare 

system," Healthcare, vol. 8, no. 1, 2020.  

 

119. R. Azzi, R. K. Chamoun and M. Sokhn, "The power of 

a blockchain-based supply chain," Computers & 

Industrial Engineering, vol. 135, p. 582–592, 2019.  

120. W. F. Whyte, Learning from the Field: A Guide from 

Experience, CA: Sage: Beverly, 1984.  

121. Bhatnagar, Textbook of Supply Chain Management, 

New Delhi: Word-Press, 2009, p. 188. 

122. Rushton, P. Croucher and P. Baker, Eds., The 

Handbook of Logistics and Distribution Management, 

4th ed., London: Kogan Page Publishers, 2014, p. 665. 

123. Y. Song, F. Zhang and C. Liu, "The risk of block chain 

financial market based on particle swarm 

optimization," Journal of Computational and Applied 

Mathematics, vol. 370, 2020.  

124. W. Gao and C. Su, "Analysis of Earnings Forecast of 

Blockchain Financial Products based on Particle 

Swarm Optimization," Journal of Computational and 

Applied Mathematics, vol. 372, 2020.  

125. Z. Wang, T. Wang, H. Hu, J. Gong, X. Ren and Q. 

Xiao, "Blockchain-based framework for improving 

supply chain traceability and information sharing in 

precast construction," Automation in Construction, vol. 

111, 2020.  

126. Treiblmaier, "The impact of the blockchain on the 

supply chain: a theory-based research framework and a 

call for action," Supply Chain Management: An 

International Journal, vol. 23, no. 6, pp. 545-559, 2018.  

127. W. Waseem, M. Sulaiman, S. Islam, P. Kumam, R. 

Nawaz, M. Asif Zahoor Raja, M. Farooq and M. 

Shoaib, "A study of changes in temperature profile of 

porous fin model using cuckoo search algorithm," 

Alexandria Engineering Journal, vol. 59, no. 1, pp. 11-

24, 2020.  

128. A. d. Moura Meneses, P. V. d. Silva, F. N. Nast, L. M. 

Araujo and R. Schirru, "Application of Cuckoo Search 

algorithm to Loading Pattern Optimization problems," 

Annals of Nuclear Energy, vol. 139, 2020.  

129. A. d. M. Meneses, P. V. da Silva, F. N. Nast, L. M. 

Araujo and R. Schirru, "Application of Cuckoo Search 

algorithm to Loading Pattern Optimization problems," 

Annals of Nuclear Energy, vol. 139, 2020.  

130. Pourrajabian, M. Dehghan and S. Rahgozar, "Genetic 

algorithms for the design and optimization of 

horizontal axis wind turbine (HAWT) blades: A 

continuous approach or a binary one?" Sustainable 

Energy Technologies and Assessments, vol. 44, 2021.  

131. R. B. Handfield and E. L. Nichols, Introduction to 

supply chain management, New Jersey: Prentice Hall, 

1999.  

132. N. H. Mustaffa and A. Potter, "Healthcare supply chain 

management in Malaysia: a case study," Supply Chain 

Management, vol. 14, no. 3, pp. 234-243, 2009. 


