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Abstract 
In this paper, the notions of cubic AT-ideals and cubic AT-subalgebras in AT-algebras are introduced 

and several properties are investigated. The image and inverse image of them in AT-algebras are 

defined and studied. 
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1. Introduction 

K. Is´eki and S. Tanaka ([5]) studied ideals and congruences of BCK-algebras. S. M. 

Mostafa and et al. ([1],[9]) were introduced a new algebraic structure which is called KUS-

algebras and investigated some related properties. The concept of a fuzzy set, was introduced 

by L.A. Zadeh [6]. O.G. Xi [8] applied the concept of fuzzy set to BCK-algebras and gave 

some of its properties. Y. B. Jun and et al. [10] Were introduced the notion of cubic ideals in 

BCK-algebras, and they discussed some related properties of it. In ([3]), Areej Tawfeeq 

Hameed and et al. introduced the notion of cubic KUS-ideals of KUS-algebra and they were 

studied the homomorphic image and inverse image of cubic KUS-ideals. In this paper, we 

introduce the notion of cubic AT-ideals of AT-algebra and we study the homomorphic image 

and inverse image of cubic AT-ideals of AT-algebra. 

 

2. Preliminaries 

In this section, we give some basic definitions and preliminaries proprieties of AT-ideals and 

fuzzy AT-ideals in AT-algebra such that we include some elementary aspects that are 

necessary for this paper. 

 

Definition 2.1[2]. An AT-algebra is a nonempty set X with a constant (0) and a binary 

operation (*) satisfying the following axioms: for all x, y, zX, 

(i) (x*y)*((y*z)*(x*z))=0,  

(ii) 0* x =x, 

(iii) x* 0 =0. 

In X, we can define a binary relation (≤) by: x ≤ y if and only if, y * x = 0.   

 
Example 2.2 [2].Let X = {0, 1, 2, 3, 4} in which (*) is defined by the following table: 

 
* 0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 2 3 4 

2 0 1 0 3 3 

3 0 0 2 0 2 

4 0 0 0 0 0 

 

It is easy to show that (X ;*, 0) is an AT-algebra.
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Proposition 2.3 [2]. In any AT-algebra (X ;*, 0), the 

following properties holds: for all x, y, z X; 

a) z * z = 0, 

b) x = 0 *(0*x), 

c) z*(x *z) = 0, 

d) y * ((y* z) * z ) = 0, 

e) x * y = 0 implies that x * 0 = y * 0,  
f) 0*x=0*y implies that x=y.  
 

Proposition 2.4[2]. In any AT-algebra (X ;*, 0), the 

following properties holds: for all x, y, z X; 

a) x  y implies that y ∗  z  x ∗ z, 
b) x  y implies that z ∗  x  z ∗ y, 
c) x ∗  y  z imply z ∗  y  x 

d) (y ∗z) ∗(x ∗z) ≤ x ∗y, 

e) z ∗  x  z ∗ y implies that x ≤ y( left cancellation law). 

 

Definition 2.5[2]. A nonempty subset S of an AT-algebra 

(X ;∗, 0)is called an AT-subalgebra of AT-algebra X if for 

all x, y  S, then x ∗ y  S. 

 

Definition 2.6[2]. A nonempty subset I of an AT-algebra 

(X ;∗, 0)is called an AT-ideal of AT-algebra X if it satisfies 

the following conditions: for all x, y, z  X. 

AT1) 0  I ; 

AT2) x ∗  (y ∗ z)  I and y  I imply x ∗ z I.  

 

Definition 2.7[6]. Let X be a nonempty set, a fuzzy subsetμ 

in X is a function 

μ : X → [0,1]. 

 

Definition 2.8[7]. Let X be a set and μ be a fuzzy subset of 

X, for t [0,1], the set  

μ t={x X μ(x) ≥ t}is called a level subset of μ.  

 

Definition 2.9[2]. Let (X ;*, 0) be an AT-algebra. A fuzzy 

set μ in X is called a fuzzy AT-subalgebra of X if for all x, 

y  X, then μ (x y)  min { μ (x), μ (y)}. 

 

Definition 2.10[2]. Let (X ;*, 0) be an AT-algebra. A fuzzy 

set μ in X is called a fuzzy AT-ideal of X if it satisfies the 

following conditions: for all x, y and z  X, 

(AT1)μ (0) μ (x). 

(AT2)μ (x z) min { μ (x*(y z)),μ (y)}. 

 

Definition 2.11[4]. Let (X; , 0) and (Y; `,0`) 

benonempty sets.  The mapping f : (X; ,0) → (Y; `,0`) 

is called a homomorphism if it satisfies
f

(x y) =
f

(x)

`
f

 (y), for all, y X. The set {xX
f

 (x) = 0'} is called 

the kernel of 
f

and is denoted by ker
f

. 

 

Definition 2.12[4]. Let 
f

 : (X; ,0) →(Y; ',0') be a 

mapping from the set X to a set Y. If μis a fuzzy subset of 

X, then the fuzzy subset f( ) in Y defined by:  

 



 




otherwise

yxfXxyfifyfxx
yf

0

})(,{)()}(:)(sup{
))((

11 


 
is said to be the image of μ under f. 

 

Similarly if β is a fuzzy subset of Y, then the fuzzy subset μ 

= (β f) in X, ( i.e the fuzzy subset defined by μ (x) = 

β(f(x)) for all x X) is called the pre-image of βunder f. 

 

Theorem 2.13[2]. Let f: (X; ,0) → (Y; `,0`) be a 

homomorphism of AT-algebras, then : 

(F1)
f  (0) = 0'.  

(F2) If S is an AT-subalgebra of X, then f  (S) is an AT-

subalgebra in Y, where f is onto. 

(F3) If B is an AT-subalgebra in Y, then 
1f  (B) is an AT-

subalgebra in X.  

(F4) If I is an AT-ideal of X, then f  (I) is an AT-ideal in 

Y, where f is onto. 

(F5) If J is an AT- ideal in Y, then 
1f  (J) is an AT-ideal 

in X.  

(F6) f  is injective if and only if, ker f  = {0}. 

 

Now, we will recall the concept of interval-valued fuzzy 

subsets.  

 

Remark 2.14[3, 10].An interval number is �̃� = [ 𝑎−, 𝑎+], 
where 0 ≤ 𝑎−≤ 𝑎+≤ 1. Let I be a closed unit interval, (i.e., I 

= [0, 1]).  Let D[0, 1] denote the family of all closed 

subintervals ofI = [0, 1], that is, D[0, 1] = { �̃� =
[ 𝑎−, 𝑎+]𝑎−≤ 𝑎+, for 𝑎−,𝑎+∈ I}.  

Now, we define what is known as refined minimum 

(briefly, rmin) of two element in D [0,1].  

Definition 2.15[3,10]. We also define the symbols (≽), 

(≼), (=),"rmin " and "rmax " in case of two elements in 

D[0, 1].  Consider two interval numbers (elements 

numbers)  

�̃� = [ 𝑎−, 𝑎+], b̃ = [ b−, b+]in D[0, 1] : Then  

(1) �̃�≽b̃if and only if, 𝑎−≥b− and 𝑎+≥b+, 

(2) �̃�≼b̃if and only if, 𝑎−≤b− and 𝑎+≤b+, 

(3) �̃�=b̃if and only if, 𝑎−=b− and 𝑎+=b+, 

(4) rmin {�̃�, b̃}= [min {𝑎−,b−}, min {𝑎+,b+}], 

(5) rmax {�̃�, b̃}= [max {𝑎−,b−}, max {𝑎+,b+}], 

 

Remark 2. 16[3,10]. It is obvious that (D[0, 1], ≼, ∨, ∧ ) is 

a complete lattice with0̃ = [0,0] as its least element and 1̃ = 

[1, 1] as its greatest element. Let ia~
∈D[0, 1] where i∈Λ. 

We definerinfi∈Λ�̃�= [r infi∈Λ𝑎−, rinfi∈Λ𝑎+], rsupi∈Λ�̃�= 

[rsupi∈Λ𝑎−, rsupi∈Λ𝑎+]. 

 

Definition 2.17[3,10]. An interval-valued fuzzy subset 

̃
𝐴

on X is defined as 

̃
𝐴

 ={< x, [
𝐴
−(x),

𝐴
+(x) ]> x∈ X}. Where 

𝐴
−(x) ≤

𝐴
+(x), 

for all x∈ X. Then the ordinary fuzzy subsets
𝐴
−: X → [0, 

1] and 
𝐴
+: X → [0, 1] are called a lower fuzzy subset and 

an upper fuzzy subset of A
~

respectively. Let ̃
𝐴

 (x) = 

[
𝐴
−(x),

𝐴
+(x) ], 

̃
𝐴

:X → D[0, 1], then A = {< x, ̃
𝐴

 (x) > x∈ X}. 
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Definition 2.18([10]). Let (X ;*, 0) be a nonempty set. A 

cubic set   in a structure   = {< x, �̃� (x),𝜆 (x)> x∈ 

X}, which is briefly denoted by   =<�̃�, 𝜆>, where  

�̃�Ω :X → D[0, 1],�̃� is an interval-valued fuzzy subset of X 

and 𝜆:X → [0, 1],𝜆 is a fuzzy subset of X.  

Definition 2.19([10]). For anyi = {〈x, μ̃i(x), vi(x)|x ∈
X 〉}where iΛ,p-union and p-intresection is denoted 

by⋃ ii∈Λ p and ⋂ ii∈Λ p and is defined respectively by:- 

 

 

⋃ i

i∈Λ p

= {〈x, (⋃ μ̃i

i ∈Λ 

) (x), (⋁ vi

i∈Λ

) (x)|x ∈ X〉} , ⋂ i

i∈Λ p

= {〈x, (⋂ μ̃i

i∈Λ

) (x), (⋀ vi

i∈Λ

) (x)|x ∈ X〉}. 

 

Definition 2.19([10]). For a family i = {〈x, μ̃i(x)〉|x ∈
X}on fuzzy sets in X}where iΛ and Λ is index set, we 

define the join (⋁)and meet (∧) operations as follows:  

 

⋁i

i∈Λ

= (⋁ μ̃i

i∈Λ

) (x) = sup{μ̃i(x)|i ∈ Λ}, ⋀i

i∈Λ

= (⋀ μ̃i

i∈Λ

) (x) = inf{μ̃i(x)|i ∈ Λ}, 

 

3. Cubic AT-subalgebras of AT-algebras 

In this section, we will introduce a new notion called cubic 

AT-subalgebra of AT-algebras and study several properties 

of it. 

 

Definition 3.1. Let (X ;*, 0)be an AT-algebra. A cubic set 
  =<�̃� (x),𝜆(x) > of X is called cubic AT-subalgebra of 

X if, for all x, y, z X: 

�̃� (x z) ≽ rmin{�̃� (x), �̃� (y)}, and 𝜆 (x*y) ≤ max{𝜆 

(x), 𝜆 (y)}. 

 

Example 3.2. Let X = {0,1,2,3} in which the operation as 

in example (∗) be define by the following table: 
* 0 1 2 3 

0 0 1 2 3 

1 0 0 2 3 

2 0 0 0 3 

3 0 0 0 0 

Then (X;∗,0) is an AT-algebra. Define a cubic set 


 

=<𝜇, 𝜆> of X as follows:  

fuzzy subset μ: X→ [0,1] by: �̃� (x) =  



 

otherwise

xif

]6.0,1.0[

}1,0{]9.0,3.0[

 
 

and 𝜆= 

 

otherwise

xif

6.0

}1,0{1.0

.The cubic set   

=<𝜇, 𝜆> is a cubic AT-subalgebra of X. 

 

Proposition 3.3. Let   =<�̃�, 𝜆> be a cubic AT-

subalgebra of AT-algebra (X ;*, 0), then�̃� (0)≽�̃� (x) and 

𝜆 (0)≤𝜆 (x), for all xX.  

Proof. For all xX, we have  

�̃�Ω (0) = �̃� (x *x) ≽ rmin{�̃� (0*(0*x)), �̃� (x)} 

 = rmin{ (0*(0*x)), �̃� (x)}= rmin {[
𝐴
− (x),

𝐴
+ (x)],[

𝐴
− 

(x),
𝐴
+ (x)]}  

 = rmin {[
𝐴
− (x),

𝐴
+ (x)]}=�̃� (x).  

 Similarly, we can show that 𝜆 (0) ≤ max {[𝜆 (x),𝜆 

(x)]} =𝜆 (x).  ⌂ 

 

Proposition 3.4. If a cubic set =(μ̃,v) of X is a cubic 

AT-subalgebra, then 

Ω(x ∗ y)= Ω(x ∗ (0 ∗ (0 ∗ y))), for all x, y ∈ X. 

 

Proof.  

Let X be an AT-algebra and x,y ∈X, then we know that 

y=0∗(0∗y). Hence, 

μ̃(x ∗  y)=μ̃(x ∗ (0 ∗ (0 ∗ y))) and v(x ∗  y)=v(x ∗ (0 ∗
(0 ∗ y))). Therefore 

Ω(x ∗ y)= (x ∗ (0 ∗ (0 ∗ y))). ⌂ 

 

Theorem 3.5. Let (X ;*, 0) be an AT-algebra and A cubic 

set   =<�̃�Ω, 𝜆Ω> of X. A cubic set   of X is a cubic 

AT-subalgebra of X if and only if, 
𝐴
−,

𝐴
+and 𝜆Ωare cubic 

AT-subalgebras of X. 

Proof. If 
𝐴
−and 

𝐴
+are cubic AT-subalgebras of X. For any 

x, y X.  Observe  

�̃�Ω (x y) = [
𝐴
− (x*y),

𝐴
+ (x y)] ≽ [min {

𝐴
− (x), 

𝐴
− (y)}, 

min {
𝐴
+ (x), 

𝐴
+ (y)}]  

 = rmin {[ 
𝐴
− (x),

𝐴
+ (x], [

𝐴
− (y), 

𝐴
+ (y)]} = rmin {�̃�Ω 

(x),�̃�Ω (y)].  

Similarly, we can show that 𝜆Ω (x y) ≤ max {[𝜆Ω (x),𝜆Ω 

(y)]}.   

From what was mentioned above we can conclude that   

is a cubic AT-subalgebra of X.  

Conversely, suppose that 


is a cubic AT-subalgebra of 

X.  For all x, y X, we have 

[
𝐴
− (x y), 

𝐴
+ (x y)] =�̃�Ω (x z) ≽ rmin{�̃�Ω (x),�̃�Ω (y)}  

 = rmin{[
𝐴
− (x),

𝐴
+ (x)], [

𝐴
− (y), 

𝐴
+ (y)]}= [ min{

𝐴
− 

(x),
𝐴
− (y) }, min {

𝐴
+ (x),

𝐴
+ (y)}].  

Therefore, 
𝐴
− (x y)  min{

𝐴
− (x),

𝐴
− (y)} and

𝐴
+ (x y)  

min{
𝐴
+ (x),

𝐴
+ (y)}. 

 Similarly, we can show that 𝜆Ω (x y)≤max{𝜆Ω (x),𝜆Ω 

(y)}  

Hence, we get that 
𝐴
−,

𝐴
+and 𝜆Ωare cubic AT-subalgebras 

of X. ⌂ 

 

Theorem 3.6. The R-intersection of any set of cubic AT-

subalgebra of X is also cubic AT-subalgebra of X. 

Proof. Let i ={〈x, μ̃i, (x), vi(x)〉|x ∈ X}wheri ∈ Λ, be a 

set of cubic AT-subalgebra of Xand x, y ∈ X, then  

(⋂ μ̃i)(x ∗ y) = rinf μ̃i(x ∗ y) ≥rinf 

{rmin{μi(x), μi(y)}} 

=rmin{rin(μi(x)), rinf (μi(y))} =
rmin{(⋂ μ̃i)(x), (⋂ μ̃i)(y)}and  

(⋁ vi) (x ∗ y) = sup vi  (x ∗ y) ≤ sup {max{vi(x), vi(y)}} 

 =max{sup(vi(x)),sup(vi(y))}= max{(⋁ vi)(x), (⋁ vi)(y)}.⌂ 
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Which shows that R-intresection works as a cubicAT-

subalgebra of X. 
 
Theorem 3.7. The R-intresection of any set of cubic AT-

subalgebra of Xis also cubic subalgebra of X. 
Proof. Let i ={〈x, μ̃i(x), vi(x)〉|x ∈ X}where i ∈ Λ, be a 

set of cubic AT-subalgebra of Xand x, y ∈ X, then  
(⋂ μ̃i)(x ∗ y) = rinf μ̃i(x ∗ y) ≥rinf {rmin{μi(x), μi(y)}} 

 =rmin{rinf(μi(x)), rinf (μi(y))} =
rmin{(⋂ μ̃i)(x), (⋂ μ̃i)(y)}and 

(⋁ vi) (x ∗ y) = sup vi  (x ∗ y) ≤ sup {max{vi(x), vi(y)}} 

 =max{sup(vi(x)),sup(vi(y))}= max{(⋁ vi)(x), (⋁ vi)(y)}.⌂ 

 

Remark 3.8. The R–union, p-intresection and p-union of 

any sets of cubic AT-subalgebra need not be a cubic AT-

subalgebra, for example:  

 

Example 3.9.  
Let X={0,a,b,c,d,e} be AT-subalgebra with the following 

cayley table. 
 

e d c b a 0 * 

e d c a b 0 0 

d c e b 0 a a 

c e d 0 a b b 

b a 0 e d c c 

a o b c e d d 

0 b a d c e e 

 We defined two cubic set 1=(μ̃ 1,v1) and 2 

=(μ̃2,v2) of X by :- 

μ̃1(x) ={
[0.6,0.7], ifx ∈ {0, c},
[0.1,0.2], otherwise,

v1(x) ={
0.2, ifx ∈ {0, c},
0.6, otherwise,

 

μ̃2(x)={
[0.8,0.9], ifx ∈ {0, d},
[0.3,0.4], otherwise,

 and v2(x) 

={
0.1, ifx ∈ {0, c},
0.4, otherwise.

 

Then 1 and 2 are cubic AT-subalgebra of X but R –

union, p-intresection and p-union of 1and 2 are not 

cubic AT-subalgebras of X.   

Since(⋃ μ̃i)(c ∗ d) = [0.3,0.4] ≱ [0.6,0.7] =
rmin{(⋃ μ̃i)(c), (⋃ μi)(d)}and (⋀ μ̃i)(c ∗ d) = 0.4 ≰
0.2 = max{(⋀ μ̃i)(c), (⋀ μ̃i)(d)}. 
 

Theorem 3.10. Let i= (μ̃i,vi) be a cubic AT-subalgebra 

of X, where i ∈ Λ 

inf{max{vi(x),vi(x)}} = max{inf vi(x),inf vi(x)},for 

all x ∈ X, then thep-intresection of i is also a cubic one of 

X 

Proof. Let i ={〈x, μ̃i, (x), vi(x)〉|x ∈ X}wheri ∈ Λ,be a 

set of cubic AT-subalgebra of X such that 

inf{max{vi(x),vi(x)}}=max{infvi(x),inf vi(x)}for all 

x ∈ X, then for x, y ∈ X, 

 

 

(⋂ μ̃i)(x ∗ y) = rinf μ̃i(x ∗ y) ≥ rinf{rmin{μi(x), μi(y)}} 

=rmin{rinf μi(x), rinf μi(y)} =  rmin{(⋂ μ̃i)(x), (⋂ μ̃i)(y)} 

and (⋀ vi)(x ∗ y) = inf vi  (x ∗ y) ≤ inf {max{vi(x), vi(y)}} 

=max{infvi(x),infvi(y)}= max{(⋀ vi)(x), (⋀ vi)(y)}. 

 

Hence, p-intresection of i is a cubic AT-subalgebra of X. ⌂ 

 

Theorem 3.11. Let i= (μ̃i,vi) be a cubic subalgebra of 

X where i ∈ Λ, for all x ∈ X 

{rmin{vi(x),vi(x)}}=rmin{rsup vi(x), rsupvi(x)}, then 

thep-union of i is also a cubic one of X.  

Proof. Let i ={〈x, μ̃i(x), vi(x)〉|x ∈ X}, where i ∈ Λ,be 

a sets of cubic AT-subalgebras of X such that for all x, y ∈
X, 

 

rsup{ rmin{vi(x),vi(x)}}=rmin{rsup vi(x),rsup vi(x)}, then 

(⋃ μ̃i)(x ∗ y) = rsupμ̃i(x ∗ y) ≥ rsup{rmin{μ̃i(x), μ̃i(y)}} 

= rmin{rsupμ̃i(x), rsupμ̃i(y)} = rmin {(⋃ μ̃i)(x), (⋃ μ̃i)(y)}. 

(⋁ vi) (x ∗ y) = sup vi  (x ∗ y) ≤ sup{max{vi(x), vi(y)}} 

= max{supvi(x),supvi(y)}= max{(⋁ vi)(x), (⋁ vi)(y)}, 
Hence, p-union of i is a cubic AT-subalgebra of X. ⌂ 

 

Theorem 3.12. Let (X ;*, 0) be an AT-algebra. A cubic 

subset  =<�̃�, 𝜆> of X, then  is a cubic AT-

subalgebra of X if and only if, for all t
~

∈ D[0, 1] and s ∈ 

[0, 1], the set U
~

(  ; t
~

,s) is an AT-subalgebra of X, 

where U
~

(  ; t
~

,s) ={ xX�̃� (x)≽ t
~

,𝜆(x) ≤ s}. 

Proof. Assume that  =<�̃�, 𝜆>is a cubic AT-

subalgebra of X and let t
~

∈ D[0, 1] and s ∈ [0, 1], be such 

that U
~

(  ;
t
~

,s) ≠∅, and let x, y ∈ X such that x,y

U
~

 (  ; t
~

,s), then �̃� (x)≽ t
~

, �̃� (y)≽
t
~

 and 𝜆 

(x),≤ s, 𝜆 (y) ≤ s. By (A2), we get  

�̃�(x∗ 𝑦) ≽min{ �̃�Ω (x),�̃�Ω (y)} and𝜆Ω (x y) ≤ max {𝜆Ω 

(x),𝜆Ω (y) } ≤ s. 

Hence the set U
~

 (  ; t
~

, s ) is an AT-subalgebra of X.  

Conversely, suppose that U
~

 (  ;
t
~

,s) is an AT-

subalgebra of X and let x, y ∈ X be such that�̃�Ω (x
y)≺rmin {�̃�Ω (x),�̃�Ω (y)}, and 𝜆 (x y)> max {𝜆 (x),𝜆 

(y)}. 

Consider 
~

=1 2⁄  { �̃� (x y) + rmin{�̃� (x), �̃� ( y)} } 

and β= 1 2⁄  { 𝜆 (x y) + max{𝜆 (x), 𝜆 ( y)}}. 

We have 
~

∈ D[0, 1] and β∈ [0, 1], and �̃� (x y) ≺ 
~

≺rmin {�̃� (x),�̃� (y) }, and 𝜆 (x y) >β> max {𝜆 

(x),𝜆 (y) }.  

 It follows that x,y U
~

 (  ; t
~

, s ), and (x y)∉ U
~

 (

 ; t
~

,s). This is a contradiction and therefore   

=<�̃�, 𝜆> is a cubic AT-subalgebra of X.  ⌂ 
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Theorem 3.13. Cubic set=(μ̃,v) is a cubic AT-

subalgebra of X if and only if, μ−


,μ+


and v are fuzzy 

AT-subalgebras of X. 

Proof. Let μ−


, μ+


 and v be fuzzy subalgebras of X and 

x,y∈ X.then 

μ−


 (x ∗ y)≥min{𝜇−


 (x),𝜇−


(y)},μ+


 (x ∗y)≥ min{μ+


 

(x),μ+


 (y)}and v(x ∗ y)≤max{v (x), v (y)}. 

Now,�̃�(x ∗ y)=[𝜇−


(x ∗ y), 𝜇+


(xy)] 

≥[min{μ−


(x),𝜇−


(y)},min{μ+


(x),μ+


(y)}] 

=rmin{[μ−


(x), μ+


 (x)], [μ−


 (y), μ+


 (y)]}=rmin{μ̃ 

(x),μ̃ (y)}, therefore, is a cubic AT-subalgebra of X.  

Conversely, assume that  is a cubic AT-subalgebra of X, 

for any x,y∈ X, 
[μ−


 (x ∗ y), μ+


 (x ∗ y)]=μ̃(x ∗ y) ≥ rmin{μ̃ (x),μ̃ (y)} 

=rmin{[μ−


 (x), μ+


 (x)], [μ−


 (y), μ+


 (y)]} 

=[min{μ−


 (x), μ−


(x), {μ+


 (y), μ+


 (y)}]. 

 Thusμ−


 (x ∗ y )≥{μ−


 (x), μ−


 (x)},μ+


 (x ∗ y )≥{ μ+


 

(x), μ+


 (x)},and 

v (x ∗ y )≤max{v(x),v(y)}, therefore, is a cubic AT-

subalgebra of X. ⌂ 

 

Theorem 3.14. Let=(μ̃,v) be a cubic AT-subalgebra of 

X and let n∈ ℕ (the set of natural numbers ).then 

(i) μ̃ (Πnx ∗ x ) ≥μ̃(x) for any add number n, 

(ii) v (Πnx ∗ x ) ≤μ̃(x) for any add number n, 

(iii) μ̃ (Πnx ∗ x ) =μ̃(x) for any even number n, 

(iv) v (Πnx ∗ x ) ≤μ̃(x) for any even number n. 

Proof. Let x ∈ X and assum that n is odd.then n=2p-1 for 

some positive integer p. We prove the theorem by 

induction. 

Now, μ̃(x ∗ x) =�̃� (0)≥�̃�(x)andv(x ∗ x) =v(0)≤v(x). 

Suppose that 

�̃�(Π2p-1x∗x)≥�̃�(x)andv(Π2p-1x∗x)≤v(x), then by 

assumption,  

�̃�(Π2(p+1)-1)x∗x=�̃�(Π2p+1x∗x)=�̃�(Π2p-1x∗(x∗ (x ∗ x))) 

=�̃�(Π2p-1x∗x)≥�̃�(x) and 

v(Π2(p+1)-1x∗x)= v(Π2p+1x∗x)=v(Π2p-1x∗(x(∗ x ∗ x))) 

=v(Π2p-1x∗x)≥v(x), which proves (i)and(ii).  

Proofs are similar to the cases (iii)and(iv). 

The sets {x∈X|�̃�(x)= �̃�(0)} and {x∈X|v(x)=v(0)} are 

denoted by𝐼�̃�
and𝐼v  respectively. This two sets are also 

AT-subalgebras of X. ⌂ 

 

Theorem 3.15. Let =(μ̃,v) be a cubic AT-subalgebra 

of X, then the sets 𝐼�̃�
 and 𝐼v  are AT-subalgebras of X. 

Proof. Let x, y∈ 𝐼�̃�
.then�̃�(x)=𝜇(0)=�̃�(y)and so, 

�̃�(x∗ 𝑦)≥min{�̃�(x),�̃�(y)}=�̃�(0) by Proposition 

(3.3),we know that 

�̃�(x∗ 𝑦)=�̃�(0) or equivalently x∗ 𝑦 ∈ 𝐼�̃�
. 

 Again, let x, y∈ 𝐼𝑣.then𝑣(x)=v(0)=v(y)and so,𝑣(x∗

𝑦)≤ max{v(x), v(y)}=v(0).  

Again by Proposition (3.3), we know that𝑣(x∗ 𝑦)=𝑣(0) 

or equivalently x∗ 𝑦 ∈ 𝐼𝑣
. Hence, sets 𝐼�̃�

and𝐼v
are AT-

subalgebras of X. ⌂ 

 

Theorem 3.16. Let B a nonempty subset of X and 

=(μ̃,v) be a cubic set of X defined by 

�̃�(x)={
[𝛼1, 𝛼2], if x ∈ 𝐵

[𝛽1, 𝛽2], otherwise
 and v(x)={

𝛾, if x ∈ 𝐵
𝛿, otherwise

 

For all [𝛼1, 𝛼2], [𝛽1, 𝛽2] ∈ 𝐷[0,1] and 𝛾, 𝛿 ∈
[0,1]with[𝛼1, 𝛼2] ≥ [𝛽1, 𝛽2]and𝛾 ≤ 𝛿. 

Then  is a cubic AT-subalgebra of X if and only if, B an 

AT-subalgebra of X. Moreover, 𝐼�̃�
=B=𝐼𝑉

. 

Proof.  

Let be a cubic AT-subalgebra of X and x, y∈B, then  

�̃�(x∗ 𝑦)≥min{�̃�(x), 

�̃�(y)}=rmin{[𝛼1, 𝛼2], [𝛼1, 𝛼2]}=[𝛼1, 𝛼2] and  

v(x∗ 𝑦)≤max{v(x),𝑣(y)}={𝛾, 𝛾}=𝛾. 
So x∗ 𝑦 ∈ B.Hence B is an AT-subalgebra of X.  

Conversely, suppose that B is AT-subalgebra of X and let 

x, y ∈X. Consider two cases. 

Case 1 If x, y ∈B then x∗ y ∈B, thus μ̃(x∗
y)=[α1, α2]=rmin{μ̃(x),μ̃(y)} and 

v(x∗ y)=γ=max{v(x),v(y)}=max{γ, γ}. 

Case 2 if x∉B or y∉B, then �̃�(x∗ 𝑦)≥ [𝛽1, 𝛽2] 
=rmin{�̃�(x),�̃�(y)} and 

v(x∗ 𝑦)≤ 𝛿 =max{v(x),v(y)}. 

Hence,  is cubic AT-subalgebra of X. ⌂ 

 

Now, 𝐼�̃�
={x∈X|�̃�(x)=�̃�(0)}={x∈X|�̃�(x)= [𝛼1, 𝛼2]}=B 

and 𝐼𝑉
={x∈X|v(x)=v(0)}=and𝐼𝑉

={x∈X|𝑣(x)= 𝛾}=B. 

 

Definition 3.17. Let =(μ̃,v)be a cubic set of X. For 

[s1,s2]∈D[0,1]and t ∈[0,1],the set 

𝑈(�̃� |[s1,s2])={x∈X|�̃�(x)≥[s1,s2]}is called upper[s1,s2]-

Level of  and L(v|t)={x∈X|v(x)≤t}is called Lower t-

Level of . 

 

Theorem 3.18. If a cubic set =(μ̃,v) is a cubic AT-

subalgebra of X, then the upper 

[s1,s2]-Level and Lower t-Level of  are ones of X. 

Proof. Let x,y∈ 𝑈(�̃� |[s1,s2]), then �̃�(x)≥[s1,s2] and 

�̃�(y)≤[s1,s2]. It follows that 

�̃�(x∗ 𝑦)≥ min{�̃�(x), �̃�(y)}≥[s1,s2], so that x∗y ∈ 𝑈(�̃� 

|[s1,s2]). 

Hence 𝑈(�̃� |[s1,s2]) is AT-subalgebra of X. Let x∗y ∈ 

L(v|t), then v(x)≤t and v(y)≤t. It follows thatv(x∗ 𝑦)≤ 

max{v(x), v(y)}≤ t, so that x∗y ∈ L(v|t).  

Hence, L (v|t)is subalgebra of X. ⌂ 

 

Corollary 3.19. Let =(μ̃,v) be a cubic AT-subalgebra 

of X, then  

([s1,s2];t)=𝑈(�̃�|[s1,s2])L(𝑣|t)={x∈X|�̃�(x)≥[s1,s2],v(x)

≤t } is a cubic AT-subalgebra of X 

The following example shows that the converse of 

Corollary (3.19) is not valid  

 

Example 3.20. Let X={0,a,b,c,d,e}be AT-algebra and 

cubic set =(μ̃,v) of X by 
 

 𝜇(x)={

[0.6,0.8], if x = 0,
[0.5,0.6], if x ∈ {a, b, c},

[0.3,0.4], if x ∈ {d, e},

 and 𝑣(x)= {

0.1, if x = 0,
0.3, if x ∈ {a, b, c},

0.8, if x ∈ {d, e},
 

 

We take [s1,s2]=[0.41,0.48]and t=0.4, then 

([s1,s2];t)=𝑈(�̃�|[s1,s2])L(𝑣|t)={x∈X|�̃�(x)≥[s1,s2],v(x)

≤t} 

={a,b,c}∩{0,a,b,d}={0,a,b} is AT-subalgebra of X, but 

=(μ̃,v)is not a cubic AT-subalgebra since �̃� 

(1∗3)≱rmin{�̃�(1), �̃�(3)} and  

v (2∗4≰)max{v(2), v(4)}.  

 

4. Cubic AT-ideals of AT-algebras 

In this section, we will introduce a new notion called cubic 
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AT-ideal of AT-algebras and study several properties of it. 

 

Definition 4.1. Let (X ;∗, 0)be an AT-algebra. A cubic set 
 =<�̃� (x),𝜆(x)>of X is called cubic AT-ideal of X if, 

for all x, y, z X: 

(A1) �̃� (0) ≽�̃� (x), and 𝜆 (0) ≤𝜆 (x) 

(A2) �̃� (x z) ≽ rmin{�̃� (x (y*z)), �̃� (y)}, and 𝜆 (z
x) ≤ max{𝜆 (x (y*z)), 𝜆 (y)}. 

 

Example 4.2. Let X = {0,1,2,3} in which the operation as 

in example ( ) be define by the following table: 

 
* 0 1 2 3 

0 0 1 2 3 

1 0 0 2 3 

2 0 0 0 3 

3 0 0 0 0 

Then (X; ,0) is an AT-algebra. Define a cubic set   

=<𝜇Ω, 𝜆Ω> of X as follows: 

fuzzy subset μ: X→ [0,1] by: 𝜇(x) = 



 

otherwise

xif

]6.0,1.0[

}1,0{]9.0,3.0[

 

and 𝜆={
0.1 𝑖𝑓 x ∈ {0,1}
0.6 otherwise

.The cubic set   =<�̃�, 𝜆Ω> is 

a cubic AT-ideal of X. 

 

Proposition4.3. Let   =<�̃�, 𝜆>be a cubic AT-ideal of 

an AT-algebra (X ;*, 0), if there exist a sequence{xn} in X 

such that
)(~lim n

n
x




= [1,1], then �̃�(0) = [1, 1]. 

Proof. By definition (3.1), we have �̃�(0) ≽�̃�(x), for all 

xX. Then�̃� (0) ≽�̃�(xn), for every positive integer n. 

Consider the inequality [1,1] ≽�̃� (0) ≽
)(~lim n

n
x




= 

[1,1].Hence �̃� (0) = [1,1].  ⌂ 

 

Theorem 4.4. Let (X ;*, 0) be an AT-algebra and A cubic 

set  =<�̃�, 𝜆>of X. A cubic set   of X is a cubic 

AT-ideal of X ifand only if, 
𝐴
−,

𝐴
+and 𝜆are cubic AT-

ideals of X. 

Proof. 

Suppose that  is a cubic AT-ideal of X.  For all x, y, z 

X, we have 

[
𝐴
− (x z), 

𝐴
+ (x z)]=�̃�Ω (x z)≽rmin{�̃�(x (y*z)),�̃� 

(y)}  

=rmin{[
𝐴
−(x (y∗z)),

𝐴
+(x (y∗z))], [

𝐴
− (y), 

𝐴
+ (y)]}  

= [min{
𝐴
−(x (y∗z)),

𝐴
− (y)}, min {

𝐴
+(x (y∗z)),

𝐴
+ (y)}].  

Therefore, 
𝐴
−(x z)  min{

𝐴
−(x (y*z)),

𝐴
−(y)} and 


𝐴
+(x z)  min{

𝐴
+(x∗(y z)),

𝐴
+(y)}. 

Similarly, we can show that 𝜆 (x z)≤max{𝜆(x
(y∗z)),𝜆 (y)}  

Conversely, If 
𝐴
−and 

𝐴
+are cubic AT-ideals of X. For any 

x, y, z X.  Observe 

�̃� (x z) = [
𝐴
− (x*z),

𝐴
+ (x z)] 

≽ [min {
𝐴
− (x (y*z)), 

𝐴
− (y)},min {

𝐴
+ (x (y*z)), 

𝐴
+ 

(y)}]  

 = rmin {[ 
𝐴
− (x (y*z)

𝐴
+ (x (y*z))], [

𝐴
− (y), 

𝐴
+ (y)]} 

 = rmin {�̃� (x (y*z)),�̃� (y)].  

Similarly, we can show that 𝜆 (x z) ≤ max {[𝜆 (x
(y*z)),𝜆 (y)]}.   

From what was mentioned above we can conclude that   

is a cubic AT-ideal of X 

Hence, we get that 
𝐴
−,

𝐴
+and 𝜆Ωare cubic AT-ideals of X. 

⌂ 

 

Theorem 4.5. Let { i i∈Λ} be family of cubic AT-ideals 

of an AT-algebra (X ;*, 0). Then⋂ �̃�𝑖i∈Λ is a cubic AT-

ideal of X. 

Proof. Let { i i∈Λ} be family of cubic AT-ideals of X, 

then for any x, y, z ∈X,  

(⋂ 𝜇𝑖)(0) =rinf ( i
~

(0))≽ rinf ( i
~

(x)) = (⋂ 𝜇𝑖)(x) 

(⋂ 𝜇𝑖(x z)) = rinf ( i
~

 (x z))≽rinf (rmin{ i
~

(x

(y*z)), i
~

 (y)}) 

=rmin { rinf ( i
~

(x (y*z)),rinf ( i
~

(y))}=rmin { (⋂ 𝜇𝑖)(x

 (y*z)),(⋂ 𝜇𝑖) (y)} 

Also,(⋃ 𝜆𝑖)(0) = sup( i
 (0))≤ sup ( i

 (x)) = (⋃ 𝜆𝑖)(x) 

(⋃ 𝜆𝑖(x z)) = sup ( i
 (x z))≤ sup ( max { i

(x

(y*z)), i
 (y)} ) 

= max {sup( i
(x (y*z)),sup( i

(y))}= max { (⋃ 𝜆𝑖)(x

 (y*z)), (⋃ 𝜆𝑖)(y) }.  ⌂ 

 

Theorem 4.6. Let (X ;∗, 0) be an AT-algebra. A cubic 

subset  =<�̃�, 𝜆> of X, then  is a cubic AT-ideal 

of X ifand only if, for all
t
~

∈ D[0, 1] and s ∈ [0, 1], the set 

U
~

(  ;
t
~

,s) is an AT-ideal of X, where U
~

(  ;
t
~

,s) ={ xX�̃� (x)≽
t
~

,𝜆 (x) ≤ s}. 

 

Proof.  

Assume that   =<�̃�, 𝜆>is a cubic AT-ideal of X and 

let 
t
~

∈ D[0, 1] and s ∈ [0, 1],be such that U
~

(  ; t
~

,s) 

≠∅, and let x, y, z ∈ X such that (x (y∗z)),y U
~

(  ;

t
~

,s), then �̃�(x (y*z))≽
t
~

, �̃� (y)≽ t
~

 and 𝜆(x
(y∗z))≤ s, 𝜆 (y) ≤ s. By (A2), we get 

�̃� (x z) ≽rmin {�̃�(x (y∗z)),�̃� (y) } ≽ t
~

, and 

𝜆 (x z) ≤ max {𝜆(x (y∗z)),𝜆 (y) } ≤ s.  

Hence the set 
U
~

 (  ;
t
~

, s ) is anAT-ideal of X.  

Conversely, suppose that U
~

 (  ; t
~

,s) is an AT-ideal 

of X and let x, y, z ∈ X be such that�̃� (x z)≺rmin {�̃�(x
 (y*z)),�̃� (y)}, and𝜆 (x z) > max {𝜆(x (y*z)),𝜆 

(y)}. 

Consider 
~

=1 2⁄  { �̃�(x z) + rmin{�̃�(x (y∗z))), �̃�( 

y)} } and B= 1 2⁄  { 𝜆 (x z) + max{𝜆 (x (y∗z))), 𝜆 ( 

y)}}. 

We have 
~

∈ D[0, 1] and B∈ [0, 1], and �̃� (x z) ≺ 
~

≺rmin {�̃�(x (y*z)),𝜇 (y)}, and 𝜆 (x z) >B> max 

{𝜆(x (y∗z)),𝜆 (y)}.  

 It follows that (x (y*z)),y U
~

(  ; t
~

,s), and (x z)∉

U
~

 (  ; t
~

,s). This is a contradiction and therefore   

=<�̃�, 𝜆> is a cubic AT-ideal of X.  ⌂ 

 

Proposition4.7. If  =<�̃�, 𝜆>is a cubic AT-ideal of 

AT-algebra X, then 
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 �̃� (x ∗ (x ∗ 𝑦) ≽ �̃� (y), and 𝜆(x ∗ (x ∗ 𝑦)) ≤ 𝜆(y). 

Proof. Taking z=x ∗ 𝑦in(ATI2)and using (AT3)in (ATI1 

),we 

�̃�(x ∗ (x ∗ 𝑦) ≽ rmin{�̃�xyxy))),�̃�y) 

}=rmin{�̃�xxyy))),�̃�y)} 

=rmin{�̃�xx0)),�̃�y)}=rmin{�̃�0),�̃�y)}=�̃�y, 

𝜆xxy))≤ max {𝜆xyxy))),𝜆y)} 

=max{𝜆xxyy))),𝜆y)}=max{𝜆xx0)),𝜆y)} 

=max{𝜆0),𝜆y)}=𝜆y. ⌂ 

 

5. Homomorphism of Cubic AT-ideal (AT-subalgebra) 

of AT-algebras 

 In this section, we will present some results on images and 

preimages of cubicAT-ideals of AT-algebras.  

 

Definition 5.1[3].  

Let f  : (X; ,0) →(Y; ',0') be a mapping from the set X 

to a set Y. If   =<μ̃Ω, λΩ>is a cubic subset of X, then the 

cubic subset β =<μ̃β, λβ>of Y defined by:  

 






 











otherwise

yxfXxyfifxr
yyf yfx

0

})(,{)()(~sup
)(~))(~(

1

)(1


 

 






 











otherwise

yxfXxyfifx
yyf yfx

1

})(,{)()(inf
)())((

1

)(1


 

 
is said to be the image of  under f . 

 

Similarly if β =<�̃�β, 𝜆β>is a cubic subset of Y, then the 

cubic subset   = (β  f ) in X ( i.e the cubic subset 

defined by �̃�Ω (x) = �̃�β (
f

 (x)), 𝜆Ω (x) = 𝜆β ( f  (x)) for 

all x X) is called the preimage of βunder f ). 

 

Theorem 5.2. An onto homomorphic preimage of cubic 

AT-subalgebra is also cubic AT-subalgebra. 

Proof. Let f : (X; ,0) →(Y; ',0') be onto 

homomorphism from an AT-algebra X into an AT-algebra 

Y.  

If β =<�̃�β, 𝜆β>is a cubic AT-subalgebra of Y and   

=<𝜇, 𝜆> the preimage of β under f , then �̃� (x) = �̃�β (

f
 (x)), 𝜆 (x) = 𝜆β (

f
 (x)), for all x X.   

Let x ∈X, then  

(�̃�)(0) = �̃�β (
f

 (0))≽�̃�β (
f

 (x)) = �̃� (x), and (𝜆)(0) = 

𝜆β (
f

 (0))≤𝜆β (
f

 (x)) = 𝜆 (x). 

Now, let x, y ∈ X, then  

�̃� (x y) = �̃�β(
f

 (x y))≽rmin {�̃�β(
f

(x),�̃�β (
f

 (y)) } 

= rmin {�̃� (x),�̃� (y)}, and  

𝜆 (x y) = 𝜆β(
f

(x y)) ≤ max {𝜆β (
f

(x),𝜆β (
f

 (y))} 

= max {𝜆 (x),𝜆 (y)}.  ⌂ 

 

Definition 5.3. Let 
f

: (X; ,0) →(Y; ',0') be a mapping 

from a set X into a set Y. 
  =<�̃�, 𝜆>is a cubic subset of X has sup and inf 

properties if for any subset T of X, there exist t, s ∈ T such 

that
)(~sup)(~ trt

Tt



  

and 
)(inf)( ss

Ts



  

. 

 

Theorem 5.4. Let f  : (X; ,0) →(Y; ',0') be a 

homomorphism from an AT-algebra X into an AT-algebra 

Y. For every cubic AT-subalgebra   =<�̃�Ω, 𝜆Ω> of X, 

then f (  ) is a cubic AT-subalgebra of Y. 

Proof. By definition 

)(~sup)')(~()'(~

)'(1

xryfy
yft







 

and 

)(inf)')(()'(
)'(1

xyfy
yft




 
  

for all y' 

∈ Y and  

rsup(∅) = [0, 0] and inf (∅) = 0.  We have prove that  

�̃�Ω (x' y') ≽rmin {�̃� (x'), �̃� (y' )}, and 𝜆 (x' y')≤ 

max{𝜆 (x'), 𝜆 (y' )}, for all x', y' ∈ Y.   

Let f  : (X; ,0) →(Y; ',0') be a homomorphism of AT-

algebras,  
  =<�̃�, 𝜆> is a cubic AT-subalgebra of X has sup and 

inf properties and  

β =<�̃�β, 𝜆β>the image of


 =<�̃�, 𝜆β> under f . 

Since   =<�̃�, 𝜆> is a cubic AT-subalgebra of X, we 

have (�̃�)(0)≽�̃� (x), and (𝜆)(0)≤𝜆 (x), for all x ∈X.  

 Note that, 0 ∈
1f (0') where 0,0' are the zero of X and Y, 

respectively. Thus  

 

)0(~)(~sup)'0(~

)'0(1







 tr
ft ≽𝜇Ω (x) =

)'(~)(~sup
)'(1

xtr
xft

 
 

, 

)()0()(inf)'0(
)'0(1

xt
ft







 

=

)'()(inf
)'(1

xt
xft

 
 

, for all x ∈X, which implies that 
~

(0') ≽

)'(~ x
,and 

)'()'0( x  
, for all x' ∈Y. 

 

For any x', y' ∈ Y, let x0∈𝑓−1 (x') and y0∈𝑓−1 (y') be such that 

 

)(~sup)(~

)'(
0

1

trx
xft







 

, 

)(~sup)(~

)'(
0

1

try
yft







 

 and 
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)(~
00 yx   = 

)}({~
00 yxf 
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)''(~ yx 

)(~sup 00
)''()( 1

00

yxr
yxfzx
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)''(~ yx 
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)''(1
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= 
)(~

00 yx  ≽rmin { ~
 (x0), ~

 (y0)}, 

=  𝑟𝑚𝑖𝑛 { 
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)'(1

tr
xft


 



,

)(~sup
)'(1

tr
yft


 



} = rmin { 
)'(~ x

, 
)'(~ y

}and 

 )''( yx )(inf
)''(1

t
yxft








)''( yx   

≤ max {
)( 0x

, 
)( 0y

} = max {

)(inf
)'(1

t
xft


 


, 

)(inf
)'(1

t
yft


 


} 

 

Hence, β is a cubic AT-subalgebra of Y.  ⌂ 

 

Theorem 5.5.  

Let =(μ̃,v) be a cubic set of X such that the sets 𝑈(�̃� 

|[s1,s2]) and L(𝑣|t) are AT-subalgebras of X for every 

[s1,s2]∈D[0,1]and t ∈[0,1], then =(μ̃,v) is a cubic AT-

subalgebra of X. 

Proof.  

Let𝑈(�̃� |[s1,s2])and L(v|t) are AT-subalgebras of X, for 

every [s1,s2]∈D[0,1] 

and t ∈[0,1]. on the contrary, let x0,𝑦0 ∈ 𝑋 be such that 

�̃�(x0 , 𝑦0) < rmin{�̃�(x0 ), �̃�(y0 )}. 

Let�̃�(x0 ) =[1,2] and �̃�(y0 ) =[3,4] and 

�̃�(x0 , 𝑦0)=[s1,s2]. 

Then[s1,s2]rmin{=[1,2],[3,4]}=[min{1,2},min{3,4}

]. So,s1min{1,3 }and 

S2{2,4}. Let us cosider,  

[1,2]= 
1

 2
[�̃�(x0 ∗ 𝑦0)+ rmin{�̃�(x0 ), �̃�(y0 )}] = 

1

2
[[𝑠1, 𝑠2] + [𝑚𝑖𝑛{1, 3}, 𝑚𝑖𝑛{2, 4}]] 

 =[
1

2
(𝑠1 + min{1, 3}) ,

1

2
(𝑠2 + min{2, 4})]. 

Therefore, min{1, 3}1=
1

2
(𝑠1 + min{1, 3})𝑠1and  

min{2, 4}2=
1

2
(𝑠2 + min{2, 4})𝑠2.  

Hence [min{1, 3}, min{2, 4}][1,2][𝑠1,𝑠2], so that 

(x0 ∗ 𝑦0) ∉ 𝑈(�̃� |[s1,s2]) which is a contradiction since 

�̃�(x0 )=[1, 2][min{1, 3}, min {2, 4}] [1,2] 

and�̃�(y0 )=[2, 3][min{1, 3}, min {2, 4}] [1,2] 

this implies  

(x0 ∗ 𝑦0) ∈ 𝑈(�̃� |[s1,s2]). Thus �̃�(x∗ 𝑦) ≥ 

rmin{μ̃(x),μ̃(y)}, for allx, y ∈ X. 
Again, Let x0,𝑦0 ∈ 𝑋such that 

v(x0 , 𝑦0)max{v(x0), v(y0 )}. Let  v(x0 )=1, 

v(y0 )=2and v(𝑥0 ∗ 𝑦0) = t. Then tmax{1,2}. 

Let us consider,t1= 
1

 2
[v(x0 ∗ 𝑦0)+ max{v(x0 ), v(y0 )}]. 

We get that t1=
1

2
(𝑡1 + max{

1
,

2
}), therefore, 

1t1=
1

2
(𝑡1 + max{

1
,

2
})t and 2t1==

1

2
(𝑡 +

max{
1

,
2

})t, hence, max{
1

,
2

}t1t =v(x0 ∗ 𝑦0). So 

that x0 ∗ 𝑦0 ∉ L(𝑣|t) which is a contradiction since 

v(x0 ) = 1≤max{
1

,
2

}t1 and v(y0 )=
2

≤

max{
1

,
2

}𝑡1, this implies x0,𝑦0 ∈ L(v|t)  

this implies v(x∗ 𝑦)≤ max{v(x), v(y)}, for all x, y ∈ X. 

⌂ 

 

Theorem 5.6. Any AT-subalgebra of X can be realized as 

both the upper[s1,s2]-Level and Lower t-Level of some 

cubic AT-subalgebra of X. 

Proof. Let  be a cubic AT-subalgebra of X and  be cubic 

set on X defined by 

 Let  be a cubic AT-subalgebra of X and  be cubic set on 

X defined by  

�̃�(x)={
[𝛼1, 𝛼2], if x ∈ 

[0,0], otherwise
 and v(x)={

𝛽, if x ∈ 

1, othrwise
 

For all[𝛼1, 𝛼2] ∈ 𝐷[0,1]and𝛽 ∈ [0,1], we consider the 

following cases: 

Case 1) if x, y∈ , then �̃�(x )=[𝛼1, 𝛼2], v(x)=𝛽 and 

�̃�(y)=[𝛼1, 𝛼2],v(y)=𝛽. 

Thus,�̃�(x∗ 𝑦 

)=[𝛼1, 𝛼2]=rmin{[𝛼1, 𝛼2], [𝛼1, 𝛼2]}=rmin{�̃�(x),�̃�(y)} 

and 

v(x∗ 𝑦) =𝛽=max[β1, β2]=max{v(x), v(y)}. 

Case 2 )if x ∈ and y∉ ,then μ̃(x )=[α1, α2], v(x)=β and 

μ̃(y)=[0,0],v(y)=1. 

Thus μ̃(x∗ y 

)=[0,0]≥rmin{[α1, α2], [0,0]}=rmin{μ̃(x),μ̃(y)}andv(x∗
y) ≤1 =max[β1, 1]=max{v(x), v(y)}. 

Case3) if x∉  and y∈ , then�̃�(x ) = [0,0], v(x)=1and 

�̃�(y)=[𝛼1, 𝛼2],v(y)= 𝛽 

Thus, �̃�(x∗ 𝑦)=[0,0]≥rmin{[0,0], [𝛼1, 𝛼2]} 

=rmin{�̃�(x),�̃�(y)}and  

v(x∗ 𝑦) ≤1+ =max[1, β1]=max{v(x), v(y)}. 

Case4) x∉ , 𝑦 ∉  and y, then�̃�(x ) = [0,0], v(x)=1and 

�̃�(y)=[0,0],v(y)= 1 

Now,�̃�(x∗ 𝑦)= [0,0]=rmin{[0,0], [0,0]}  

=rmin{�̃�(x),�̃�(y)} and v(x∗ 𝑦) ≤1 =max[1,1]= 

max{v(x), v(y)}. 

Therefore, is a cubic AT-subalgebra of X.⌂ 
 

Theorem 5.7. An onto homomorphic preimage of cubic 

AT-ideal is also cubic AT-ideal.  

Proof.  

Let f : (X; ,0) →(Y; ',0') be onto homomorphism from 

an AT-algebra X into an AT-algebra Y.  
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If β =<�̃�β, 𝜆β>is a cubic AT-ideal of Y and   =<�̃�, 

𝜆>the preimage of β under 
f

, then �̃� (x) = �̃�β (
f

 (x)), 

𝜆 (x) = 𝜆β (
f

 (x)), for all x X.  Let x ∈X, then  

 (�̃�)(0) = �̃�β (
f

 (0))≽�̃�β (
f

 (x)) = �̃� (x), and (𝜆)(0) = 

𝜆β (
f

 (0))≤𝜆β (
f

 (x)) = 𝜆 (x). 

 Now, let x, y, z ∈ X, then  

�̃� (x z) = �̃�β (
f

 (x z))≽rmin {�̃�β (
f

(x (y*z)),�̃�β (

f
 (y)) }  

=rmin {�̃�(x (y*z)),�̃� (y)}, and  

𝜆 (x z) = 𝜆β (
f

 (z x))≤ max {𝜆β (
f

(x (y∗z)),𝜆β (

f  (y))} 

= max {𝜆(x (y∗z)),𝜆 (y)}.  ⌂ 

 

Definition 5.8.Let f : (X; ,0) →(Y; ',0') be a mapping 

from a set X into a set Y.   =<�̃�, 𝜆>is a cubic subset 

of X has sup and inf properties if for any subset T of X, 

there exist t, s ∈ T such that 
)(~sup)(~ trt

Tt



  

and 
)(inf)( ss

Ts



  

. 

 

Theorem 5.9. Let f  : (X; ,0) →(Y; ',0') be a 

homomorphism from an AT-algebra X into an AT-algebra 

Y. For every cubic AT-ideal   =<�̃�Ω, 𝜆Ω> of X, then f (
 ) is a cubic AT-ideal of Y. 

Proof. By definition 

)(~sup)')(~()'(~

)'(1

xryfy
yft







 

and 

)(inf)')(()'(
)'(1

xyfy
yft




 
  

for all y' ∈ Y and  

rsup(∅) = [0, 0] and inf (∅) = 0.  We have prove that  

�̃� (x' z') ≽rmin {�̃� (x'  (y'*z')), �̃� (y' )}, and 

𝜆 (x' z')≤ max{𝜆 (x'  (y'*z')), 𝜆 (y' )}, for all x', y', z' 

∈ Y.   

Let f  : (X; ,0) →(Y; ',0') be a homomorphism of AT-

algebras,   =<�̃�, 𝜆> is a cubic AT-idealof X has sup 

and inf properties and β =<�̃�β, 𝜆β>the image of   =<�̃�, 

𝜆β>under 
f

. 

Since   =<�̃�, 𝜆> is a cubic AT-ideal of X, we 

have(�̃�)(0) ≽�̃� (x), and (𝜆)(0)≤𝜆 (x), for all x ∈X.  

 Note that, 0 ∈
1f (0') where 0,0' are the zero of X and Y, 

respectively. Thus  

)0(~)(~sup)'0(~

)'0(1







 tr
ft  ≽�̃�(x) =

)'(~)(~sup
)'(1

xtr
xft

 
 

, 

)()0()(inf)'0(
)'0(1

xt
ft







 

=

)'()(inf
)'(1

xt
xft

 
 

, for all x ∈X, which implies 

that ~
(0') ≽

)'(~ x , and 
)'()'0( x  

, 

for all x' ∈Y.  

For any x', y', z' ∈ Y, let x0∈𝑓−1(x'), y0∈𝑓−1(y'), and 

z0∈𝑓−1(z')be such that  

)(~sup)*((~

))''*('(
000

1

trzyx
zyxft







 

, 

)(~sup)(~

)'(
0

1

try
yft







 

 and  
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)}({~
00 zxf  = 
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)(~sup 00

)''()( 1
00

zxr
zxfzx
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. Also, 

)(inf))*((
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000 1
tzyx
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,
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0 1
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and  

)}({)( 0000 zxfzx  
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zx
zxfzx
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. Then  

)''(~ zx
)(~sup

)''(1
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= 
)(~

00 zx   

≽rmin { ~
 (x0 (y0 z0)), ~

 (y0)},  

=  rmin{ 

)(~sup
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tr
zyxft


 



,

)(~sup
)'(1

tr
yft


 



} 

 = rmin { 
))''*('(~ zyx , 

)'(~ y
}and 

 )''( zx )(inf
)''(1

t
zxft









)''( zx   

≤ max {
))*(( 000 zyz 

, 
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} 

= max {

)(inf
))''*('(1

t
zyxft


 


, 

)(inf
)'(1

t
yft


 


} 

Hence, β is a cubic AT-ideal of Y.  ⌂ 

 

6. Cartesain product of cubic AT-ideals 

In the section, we will provide some definition on Cartesain 

product of cubic AT-ideals in AT-algebras. 

 

Definition 6.1[10]. Let 1⟨�̃� 1,𝜆 1⟩and2⟨�̃� 2,𝜆 2⟩ 
be two cubic subsets of AT-algebras X1 and 

X2respectively.Cartesian product of cubic subsets 1and2 

is denoted by1 × 2=〈�̃� 1× 2, 𝜆 1× 2〉 and is defined 

as, for all x,y∈X1×X2: 

�̃� 1× 2x,y = rmin {�̃� 1x,�̃� 2(𝑦)},𝜆 1× 2x,y = max 

{𝜆 1x,𝜆 2y}.  

 

Remark 6.2. Let X and Y be AT-algebras. We defined  

on X×Y byx,yu,v = xu, yv for every 

x,y,u,vX×Y. Clearly X×Y, , 0,0 is an AT-algebra.  

 

Definition 6.3. A cubic subset1 ×  2= 

〈�̃� 1× 2, 𝜆 1× 2〉 of X1×X2is called a cubic AT-ideal of 

X1×X2 if, for all x1,y1,x2,y2,x3,y3∈X1×X2: 

1�̃� 1× 20,0≽ �̃� 1× 2 x,y and𝜆 1× 20,0 ≤
𝜆 1× 2x,y  
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2𝜇 1× 2x1, y1x3, y3≽ 

rmin{�̃� 1× 2x1, y1x2, y2x3, y3, 

�̃� 1× 2x2, y2},and 

𝜆 1× 2x1, y1x3, y3≤max{𝜆 1× 2x1, y1x2, y2

x3, y3,𝜆 1× 2x2, y2}. 

 

Theorem 6.4. Let1=〈�̃� 1, 𝜆 1〉and2=〈�̃� 2, 𝜆 2〉be 

twocubic AT-ideals of AT-algebras X1and𝑋2,respectively. 

Then1 ×  2=〈�̃� 1× 2, 𝜆 1× 2〉 is acubic AT-ideal of 

AT-algebra X1×X2.  

Proof. For any x,y∈ X1×X2, 

𝜇 1× 2 (0,0)= rmin { 𝜇 1(0),𝜇 2 (0)}≽ rmin{ 𝜇 1( x,𝜇 2y } 

= 𝜇 1× 2(x,y) 

𝜆 1× 2(0,0) = max {𝜆 1(0),𝜆 2(0)}≤ max {𝜆 1(x),𝜆 2(y)} 

=𝜆1× 2(x,y) 

For anyx1 , 𝑦1,x2, 𝑦2,x3, 𝑦3∈ X1×X2,  

𝜇 × 2x1 ∗ x3, 𝑦1 ∗ 𝑦3=rmin{𝜇 1(x1 ∗ x3), 𝜇 2(𝑦1 ∗ 𝑦3)}, 

≽rmin{rmin{𝜇 1(x1 ∗ (x2 ∗ x3)),𝜇 1(x2)},rmin{𝜇 2(𝑦1 ∗ (𝑦2 ∗
𝑦3)),𝜇 2(𝑦2)}} 

=rmin{rmin{�̃�1(x1 ∗ (x2 ∗ x3)),�̃� 2(𝑦1 ∗ (𝑦2 ∗ 𝑦3))}, 

rmin{{�̃� 2(x2),�̃� 2(𝑦2)} 

=rmin{𝜇 1× 2((x1 ∗ (x2 ∗ x3)),(𝑦1 ∗ (𝑦2 ∗ 𝑦3))) 

, �̃� 1× 2(x2, 𝑦2)} 

≽rmin{𝜇 1× 2(x1, 𝑦1) ∗ ((x2, 𝑦2) ∗ (x3, 𝑦3)), 𝜇 1× 2 (x2, 𝑦2)} 

𝜆 1× 2(x1 ∗ x3 , 𝑦1 ∗ 𝑦3)= max{𝜆 1(x1 ∗ x3),𝜆 2(y1 ∗ y3)} 

≤ max{max{𝜆 1(x1 ∗ (x2 ∗ x3)),𝜆 1(x2)},max{𝜆 2(𝑦1 ∗ (𝑦2 ∗
𝑦3)),𝜆 2(𝑦2)}} 

=max{max{𝜆 1(x1 ∗ (x2 ∗ x3)), 𝜆 2(𝑦1 ∗ (𝑦2 ∗ 𝑦3)), 

max{𝜆 1(x2),λ 2(y2)}} 

 =max{𝜆 1× 2((x1 ∗ (x2 ∗ x3)), (y1 ∗ (y2 ∗
y3)),𝜆 1× 2(x2, y2)} 

 ≤max{𝜆 1× 2(x1, 𝑦1) ∗ ((x2, 𝑦2) ∗ (x3, 𝑦3)), 𝜆 1× 2(x2, 𝑦2)} 

Hence,1 × 2=〈𝜇 1× 2, 𝜆 1× 2〉 is cubic AT-ideal of AT-

algebra X1×X2.  ⌂ 

 

Theorem 6.5. If1 × 2=〈�̃� 1× 2, 𝜆 1× 2〉is a cubic 

AT-ideal of AT- algebra X1×X2 and if (x1,𝑦1)≤  (x2,𝑦2), 

we have 〈�̃� 1× 2(x1, y1) ≼ 𝜆 1× 2 (x2, 𝑦2)〉and 

 𝜆 1× 2(x2, 𝑦2) ≥ 𝜆 1× 2(x1, 𝑦1),for 

all(x1, y1),(x2, y2) ∈ 𝑋1 × 𝑋2. 

Proof: Let(x1, y1),(x2, y2) ∈ 𝑋1 × 𝑋2such that 

(x1, y1) ≤ (x2, y2) ⇒ (x2, y2) ∗ (x1, y1)=(0,0).This 

together with 

(0,0)(x1 , y1)=(x1 , y1)=and �̃� 1× 2(x2, y2) ≼ �̃� 1× 2 (0,0). 

Also, 𝜆 1× 2(x2, y2) ≥ 𝜆 1× 2(0, 0). Consider 

�̃� 1× 2( (0,0) ∗ (x1, y1))=�̃� 1× 2(x1, y1) 

≽ {�̃� 1× 2((0,0) ∗ ((x2, y2) ∗ (x1, y1))),�̃� 1× 2(x2, y2)} 

= rmin {�̃� 1× 2((0,0)(0,0)),�̃� 1× 2(x2, y2)} 

= rmin{�̃� 1× 2(0,0),�̃� 1× 2(x2, y2)} 

=�̃� 1× 2(x2, y2) 

𝜆 1× 2((0,0),(x1, y1)) = 𝜆 1× 2(x1, y1) 

≤{𝜆 1× 2((0,0)(x2,y2)(x1, y1))), 𝜆 1× 2(x2, y2)} 

=max {𝜆 1× 2((0,0)(0,0)),𝜆 1× 2(x2, y2)} 

= max{𝜆 1× 2(0,0),𝜆 1× 2(x2, y2)} 

=𝜆 1× 2(x2, y2) 

This shows that �̃� 1× 2(x2, y2) ≼ �̃� 1× 2(x1, y1) 

and 𝜆 1× 2(x2, y2) ≥ 𝜆 1× 2(x1, y1), for 

all (x1, y1),(x2, y2) ∈ 𝑋1 × 𝑋𝟐.  ⌂ 

 

Theorem 6.6. If1 × 2=〈�̃� 1× 2, 𝜆 1× 2〉is a cubic 

AT-ideal of AT- algebra 𝑋1 × 𝑋2. 

If(x1, y1) ∗ (x2, y2) ≤ (x3, y3)holds𝑋1 × 𝑋2, then we have 

�̃� 1× 2(x2, 𝑦2) ≽rmin{�̃� 1× 2(x1, y1), �̃� 1× 2(x3, y3)} 

and 

𝜆 1× 2(x2, y2) ≤ max{𝜆 1× 2(x1, y1), 𝜆 1× 2(x3, y3)}, 

for all (x1,y1),(x2,y2),(x3,y3)∈ 𝑋1 × 𝑋2. 

Proof Let (x1,y1),(x2,y2),(x3,y3)∈ 𝑋1 × 𝑋2 and 

let(x1, y1) ∗ (x2, y2) ≤ (x3, y3) holds in 𝑋1 × 𝑋2, 

then(x3,y3)( (x1,y1) (x2,y2)) = (0,0). 

Now for any (0,0)= (x3,y3) and from (2) 

 

�̃� 1× 2((x3, y3)(x2,y2))≽rmin{�̃� 1× 2((x3,y3)( (x1,y1)(x2,y2))),�̃� 1× 2(x1, y1)}, 

�̃� 1× 2((x3, y3)(x2,y2))�̃� 1× 2 ((0,0)(x2,y2))=�̃� 1× 2(x2,y2) 

≽ rmin{�̃� 1× 2((x1,y1) (x2,y2)),�̃� 1× 2 (x1,y1) } 

≽rmin{rmin{�̃� 1× 2((x1,y1)( (x3,y3)(x2,y2))),�̃� 1× 2(x3, y3)},�̃� 1× 2(x1, y1)} 

=rmin{rmin{�̃� 1× 2((x3, y3)( (x2, y2)(x1,y1))),�̃� 1× 2(x3, y3)},�̃� 1× 2(x1, y1)} 

=rmin{rmin{�̃� 1× 2((0,0), �̃� 1× 2(x3, y3)},�̃� 1× 2(x1, y1)} 

= rmin{�̃� 1× 2(x3, y3)},�̃� 1× 2(x1, y1)} 

= rmin{�̃� 1× 2(x1, y1),�̃� 1× 2(x3, y3)} and from(2) 

𝜆 1× 2((x3, y3)(x2,y2))≤ max{𝜆 1× 2((x3,y3)( (x1,y1) (x2,y2))),𝜆 1× 2(x1, y1)}, 

We have, 𝜆 1× 2 ((0,0)(x2,y2))=𝜆 1× 2(x2,y2) 

≤max{𝜆 1× 2((x1,y1) (x2,y2)),𝜆 1× 2 (x1,y1) } 

≤ max{max {𝜆 1× 2((x1,y1)( (x2,y2)(x3,y3))),𝜆 1× 2(x3, y3)},𝜆 1× 2(x1, y1)} 

=max{max {𝜆 1× 2((x3, y3)( (x2, y2)(x1,y1))),𝜆 1× 2(x3, y3)},𝜆 1× 2(x1, y1)} 

=max{max {𝜆 1× 2((0,0), 𝜆 1× 2(x3, y3)},𝜆 1× 2(x1, y1)} 

=max{𝜆 1× 2(x3, y3),𝜆 1× 2(x1, y1)} 

=max{𝜆 1× 2(x1, y1),𝜆 1× 2(x3, y3)}.This completes the proof. ⌂ 

 

Definition 6.7. Let1 × 2= {�̃� 1× 2,𝜆 1× 2} is a cubic 

AT-ideal of AT-algebra X1×X2and for any �̃� ∈ 𝐷[0,1] and 

s∈ [0,1] the set 

 U(1 × 2; �̃�, 𝑠)={(x,y)∈ 𝑋1 × 𝑋2:�̃� 1× 2(x,y)≽
�̃�, 𝜆 1× 2(x,y)≤ 𝑠}, is called the cubic level set of1 ×
2= 〈�̃� 1× 2, 𝜆 1× 2〉. 
 

Theorem 6.8. Let1 × 2 = {�̃� 1× 2,𝜆 1× 2} is a cubic 

subset of AT-algebra 𝑋1 × 𝑋2, then 1 × 2 = 

{�̃� 1× 2,𝜆 1× 2} is a cubic AT-ideal of AT-algebra 

X1×X2 if and only if, for any �̃� ∈ D[0,1] ands∈ [0,1] the set 

U(1 × 2; �̃�, 𝑠 ) is either empty or a AT-ideal of X1×X2. 

Proof: Let1 × 2 = {�̃� 1× 2,𝜆 1× 2} is a cubic AT-

ideal of AT- algebra X1×X2, for any �̃� ∈ 𝐷[0,1] and s∈
[0,1]define the set 

 U(1 × 2; �̃�, 𝑠)={(x,y)∈ 𝑋1 × 𝑋2:�̃� 1× 2(x,y)≽
�̃�, 𝜆 1× 2(x,y)≤ 𝑠}.Since  

U(1 × 2; �̃�, 𝑠 ) ≠ ∅, let (x,y) ∈ U(1 × 2; �̃�, 𝑠) implies 

�̃� 1× 2 (x,y) ≽ �̃� and𝜆 1× 2(x,y)≤ 𝑠. So �̃� 1× 2 (0,0) ≽
�̃� 1× 2 (x,y) ≽ �̃� 

⟹ �̃� 1× 2 (0,0) ≽ �̃�,𝜆 1× 2(0,0)≤ 𝜆 1× 2(x,y)≤ 𝑠 ⟹
𝜆 1× 2(0,0)≤ 𝑠,This shows that (0,0) ∈U(1 × 2; �̃�, 𝑠 ). 
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 Let (x1,y1)((x2, y2)(x3, y3)) ∈U(1 × 2; �̃�, 𝑠 ) and 

(x2,y2) ∈U(1 × 2; �̃�, 𝑠 ), this implies  

𝜇 1× 2((x1,y1)((x2, y2)(x3, 𝑦3)))  ≽ �̃�,𝜇 1× 2 (x2,y2) ≽ �̃�, 

𝜆 1× 2((x1,y1)((x2 , y2)(x3, y3)))  ≤s,𝜇 1× 2 (x2,y2) ≤s. 

�̃� 1× 2((x1,y1)(x3, y3)) ≽rmin{�̃� 1× 2 

((x1,y1)((x2, y2)(x3, y3))),𝜇 1× 2 (x2,y2)}≽ rmin{�̃�, 𝑡}̃=�̃� 

𝜆 1× 2((x1,y1)(x3, y3)) ≤max𝜆 1× 2 

((x1,y1)((x2, y2)(x3, y3))),�̃� 1× 2 (x2,y2)} 

≤max {s,s} =s 

 

This implied that (x1,y1)(x3, y3)  ∈U(1 × 2; �̃�, 𝑠 ). 

hence,U(1 × 2; �̃�, 𝑠 ) is an AT-ideal of 𝑋1 × 𝑋2.  

Conversely, suppose U(1 × 2; �̃�, 𝑠 )is an AT-ideal of 

𝑋1 × 𝑋2, for any�̃� ∈ D[0,1] 
And s∈ [0,1]. Assume (x1,y1) ∈ 𝑋1 × 𝑋2, such that  

�̃� 1× 2 (0,0)≺ �̃� 1× 2 (x1,y1),𝜆 1× 2(0,0)> 𝜆 1× 2 

(x1,y1). 

Put�̃�∘=
1

2
 {�̃� 1× 2 (0,0)+�̃� 1× 2 (x1,y1)}⟹ �̃� 1× 2 

(0,0)≺ �̃�∘ ≺ �̃� 1× 2 (x1,y1), 

𝑠°= 
1

2
 {𝜆 1× 2 (0,0)+𝜆 1× 2 (x1,y1)}⟹ 𝜆 1× 2 (0,0)>

𝑡∘ > 𝜆 1× 2 (x1,y1).This implies (x1,y1) ∈U(1 × 2; �̃�, 𝑠 

) but (0,0)∉U(1 × 2; �̃�, 𝑠 ),which is contradiction.  

 

Therefore �̃� 1× 2 (0,0)≽ �̃� 1× 2 (x,𝑦) and𝜆 1× 2(0,0)≤
𝜆 1× 2(x,y),for all (x,𝑦))∈ 𝑋1 × 𝑋2.Assum(x1,y1),(x2,y2), 

(x3,y3)∈ 𝑋1 × 𝑋2 such that  

�̃� 1× 2((x1,y1)(x3, y3)) <rmin{𝜆 1× 2 

((x1,y1)((x2, y2)(x3, y3))),�̃� 1× 2 (x2,y2)}. 

Let�̃�∘=
1

2
�̃� 1× 2 ((x1, y1)(x3, y3)) +rmin{�̃� 1× 2((x1,y1)

((x2, y2)(x3, y3))),�̃� 1× 2(x2,y2)}} 

Then �̃� 1× 2((x1,y1)(x3, y3)) ≺
 �̃�∘ ≺rmin{�̃� 1× 2((x1,y1)((x2, y2)(x3, y3))), 

�̃� 1× 2 (x2,y2)}. Also 

𝜆 1× 2 

((x1,y1)(x3, y3)) >max{𝜆 1× 2((x1,y1)((x2, y2)(

x3, y3))),𝜆 1× 2(x2,y2)}. 

Let 𝑠∘=
1

2
 

{𝜆 1× 2 ((x1, y1)(x3, y3)) +max{𝜆 1× 2((x1,y1)((

x2, y2)(x3, y3))), 

𝜆 1× 2 (x2,y2)}}. Then  

𝜆 1× 2 ((x1, y1)(x3, y3)) >
𝑠∘ >max{𝜆 1× 2((x1,y1)((x2, y2)(x3, y3))), 

𝜆 1× 2 (𝑥2,𝑦2)}. 

This show that(x1,y1)((x2, y2)(x3, y3)) ∈U(1 × 2; �̃�, 𝑠 

),(x2, y2)∈U(1 × 2; �̃�, 𝑠 ). 

But (x1, y1)(x3, y3)  ∉U(1 × 2; �̃�, 𝑠 ) which is a 

contradiction,therefore 

�̃� 1× 2 

((x1,y1)(x3, y3)) ≽rmin{�̃� 1× 2((x1,y1)((x2, y2)(

x3, y3))),�̃� 1× 2 (x2,y2)}. 

Similarly,  

𝜆 1× 2 ((x1, y1)(x3, y3)) ≤max{𝜆 1× 2((x1,y1)((x2, y2

)(x3, y3))),𝜆 1× 2 (x2,𝑦2)}. 

Hence 1 × 2 = {�̃� 1× 2,𝜆 1× 2} is a cubic AT-ideal 

of AT-algebra𝑋1 × 𝑋2. ⌂ 
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