

WWJMRD 2018; 4(4): 34-44 www.wwjmrd.com International Journal Peer Reviewed Journal Refereed Journal Indexed Journal UGC Approved Journal Impact Factor MJIF: 4.25 E-ISSN: 2454-6615

Dr. Areej Tawfeeq Hameed

Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq

Badia Hassan Hadi

Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq Cubic AT-Subalgebras and AT-Ideals on AT-Algebra

Dr. Areej Tawfeeq Hameed, Badia Hassan Hadi

Abstract

In this paper, the notions of cubic AT-ideals and cubic AT-subalgebras in AT-algebras are introduced and several properties are investigated. The image and inverse image of them in AT-algebras are defined and studied.

Keywords: AT-algebras, cubic AT-ideals, cubic AT-sub algebras, homomorphism of cubic AT-ideals.

2010 Mathematics Subject Classification: 06F35, 03G25, 08A72.

1. Introduction

K. Is'eki and S. Tanaka ([5]) studied ideals and congruences of BCK-algebras. S. M. Mostafa and et al. ([1],[9]) were introduced a new algebraic structure which is called KUS-algebras and investigated some related properties. The concept of a fuzzy set, was introduced by L.A. Zadeh [6]. O.G. Xi [8] applied the concept of fuzzy set to BCK-algebras and gave some of its properties. Y. B. Jun and et al. [10] Were introduced the notion of cubic ideals in BCK-algebras, and they discussed some related properties of it. In ([3]), Areej Tawfeeq Hameed and et al. introduced the notion of cubic KUS-ideals of KUS-algebra and they were studied the homomorphic image and inverse image of cubic KUS-ideals. In this paper, we introduce the notion of cubic AT-ideals of AT-algebra.

2. Preliminaries

In this section, we give some basic definitions and preliminaries proprieties of AT-ideals and fuzzy AT-ideals in AT-algebra such that we include some elementary aspects that are necessary for this paper.

Definition 2.1[2]. An **AT-algebra** is a nonempty set X with a constant (0) and a binary operation (*) satisfying the following axioms: for all x, y, $z \in X$,

(i) $(x^*y)^*((y^*z)^*(x^*z))=0,$ (ii) $0^*x = x,$

(iii) $x^* = 0$.

In X, we can define a binary relation (\leq) by: $x \leq y$ if and only if, y * x = 0.

Example 2.2 [2].Let $X = \{0, 1, 2, 3, 4\}$ in which (*) is defined by the following table:

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	4
2	0	1	0	3	3
3	0	0	2	0	2
4	0	0	0	0	0

It is easy to show that (X ;*, 0) is an AT-algebra.

Correspondence:

Dr. Areej Tawfeeq Hameed Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq **Proposition 2.3 [2].** In any AT-algebra (X ;*, 0), the following properties holds: for all x, y, $z \in X$;

a) z * z = 0,

- b) x = 0 * (0*x),
- c) $z^*(x * z) = 0$,
- d) $y^*((y^*z)^*z) = 0,$
- e) x * y = 0 implies that x * 0 = y * 0,
- f) 0*x=0*y implies that x=y.

Proposition 2.4[2]. In any AT-algebra (X ;*, 0), the following properties holds: for all x, y, $z \in X$;

- a) $x \le y$ implies that $y * z \le x * z$,
- b) $x \le y$ implies that $z * x \le z * y$,
- c) $x * y \le z \text{ imply } z * y \le x$
- d) $(y *z) *(x *z) \le x *y$,
- e) $z * x \le z * y$ implies that $x \le y$ (left cancellation law).

Definition 2.5[2]. A nonempty subset S of an AT-algebra (X ;*, 0) is called an AT-subalgebra of AT-algebra X if for all x, $y \in S$, then $x * y \in S$.

Definition 2.6[2]. A nonempty subset I of an AT-algebra (X ;*, 0)is called an AT-ideal of AT-algebra X if it satisfies the following conditions: for all x, y, $z \in X$. AT₁) $0 \in I$;

 $AT_2) \ x \ \ast \ (y \ \ast z) \in I \ and \ y \in I \ imply \ x \ast z \in I.$

Definition 2.7[6]. Let X be a nonempty set, a fuzzy subsetµ in X is a function

$$f(\mu)(y) = \begin{cases} \sup\{\mu(x) : x \in f^{-1}(y)\} \\ 0 \quad otherwise \end{cases}$$

 $\mu: X \to [0,1].$

Definition 2.8[7]. Let X be a set and μ be a fuzzy subset of X, for $t \in [0,1]$, the set $\mu_t = \{x \in X | \mu(x) \ge t\}$ is called a level subset of μ .

Definition 2.9[2]. Let (X ;*, 0) be an AT-algebra. A fuzzy set μ in X is called a fuzzy AT-subalgebra of X if for all x, $y \in X$, then $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \}$.

Definition 2.10[2]. Let (X ; *, 0) be an AT-algebra. A fuzzy set μ in X is called **a fuzzy AT-ideal of X** if it satisfies the following conditions: for all x, y and $z \in X$, $(AT_1)\mu(0) \ge \mu(x)$. $(AT_2)\mu(x * z) \ge \min \{ \mu(x*(y * z)), \mu(y) \}.$

Definition 2.11[4]. Let (X; *, 0) and $(Y; *`, 0^{`})$ benonempty sets. The mapping $f: (X; *, 0) \rightarrow (Y; *`, 0^{`})$ is called a homomorphism if it satisfies f(x * y) = f(x) *`f(y), for all, $y \in X$. The set $\{x \in X | f(x) = 0'\}$ is called the kernel of f and is denoted by ker f.

Definition 2.12[4]. Let $f : (X; *, 0) \rightarrow (Y; *', 0')$ be a mapping from the set X to a set Y. If μ is a fuzzy subset of X, then the fuzzy subset $f(\mu)$ in Y defined by:

if
$$f^{-1}(y) = \{x \in X, f(x) = y\} \neq \phi$$

is said to be the image of μ under *f*.

Similarly if β is a fuzzy subset of Y, then the fuzzy subset $\mu = (\beta \ ^{\circ}f)$ in X, (i.e the fuzzy subset defined by μ (x) = $\beta(f(x))$ for all $x \in X$) is called the pre-image of β under *f*.

Theorem 2.13[2]. Let $f: (X; *, 0) \rightarrow (Y; *`, 0`)$ be a homomorphism of AT-algebras, then :

 $(\mathbf{F}_1)^f(0) = 0'.$

(F₂) If S is an AT-subalgebra of X, then f (S) is an AT-subalgebra in Y, where f is onto.

(F₃) If B is an AT-subalgebra in Y, then f^{-1} (B) is an AT-subalgebra in X.

(F₄) If I is an AT-ideal of X, then f (I) is an AT-ideal in Y, where f is onto.

(F₅) If J is an AT- ideal in Y, then f^{-1} (J) is an AT-ideal in X.

(F₆) f is injective if and only if, ker $f = \{0\}$.

Now, we will recall the concept of interval-valued fuzzy subsets.

Remark 2.14[3, 10]. An interval number is $\tilde{a} = [a^-, a^+]$, where $0 \le a^- \le a^+ \le 1$. Let I be a closed unit interval, (i.e., I = [0, 1]). Let D[0, 1] denote the family of all closed subintervals of I = [0, 1], that is, D[0, 1] = { $\tilde{a} = [a^-, a^+] | a^- \le a^+$, for $a^-, a^+ \in I$ }.

Now, we define what is known as refined minimum (briefly, rmin) of two element in D [0,1].

Definition 2.15[3,10]. We also define the symbols (\geq) , (\leq) , (=), "rmin " and "rmax " in case of two elements in D[0, 1]. Consider two interval numbers (elements numbers)

 $\tilde{a} = [a^-, a^+], \tilde{b} = [b^-, b^+] \text{in } D[0, 1] : \text{Then}$ (1) $\tilde{a} \ge \tilde{b} \text{if and only if, } a^- \ge b^- \text{ and } a^+ \ge b^+,$ (2) $\tilde{a} \le \tilde{b} \text{if and only if, } a^- \le b^- \text{ and } a^+ \le b^+,$ (3) $\tilde{a} = \tilde{b} \text{if and only if, } a^- = b^- \text{ and } a^+ = b^+,$ (4) rmin { \tilde{a}, \tilde{b} } = [min { a^-, b^- }, min { a^+, b^+ }],
(5) rmax { \tilde{a}, \tilde{b} } = [max { a^-, b^- }, max { a^+, b^+ }],

Remark 2. 16[3,10]. It is obvious that $(D[0, 1], \leq, \lor, \land)$ is a complete lattice with $\tilde{0} = [0,0]$ as its least element and $\tilde{1} =$

[1, 1] as its greatest element. Let $\widetilde{a}_i \in D[0, 1]$ where $i \in \Lambda$. We define $\inf_{i \in \Lambda} \widetilde{a} = [r \inf_{i \in \Lambda} a^-, r \inf_{i \in \Lambda} a^+], r \sup_{i \in \Lambda} \widetilde{a} = [r \sup_{i \in \Lambda} a^-, r \sup_{i \in \Lambda} a^+].$

Definition 2.17[3,10]. An interval-valued fuzzy subset $\tilde{\mu}_A$ on X is defined as

$$\begin{split} \widetilde{\mu_A} = &\{< \mathbf{x}, \ [\mu_A^-(\mathbf{x}), \mu_A^+(\mathbf{x}) \]>| \ \mathbf{x} \in \mathbf{X} \}. \text{ Where } \mu_A^-(\mathbf{x}) \leq \mu_A^+(\mathbf{x}), \\ \text{for all } \mathbf{x} \in \mathbf{X}. \text{ Then the ordinary fuzzy subsets} \\ \mu_A^-: \mathbf{X} \to [0, 1] \text{ are called a lower fuzzy subset and} \\ \text{an upper fuzzy subset of } \widetilde{\mu_A} \text{ respectively. Let } \widetilde{\mu_A} \ (\mathbf{x}) = \\ &[\mu_A^-(\mathbf{x}), \mu_A^+(\mathbf{x})], \\ \widetilde{\mu_A}: \mathbf{X} \to \mathbf{D}[0, 1], \text{ then } \mathbf{A} = \{< \mathbf{x}, \widetilde{\mu_A} \ (\mathbf{x}) > | \ \mathbf{x} \in \mathbf{X} \}. \end{split}$$

Definition 2.18([10]). Let (X ;*, 0) be a nonempty set. A cubic set Ω in a structure $\Omega = \{< x, \tilde{\mu}_{\Omega}(x), \lambda_{\Omega}(x) > | x \in X\}$, which is briefly denoted by $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$, where $\tilde{\mu}_{\Omega} : X \to D[0, 1], \tilde{\mu}_{\Omega}$ is an interval-valued fuzzy subset of X and $\lambda_{\Omega} : X \to [0, 1], \lambda_{\Omega}$ is a fuzzy subset of X.

Definition 2.19([10]). For any $\Omega_i = \{(x, \tilde{\mu}_{\Omega i}(x), v_{\Omega i}(x) | x \in X)\}$ where $i \in \Lambda, p$ -union and p-intresection is denoted by $\bigcup_{i \in \Lambda p} \Omega_i$ and $\bigcap_{i \in \Lambda p} \Omega_i$ and is defined respectively by:-

$$\bigcup_{i\in\Lambda p}\Omega_{i} = \left\{ \langle x, \left(\bigcup_{i\in\Lambda}\tilde{\mu}_{\Omega i}\right)(x), \left(\bigvee_{i\in\Lambda}v_{\Omega i}\right)(x) | x\in X \rangle \right\}, \bigcap_{i\in\Lambda p}\Omega_{i} = \left\{ \langle x, \left(\bigcap_{i\in\Lambda}\tilde{\mu}_{\Omega i}\right)(x), \left(\bigwedge_{i\in\Lambda}v_{\Omega i}\right)(x) | x\in X \rangle \right\}.$$

Definition 2.19([10]). For a family $\Omega_i = \{\langle x, \tilde{\mu}_{\Omega i}(x) \rangle | x \in X\}$ on fuzzy sets in X}where $i \in \Lambda$ and Λ is index set, we

$$\bigvee_{i \in \Lambda} \Omega_i = \left(\bigvee_{i \in \Lambda} \tilde{\mu}_{\Omega i}\right)(x) = \sup\{\tilde{\mu}_{\Omega i}(x) | i \in \Lambda\}, \\ \bigwedge_{i \in \Lambda} \Omega_i = \left(\bigwedge_{i \in \Lambda} \tilde{\mu}_{\Omega i}\right)(x) = \inf\{\tilde{\mu}_{\Omega i}(x) | i \in \Lambda\},$$

3. Cubic AT-subalgebras of AT-algebras

In this section, we will introduce a new notion called cubic AT-subalgebra of AT-algebras and study several properties of it.

Definition 3.1. Let (X ;*, 0)be an AT-algebra. A cubic set $\Omega = \langle \tilde{\mu}_{\Omega}(\mathbf{x}), \lambda_{\Omega}(\mathbf{x}) \rangle$ of X is called cubic AT-subalgebra of X if, for all x, y, z \in X:

 $\tilde{\mu}_{\Omega}(\mathbf{x} * \mathbf{z}) \geq \min{\{\tilde{\mu}_{\Omega}(\mathbf{x}), \tilde{\mu}_{\Omega}(\mathbf{y})\}}, \text{ and } \lambda_{\Omega}(\mathbf{x}^*\mathbf{y}) \leq \max{\{\lambda_{\Omega}(\mathbf{x}), \lambda_{\Omega}(\mathbf{y})\}}.$

Example 3.2. Let $X = \{0,1,2,3\}$ in which the operation as in example (*) be define by the following table:

*	0	1	2	3
0	0	1	2	3
1	0	0	2	3
2	0	0	0	3
3	0	0	0	0

Then (X;*,0) is an AT-algebra. Define a cubic set $= \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ of X as follows:

fuzzy subset $\mu: X \rightarrow [0,1]$ by: $\tilde{\mu}_{\Omega}(x) =$ $\begin{cases} [0.3,0.9] & \text{if } x = \{0,1\} \\ [0.1,0.6] & \text{otherwise} \end{cases}$

 $\begin{cases} 0.1 & if \ x = \{0,1\} \\ 0.6 & otherwise \\ = < \tilde{\mu}_{\Omega}, \lambda_{\Omega} > \text{ is a cubic AT-subalgebra of X.} \end{cases}$ The cubic set Ω

Proposition 3.3. Let $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ be a cubic ATsubalgebra of AT-algebra (X ;*, 0), then $\tilde{\mu}_{\Omega}(0) \ge \tilde{\mu}_{\Omega}(x)$ and $\lambda_{\Omega}(0) \le \lambda_{\Omega}(x)$, for all $x \in X$. **Proof.** For all $x \in X$, we have $\tilde{\mu}_{\Omega}(0) = \tilde{\mu}_{\Omega}(x * x) \ge \min\{\tilde{\mu}_{\Omega}(0^{*}(0^{*}x)), \tilde{\mu}_{\Omega}(x)\}$ $= \min\{\Omega(0^{*}(0^{*}x)), \tilde{\mu}_{\Omega}(x)\} = \min\{[\mu_{A}^{-}(x), \mu_{A}^{+}(x)], [\mu_{A}^{-}(x), \mu_{A}^{+}(x)]\}$ $= \min\{[\mu_{A}^{-}(x), \mu_{A}^{+}(x)]\} = \tilde{\mu}_{\Omega}(x).$

Similarly, we can show that $\lambda_{\Omega}(0) \leq \max \{ [\lambda_{\Omega}(x), \lambda_{\Omega}(x)] \} = \lambda_{\Omega}(x)$. \triangle

Proposition 3.4. If a cubic set $\Omega = (\tilde{\mu}_{\Omega}, v_{\Omega})$ of X is a cubic AT-subalgebra, then $\Omega(v + v) = \Omega(v + (0 + (0 + v)))$ for all $v + v \in V$

 $\Omega(x * y) = \Omega(x * (0 * (0 * y))), \text{ for all } x, y \in X.$

Proof.

Let X be an AT-algebra and x,y \in X, then we know that y=0*(0*y). Hence,

define the join (V) and meet (Λ) operations as follows:

$$\begin{split} &\tilde{\mu}_{\Omega}(x * y) = \tilde{\mu}_{\Omega}(x * (0 * (0 * y))) \text{ and } v_{\Omega}(x * y) = v_{\Omega}(x * (0 * (0 * y))). \\ & \text{Therefore} \\ & \Omega(x * y) = \Omega(x * (0 * (0 * y))). \ \triangle \end{split}$$

Theorem 3.5. Let (X ;*, 0) be an AT-algebra and A cubic set $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ of X. A cubic set Ω of X is a cubic AT-subalgebra of X if and only if, μ_{A}^{-}, μ_{A}^{+} and λ_{Ω} are cubic AT-subalgebras of X.

Proof. If μ_A^- and μ_A^+ are cubic AT-subalgebras of X. For any x, y \in X. Observe

$$\begin{split} \widetilde{\mu}_{\Omega} \left(\mathbf{x}^* \mathbf{y} \right) &= \left[\mu_A^- \left(\mathbf{x}^* \mathbf{y} \right), \mu_A^+ \left(\mathbf{x}^* \mathbf{y} \right) \right] \succcurlyeq \left[\min \left\{ \mu_A^- \left(\mathbf{x} \right), \, \mu_A^- \left(\mathbf{y} \right) \right\}, \\ \min \left\{ \mu_A^+ \left(\mathbf{x} \right), \, \mu_A^+ \left(\mathbf{y} \right) \right\} \right] \end{split}$$

 $= \min \{ [\mu_{A}^{-}(\mathbf{x}), \mu_{A}^{+}(\mathbf{x}), [\mu_{A}^{-}(\mathbf{y}), \mu_{A}^{+}(\mathbf{y})] \} = \min \{ \tilde{\mu}_{\Omega} \\ (\mathbf{x}), \tilde{\mu}_{\Omega} (\mathbf{y})].$

Similarly, we can show that λ_{Ω} (x * y) $\leq \max \{ [\lambda_{\Omega} (x), \lambda_{\Omega} (y)] \}$.

From what was mentioned above we can conclude that Ω is a cubic AT-subalgebra of X.

Conversely, suppose that Ω is a cubic AT-subalgebra of X. For all x, y \in X, we have

 $[\mu_A^-(\mathbf{x}^*\mathbf{y}), \mu_A^+(\mathbf{x}^*\mathbf{y})] = \tilde{\mu}_\Omega(\mathbf{x}^*\mathbf{z}) \ge \min\{\tilde{\mu}_\Omega(\mathbf{x}), \tilde{\mu}_\Omega(\mathbf{y})\}$

 $= \min\{[\mu_{A}^{-}(\mathbf{x}),\mu_{A}^{+}(\mathbf{x})], [\mu_{A}^{-}(\mathbf{y}), \mu_{A}^{+}(\mathbf{y})]\} = [\min\{\mu_{A}^{-}(\mathbf{x}),\mu_{A}^{-}(\mathbf{y})\}, \min\{\mu_{A}^{+}(\mathbf{x}),\mu_{A}^{+}(\mathbf{y})\}].$

Therefore, $\mu_A^-(\mathbf{x} * \mathbf{y}) \ge \min\{\mu_A^-(\mathbf{x}), \mu_A^-(\mathbf{y})\}$ and $\mu_A^+(\mathbf{x} * \mathbf{y}) \ge \min\{\mu_A^+(\mathbf{x}), \mu_A^+(\mathbf{y})\}$.

Similarly, we can show that $\lambda_{\Omega} (x * y) \le \max{\{\lambda_{\Omega} (x), \lambda_{\Omega} (y)\}}$

Hence, we get that μ_A^- , μ_A^+ and λ_Ω are cubic AT-subalgebras of X. \triangle

Theorem 3.6. The R-intersection of any set of cubic AT-subalgebra of X is also cubic AT-subalgebra of X.

Proof. Let $\Omega_i = \{\langle x, \tilde{\mu}_{\Omega i}, (x), v_{\Omega i}(x) \rangle | x \in X\}$ wheri $\in \Lambda$, be a set of cubic AT-subalgebra of Xand x, $y \in X$, then

 $(\bigcap \tilde{\mu}_{\Omega i})(x * y) = \operatorname{rinf} \tilde{\mu}_{\Omega i}(x * y) \geq \operatorname{rinf} \{\operatorname{rmin} \{\mu_{\Omega i}(x), \mu_{\Omega i}(y)\}\}$

 $= \min\{\min(\mu_{\Omega i}(x)), \min(\mu_{\Omega i}(y))\} = \min\{(\bigcap \tilde{\mu}_{\Omega i})(x), (\bigcap \tilde{\mu}_{\Omega i})(y)\} \text{ and }$

$$\left(\bigvee v_{\Omega i} \right) (x * y) = \sup v_{\Omega i} (x * y) \leq \sup\{\max\{v_{\Omega i}(x), v_{\Omega i}(y)\}\}$$

=max{sup(v_{\Omega i}(x)),sup(v_{\Omega i}(y))} = max{(\for v_{\Omega i})(x), (\for v_{\Omega i})(y)}.

Ω

Which shows that R-intresection works as a cubicATsubalgebra of X.

Theorem 3.7. The R-intresection of any set of cubic ATsubalgebra of Xis also cubic subalgebra of X.

Proof. Let $\Omega_i = \{\langle x, \tilde{\mu}_{\Omega i}(x), v_{\Omega i}(x) \rangle | x \in X\}$ where $i \in \Lambda$, be a set of cubic AT-subalgebra of Xand $x, y \in X$, then $(\bigcap \tilde{\mu}_{\Omega i})(x * y) = \operatorname{rinf} \tilde{\mu}_{\Omega i}(x * y) \ge \operatorname{rinf} \{\operatorname{rmin} \{\mu_{\Omega i}(x), \mu_{\Omega i}(y)\}\}$

=rmin{rinf($\mu_{\Omega i}(x)$), rinf($\mu_{\Omega i}(y)$)} =

 $\operatorname{rmin}\{(\bigcap \tilde{\mu}_{\Omega i})(x), (\bigcap \tilde{\mu}_{\Omega i})(y)\}$ and $\left(\bigvee v_{\Omega i}\right)(x * y) = \sup v_{\Omega i}(x * y) \le \sup\{\max\{v_{\Omega i}(x), v_{\Omega i}(y)\}\}$ $=\max\{\sup(v_{\Omega i}(x)), \sup(v_{\Omega i}(y))\} = \max\{(\bigvee v_{\Omega i})(x), (\bigvee v_{\Omega i})(y)\}. \triangle$

Remark 3.8. The R-union, p-intresection and p-union of any sets of cubic AT-subalgebra need not be a cubic ATsubalgebra, for example:

Example 3.9.

Let $X=\{0,a,b,c,d,e\}$ be AT-subalgebra with the following cayley table.

*	0	а	b	с	d	e
0	0	b	а	с	d	e
а	а	0	b	e	с	d
b	b	а	0	d	e	с
с	с	d	e	0	а	b
d	d	e	с	b	0	а
e	e	с	d	а	b	0

We defined two cubic set $\Omega_1 = (\tilde{\mu}_{\Omega_1}, v_{\Omega_1})$ and Ω_2 = $(\tilde{\mu}_{\Omega 2}, v_{\Omega 2})$ of X by :-

 $\tilde{\mu}_{\Omega 1}(x) = \begin{cases} [0.6, 0.7], & \text{if} x \in \{0, c\}, \\ [0.1, 0.2], & \text{otherwise}, \\ v_{\Omega 1}(x) = \\ [0.8, 0.9], & \text{if} x \in \{0, d\}, \\ [0.3, 0.4], & \text{otherwise}, \end{cases}$ $(0.2, ifx \in \{0, c\},$ 0.6, otherwise,

and $v_{\Omega 2}(x)$ $= \begin{cases} 0.1, \text{ if } x \in \{0, c\}, \\ 0.4, \text{ otherwise.} \end{cases}$

Then Ω_1 and Ω_2 are cubic AT-subalgebra of X but R – union, p-intresection and p-union of Ω_1 and Ω_2 are not cubic AT-subalgebras of X.

Since $(\bigcup \tilde{\mu}_{\Omega i})(c * d) = [0.3, 0.4] \ge [0.6, 0.7] =$

 $\operatorname{rmin}\{(\bigcup \tilde{\mu}_{\Omega i})(c), (\bigcup \mu_{\Omega i})(d)\}$ and $(\land \tilde{\mu}_{\Omega i})(c * d) = 0.4 \leq$ $0.2 = \max\{(\Lambda \tilde{\mu}_{\Omega i})(c), (\Lambda \tilde{\mu}_{\Omega i})(d)\}.$

Theorem 3.10. Let $\Omega i = (\tilde{\mu}_{\Omega i}, v_{\Omega i})$ be a cubic AT-subalgebra of X, where $i \in \Lambda$

 $\inf\{\max\{v_{\Omega i}(x), v_{\Omega i}(x)\}\} = \max\{\inf v_{\Omega i}(x), \inf v_{\Omega i}(x)\}, for$ all $x \in X$, then the p-intresection of Ω_i is also a cubic one of Х

Proof. Let $\Omega_i = \{\langle x, \tilde{\mu}_{\Omega i}, (x), v_{\Omega i}(x) \rangle | x \in X\}$ wheri $\in \Lambda$, be a of cubic AT-subalgebra of X such that set $\inf\{\max\{v_{\Omega i}(x), v_{\Omega i}(x)\}\} = \max\{\inf v_{\Omega i}(x), \inf v_{\Omega i}(x)\}$ for all $x \in X$, then for $x, y \in X$,

 $(\bigcap \tilde{\mu}_{\Omega i})(x * y) = \operatorname{rinf} \tilde{\mu}_{\Omega i}(x * y) \ge \operatorname{rinf} \{\operatorname{rmin} \{\mu_{\Omega i}(x), \mu_{\Omega i}(y)\}\}$ $= \operatorname{rmin} \{ \operatorname{rinf} \mu_{\Omega i}(x), \operatorname{rinf} \mu_{\Omega i}(y) \} = \operatorname{rmin} \{ (\bigcap \tilde{\mu}_{\Omega i})(x), (\bigcap \tilde{\mu}_{\Omega i})(y) \}$ and $(\bigwedge v_{\Omega i})(x * y) = \inf v_{\Omega i} (x * y) \le \inf \{\max\{v_{\Omega i}(x), v_{\Omega i}(y)\}\}$ $=\max\{\inf v_{\Omega i}(x), \inf v_{\Omega i}(y)\} = \max\{(\wedge v_{\Omega i})(x), (\wedge v_{\Omega i})(y)\}.$

Hence, p-intresection of Ω_i is a cubic AT-subalgebra of X. \triangle

Theorem 3.11. Let $\Omega i = (\tilde{\mu}_{\Omega i}, v_{\Omega i})$ be a cubic subalgebra of X where $i \in \Lambda$, for all $x \in X$ {rmin{ $v_{\Omega i}(x), v_{\Omega i}(x)$ }=rmin{rsup $v_{\Omega i}(x)$, rsup $v_{\Omega i}(x)$ }, then thep-union of Ω_i is also a cubic one of X.

Proof. Let $\Omega_i = \{\langle x, \tilde{\mu}_{Oi}(x), v_{Oi}(x) \rangle | x \in X\}$, where $i \in \Lambda$, be a sets of cubic AT-subalgebras of X such that for all $x, y \in$ X.

$$\begin{split} & \operatorname{rsup}\{\operatorname{rmin}\{v_{\Omega i}(x), v_{\Omega i}(x)\}\} = & \operatorname{rmin}\{\operatorname{rsup} v_{\Omega i}(x), \operatorname{rsup} v_{\Omega i}(x)\}, \text{ then } \\ & (\bigcup \tilde{\mu}_{\Omega i})(x * y) = \operatorname{rsup}\tilde{\mu}_{\Omega i}(x * y) \geq \operatorname{rsup}\{\operatorname{rmin}\{\tilde{\mu}_{\Omega i}(x), \tilde{\mu}_{\Omega i}(y)\}\} \\ & = & \operatorname{rmin}\{\operatorname{rsup}\tilde{\mu}_{\Omega i}(x), \operatorname{rsup}\tilde{\mu}_{\Omega i}(y)\} = & \operatorname{rmin}\{(\bigcup \tilde{\mu}_{\Omega i})(x), (\bigcup \tilde{\mu}_{\Omega i})(y)\} \\ & (\bigvee v_{\Omega i})(x * y) = & \operatorname{sup} v_{\Omega i}(x * y) \leq & \operatorname{sup}\{\operatorname{max}\{v_{\Omega i}(x), v_{\Omega i}(y)\}\} \\ & = & \operatorname{max}\{\operatorname{supv}_{\Omega i}(x), \operatorname{supv}_{\Omega i}(y)\} = & \operatorname{max}\{(\lor v_{\Omega i})(x), (\lor v_{\Omega i})(y)\}, \\ & \operatorname{Hence}, \operatorname{p-union of} \Omega_i \text{ is a cubic AT-subalgebra of } X. \ \Delta \end{split}$$

Theorem 3.12. Let (X ;*, 0) be an AT-algebra. A cubic subset $\Omega = \langle \tilde{\mu}_{O}, \lambda_{O} \rangle$ of X, then Ω is a cubic ATsubalgebra of X if and only if, for all $\tilde{t} \in D[0, 1]$ and $s \in$ [0, 1], the set $\widetilde{\mathbf{U}}$ (Ω ; \widetilde{t} , s) is an AT-subalgebra of X, where $\widetilde{\mathbf{U}}$ (Ω ; \widetilde{t} , s) = { $\mathbf{x} \in \mathbf{X} | \widetilde{\mu}_{\Omega}(\mathbf{x}) \geq \widetilde{t}$, $\lambda_{\Omega}(\mathbf{x}) \leq s$ }. **Proof.** Assume that $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic ATsubalgebra of X and let $\tilde{t} \in D[0, 1]$ and $s \in [0, 1]$, be such that $\widetilde{\mathbf{U}}$ (Ω ; \widetilde{t} , s) $\neq \emptyset$, and let x, y $\in X$ such that $x, y \in$ $\widetilde{\mathbf{U}} \quad (\ \mathbf{\Omega}\ ; \ \widetilde{t} \ , \mathbf{s}), \ \text{then} \ \widetilde{\mu}_{\Omega} \ (\mathbf{x}) \succcurlyeq \widetilde{t} \ , \ \widetilde{\mu}_{\Omega} \ (\mathbf{y}) \succcurlyeq \widetilde{t} \ \text{ and} \ \lambda_{\Omega}$ $(x) \leq s, \lambda_{\Omega}(y) \leq s$. By (A₂), we get $\tilde{\mu}_{\Omega}(\mathbf{x} \ast \mathbf{y}) \geq \min\{ \tilde{\mu}_{\Omega} (\mathbf{x}), \tilde{\mu}_{\Omega} (\mathbf{y}) \} \text{ and } \lambda_{\Omega} (\mathbf{x} \ast \mathbf{y}) \leq \max\{\lambda_{\Omega} \}$ $(\mathbf{x}),\lambda_{\Omega}(\mathbf{y}) \} \leq \mathbf{s}.$

Hence the set $\tilde{\mathbf{U}} (\Omega; \tilde{t}, s)$ is an AT-subalgebra of X. Conversely, suppose that $\widetilde{\mathbf{U}}$ (Ω ; \widetilde{t} ,s) is an AT-subalgebra of X and let x, $y \in X$ be such that $\widetilde{\mu}_{\Omega}$ (x* y) < rmin { $\tilde{\mu}_{\Omega}$ (x), $\tilde{\mu}_{\Omega}$ (y)}, and λ_{Ω} (x * y)> max { λ_{Ω} (x), λ_{Ω} (y).

Consider $\widetilde{\beta} = 1/2 \{ \widetilde{\mu}_{\Omega} (\mathbf{x} * \mathbf{y}) + \min\{\widetilde{\mu}_{\Omega} (\mathbf{x}), \widetilde{\mu}_{\Omega} (\mathbf{y})\} \}$ and $\beta = 1/2 \{ \lambda_{\Omega} (\mathbf{x} * \mathbf{y}) + \max\{\lambda_{\Omega} (\mathbf{x}), \lambda_{\Omega} (\mathbf{y})\} \}.$

We have $\widetilde{\beta} \in D[0, 1]$ and $\beta \in [0, 1]$, and $\widetilde{\mu}_{\Omega}(x * y) \prec \widetilde{\beta}$ $\prec \min \{ \tilde{\mu}_{\Omega}(\mathbf{x}), \tilde{\mu}_{\Omega}(\mathbf{y}) \}, \text{ and } \lambda_{\Omega}(\mathbf{x}^* \mathbf{y}) \geq \beta > \max \{ \lambda_{\Omega} \}$ $(\mathbf{x}),\lambda_{\Omega}(\mathbf{y})$ }.

It follows that x,y $\in \widetilde{\mathbf{U}}$ (Ω ; \widetilde{t} , s), and (x*y) \notin \widetilde{\mathbf{U}} ($\Omega_{;\tilde{t},s)$. This is a contradiction and therefore Ω $=< \tilde{\mu}_{\Omega}, \lambda_{\Omega} >$ is a cubic AT-subalgebra of X. \triangle

Theorem 3.13. Cubic set $\Omega = (\tilde{\mu}_{\Omega}, v_{\Omega})$ is a cubic ATsubalgebra of X if and only if, $\mu^-{}_{\Omega}, \mu^+{}_{\Omega}$ and v_{Ω} are fuzzy AT-subalgebras of X.

Proof. Let μ^-_{Ω} , μ^+_{Ω} and v_{Ω} be fuzzy subalgebras of X and x,y \in X.then

$$\begin{split} & \mu^{-}_{\Omega} (\mathbf{x} \ast \mathbf{y}) \geq \min\{\mu^{-}_{\Omega} (\mathbf{x}), \mu^{-}_{\Omega}(\mathbf{y})\}, \mu^{+}_{\Omega} (\mathbf{x} \ast \mathbf{y}) \geq \min\{\mu^{+}_{\Omega} (\mathbf{x}), \mu^{+}_{\Omega}(\mathbf{y})\} \text{ and } \mathbf{v}_{\Omega}(\mathbf{x} \ast \mathbf{y}) \leq \max\{\mathbf{v}_{\Omega}(\mathbf{x}), \mathbf{v}_{\Omega}(\mathbf{y})\}. \\ & \text{Now}, \widetilde{\mu}_{\Omega}(\mathbf{x} \ast \mathbf{y}) = [\mu^{-}_{\Omega}(\mathbf{x} \ast \mathbf{y}), \mu^{+}_{\Omega}(\mathbf{x}\mathbf{y})] \\ \geq [\min\{\mu^{-}_{\Omega}(\mathbf{x}), \mu^{-}_{\Omega}(\mathbf{y})\}, \min\{\mu^{+}_{\Omega}(\mathbf{x}), \mu^{+}_{\Omega}(\mathbf{y})\}] \\ = \text{rmin}\{[\mu^{-}_{\Omega}(\mathbf{x}), \mu^{+}_{\Omega}(\mathbf{x})], [\mu^{-}_{\Omega} (\mathbf{y}), \mu^{+}_{\Omega}(\mathbf{y})]\} = \text{rmin}\{\widetilde{\mu}_{\Omega} \end{split}$$

 $(x), \tilde{\mu}_{\Omega}(y)$, therefore, Ω is a cubic AT-subalgebra of X. Conversely, assume that Ω is a cubic AT-subalgebra of X,

For any $x,y \in X$,

$$\begin{split} & [\mu^{-}_{\Omega} \left(x \ast y\right), \mu^{+}_{\Omega} \left(x \ast y\right)] = \tilde{\mu}_{\Omega}(x \ast y) \geq rmin\{\tilde{\mu}_{\Omega} \left(x\right), \tilde{\mu}_{\Omega} \left(y\right)\} \\ = & rmin\{[\mu^{-}_{\Omega} \left(x\right), \mu^{+}_{\Omega} \left(x\right)], [\mu^{-}_{\Omega} \left(y\right), \mu^{+}_{\Omega} \left(y\right)]\} \end{split}$$

 $=[\min\{\mu_{\Omega}^{-}(\mathbf{x}),\mu_{\Omega}^{-}(\mathbf{x}),\{\mu_{\Omega}^{+}(\mathbf{y}),\mu_{\Omega}^{+}(\mathbf{y})\}].$

Thus $\mu_{\Omega}^{-}(x * y) \ge \{\mu_{\Omega}^{-}(x), \mu_{\Omega}^{-}(x)\}, \mu_{\Omega}^{+}(x * y) \ge \{\mu_{\Omega}^{+}(x), \mu_{\Omega}^{+}(x)\}, \text{and}$

 $\label{eq:v_O} v_\Omega \; (x*y) {\leq} max\{v_\Omega(x),\!v_\Omega(y)\} \text{, therefore,} \Omega \text{ is a cubic AT-subalgebra of } X. \ \$

Theorem 3.14. Let $\Omega = (\tilde{\mu}_{\Omega}, v_{\Omega})$ be a cubic AT-subalgebra of X and let $n \in \mathbb{N}$ (the set of natural numbers).then

(i) $\tilde{\mu}_{\Omega} (\Pi^n x * x) \ge \tilde{\mu}_{\Omega}(x)$ for any add number n,

(ii) $v_{\Omega} (\Pi^n x * x) \leq \tilde{\mu}_{\Omega}(x)$ for any add number n,

(iii) $\tilde{\mu}_{\Omega} (\Pi^n x * x) = \tilde{\mu}_{\Omega}(x)$ for any even number n,

(iv) $v_{\Omega} (\Pi^n x * x) \leq \tilde{\mu}_{\Omega}(x)$ for any even number n.

Proof. Let $x \in X$ and assum that n is odd.then n=2p-1 for some positive integer p. We prove the theorem by induction.

Now, $\tilde{\mu}_{\Omega}(x * x) = \tilde{\mu}_{\Omega}(0) \ge \tilde{\mu}_{\Omega}(x)$ and $v_{\Omega}(x * x) = v_{\Omega}(0) \le v_{\Omega}(x)$. Suppose that

 $\widetilde{\mu}_{\Omega}(\Pi^{2p-1}x*x) \geq \widetilde{\mu}_{\Omega}(x) \text{ and } v_{\Omega}(\Pi^{2p-1}x*x) \leq v_{\Omega}(x), \quad \text{ then } \quad \text{by}$ assumption,

$$\begin{split} &\tilde{\mu}_{\Omega}(\Pi^{2(p+1)-1)} \mathbf{x} \ast \mathbf{x} = \tilde{\mu}_{\Omega}(\Pi^{2p+1} \mathbf{x} \ast \mathbf{x}) = \tilde{\mu}_{\Omega}(\Pi^{2p-1} \mathbf{x} \ast (\mathbf{x} \ast (\mathbf{x} \ast \mathbf{x}))) \\ &= \tilde{\mu}_{\Omega}(\Pi^{2p-1} \mathbf{x} \ast \mathbf{x}) \geq \tilde{\mu}_{\Omega}(\mathbf{x}) \text{ and} \end{split}$$

 $v_{\Omega}(\Pi^{2(p+1)-1}x*x) = v_{\Omega}(\Pi^{2p+1}x*x) = v_{\Omega}(\Pi^{2p-1}x*(x(*x*x)))$

 $=v_{\Omega}(\Pi^{2p-1}x*x)\geq v_{\Omega}(x)$, which proves (i)and(ii).

Proofs are similar to the cases (iii)and(iv).

The sets $\{\mathbf{x} \in \mathbf{X} | \tilde{\mu}_{\Omega}(\mathbf{x}) = \tilde{\mu}_{\Omega}(0)\}$ and $\{\mathbf{x} \in \mathbf{X} | \mathbf{v}_{\Omega}(\mathbf{x}) = \mathbf{v}_{\Omega}(0)\}$ are denoted by $I_{\tilde{\mu}_{\Omega}}$ and $I_{\mathbf{v}_{\Omega}}$ respectively. This two sets are also AT-subalgebras of X. \triangle

Theorem 3.15. Let $\Omega = (\tilde{\mu}_{\Omega}, \mathbf{v}_{\Omega})$ be a cubic AT-subalgebra of X, then the sets $I_{\tilde{\mu}_{\Omega}}$ and $I_{\mathbf{v}_{\Omega}}$ are AT-subalgebras of X.

Proof. Let x, $y \in I_{\tilde{\mu}_{\Omega}}$.then $\tilde{\mu}_{\Omega}(x) = \tilde{\mu}_{\Omega}(0) = \tilde{\mu}_{\Omega}(y)$ and so,

 $\tilde{\mu}_{\Omega}(x * y) \ge \min{\{\tilde{\mu}_{\Omega}(x), \tilde{\mu}_{\Omega}(y)\}} = \tilde{\mu}_{\Omega}(0)$ by Proposition (3.3), we know that

 $\tilde{\mu}_{\Omega}(\mathbf{x} * \mathbf{y}) = \tilde{\mu}_{\Omega}(0)$ or equivalently $\mathbf{x} * \mathbf{y} \in I_{\tilde{\mu}_{\Omega}}$.

Again, let x, $y \in I_{\nu_{\Omega}}$ then $\nu_{\Omega}(x) = v_{\Omega}(0) = v_{\Omega}(y)$ and so, $\nu_{\Omega}(x * y) \le \max\{v_{\Omega}(x), v_{\Omega}(y)\} = v_{\Omega}(0)$.

Again by Proposition (3.3), we know that $v_{\Omega}(x * y) = v_{\Omega}(0)$ or equivalently $x * y \in I_{v_{\Omega}}$. Hence, sets $I_{\tilde{\mu}_{\Omega}}$ and $I_{v_{\Omega}}$ are ATsubalgebras of X. \triangle

Theorem 3.16. Let B a nonempty subset of X and $\Omega = \widetilde{(\mu_{\Omega}, v_{\Omega})}$ be a cubic set of X defined by $\widetilde{\mu}_{\Omega}(x) = \begin{cases} [\alpha_1, \alpha_2], \text{ if } x \in B \\ [\beta_1, \beta_2], \text{ otherwise} \end{cases}$ and $v_{\Omega}(x) = \begin{cases} \gamma, \text{ if } x \in B \\ \delta, \text{ otherwise} \end{cases}$ For all $[\alpha_1, \alpha_2], [\beta_1, \beta_2] \in D[0, 1] \text{ and } \gamma, \delta \in [0, 1] \text{ with}[\alpha_1, \alpha_2] \ge [\beta_1, \beta_2] \text{ and} \gamma \le \delta.$ Then Ω is a cubic AT-subalgebra of X if and only if, B an AT-subalgebra of X. Moreover, $I_{\tilde{\mu}_{\Omega}} = B = I_{V_{\Omega}}$. **Proof.**

Let Ω be a cubic AT-subalgebra of X and x, $y \in B$, then $\tilde{\mu}_{\Omega}(x * y) \ge \min{\{\tilde{\mu}_{\Omega}(x), \\ \tilde{\mu}_{\Omega}(y)\}}=\min{\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\}}=[\alpha_1, \alpha_2] \text{ and } \\ v_{\Omega}(x * y) \le \max{\{v_{\Omega}(x), v_{\Omega}(y)\}}={\{\gamma, \gamma\}}=\gamma.$ So $x * y \in B$. Hence B is an AT-subalgebra of X. Conversely, suppose that B is AT-subalgebra of X and let x, y \in X. Consider two cases.

 $\begin{aligned} &v_{\Omega}(x * y) = \gamma = \max\{v_{\Omega}(x), v_{\Omega}(y)\} = \max\{\gamma, \gamma\}. \\ &\textbf{Case 2} \quad \text{if } x \notin B \quad \text{or } y \notin B, \quad \text{then } \quad \tilde{\mu}_{\Omega}(x * y) \geq \left[\beta_{1}, \beta_{2}\right] \end{aligned}$

=rmin{ $\tilde{\mu}_{\Omega}(\mathbf{x}), \tilde{\mu}_{\Omega}(\mathbf{y})$ } and

 $\mathbf{v}_{\Omega}(\mathbf{x} \ast \mathbf{y}) \leq \delta = \max\{\mathbf{v}_{\Omega}(\mathbf{x}), \mathbf{v}_{\Omega}(\mathbf{y})\}.$

Hence, Ω is cubic AT-subalgebra of X. \bigtriangleup

Now, $I_{\tilde{\mu}_{\Omega}} = \{x \in X | \tilde{\mu}_{\Omega}(x) = \tilde{\mu}_{\Omega}(0)\} = \{x \in X | \tilde{\mu}_{\Omega}(x) = [\alpha_1, \alpha_2]\} = B$ and $I_{V_{\Omega}} = \{x \in X | v_{\Omega}(x) = v_{\Omega}(0)\} = and I_{V_{\Omega}} = \{x \in X | v_{\Omega}(x) = \gamma\} = B.$

Definition 3.17. Let $\Omega = (\tilde{\mu}_{\Omega}, v_{\Omega})$ be a cubic set of X. For $[s_1, s_2] \in D[0, 1]$ and $t \in [0, 1]$, the set

 $\begin{array}{ll} U(\tilde{\mu}_{\Omega} \mid [s_1,s_2]) = \{ \mathbf{x} \in X | \tilde{\mu}_{\Omega}(\mathbf{x}) \geq [s_1,s_2] \} \text{is called upper}[s_1,s_2] - \\ \text{Level of } \Omega \text{ and } L(\mathbf{v}_{\Omega} | \mathbf{t}) = \{ \mathbf{x} \in X | \mathbf{v}_{\Omega}(\mathbf{x}) \leq \mathbf{t} \} \text{is called Lower t-} \\ \text{Level of } \Omega. \end{array}$

Theorem 3.18. If a cubic set $\Omega = (\tilde{\mu}_{\Omega}, v_{\Omega})$ is a cubic AT-subalgebra of X, then the upper

 $[s_1,s_2]$ -Level and Lower t-Level of Ω are ones of X.

Proof. Let $x,y \in U(\tilde{\mu}_{\Omega} | [s_1,s_2])$, then $\tilde{\mu}_{\Omega}(x) \ge [s_1,s_2]$ and $\tilde{\mu}_{\Omega}(y) \le [s_1,s_2]$. It follows that

 $\tilde{\mu}_{\Omega}(\mathbf{x} * \mathbf{y}) \ge \min{\{\tilde{\mu}_{\Omega}(\mathbf{x}), \tilde{\mu}_{\Omega}(\mathbf{y})\}} \ge [s_1, s_2], \text{ so that } \mathbf{x} * \mathbf{y} \in U(\tilde{\mu}_{\Omega} | [s_1, s_2]).$

Hence $U(\tilde{\mu}_{\Omega} | [s_1,s_2])$ is AT-subalgebra of X. Let $x*y \in L(v_{\Omega}|t)$, then $v_{\Omega}(x) \leq t$ and $v_{\Omega}(y) \leq t$. It follows that $v_{\Omega}(x*y) \leq \max\{v_{\Omega}(x), v_{\Omega}(y)\} \leq t$, so that $x*y \in L(v_{\Omega}|t)$. Hence, $L(v_{\Omega}|t)$ is subalgebra of X. \triangle

Corollary 3.19. Let $\Omega{=}(\tilde{\mu}_{\Omega}{,}v_{\Omega})$ be a cubic AT-subalgebra of X, then

 $\begin{array}{l} \Omega([s_1,s_2];t) = U(\tilde{\mu}_{\Omega}|[s_1,s_2])L(\nu_{\Omega}|t) = \{x \in X | \tilde{\mu}_{\Omega}(x) \ge [s_1,s_2], \nu_{\Omega}(x) \\ \leq t \} \text{ is a cubic AT-subalgebra of } X \end{array}$

The following example shows that the converse of Corollary (3.19) is not valid

Example 3.20. Let X={0,a,b,c,d,e}be AT-algebra and cubic set $\Omega = (\tilde{\mu}_{\Omega}, v_{\Omega})$ of X by

$$\tilde{\mu}_{\Omega}(\mathbf{x}) = \begin{cases} [0.6, 0.8], \text{ if } \mathbf{x} = 0, \\ [0.5, 0.6], \text{ if } \mathbf{x} \in \{a, b, c\}, \text{ and } \nu_{\Omega}(\mathbf{x}) = \begin{cases} 0.1, \text{ if } \mathbf{x} = 0, \\ 0.3, \text{ if } \mathbf{x} \in \{a, b, c\}, \\ [0.3, 0.4], \text{ if } \mathbf{x} \in \{d, e\}, \end{cases}$$

We take $[s_1,s_2] = [0.41,0.48]$ and t=0.4, then $\Omega([s_1,s_2];t) = U(\tilde{\mu}_{\Omega}|[s_1,s_2])L(v_{\Omega}|t) = \{x \in X | \tilde{\mu}_{\Omega}(x) \ge [s_1,s_2], v_{\Omega}(x) \le t\}$

={a,b,c} (0,a,b,d)={0,a,b} is AT-subalgebra of X, but $\Omega = (\tilde{\mu}_{\Omega}, v_{\Omega})$ is not a cubic AT-subalgebra since $\tilde{\mu}_{\Omega}$ (1*3) $\geq \min{\{\tilde{\mu}_{\Omega}(1), \tilde{\mu}_{\Omega}(3)\}}$ and v_{Ω} (2*4 \leq)max{ $v_{\Omega}(2), v_{\Omega}(4)$ }.

4. Cubic AT-ideals of AT-algebras

In this section, we will introduce a new notion called cubic

AT-ideal of AT-algebras and study several properties of it.

Definition 4.1. Let (X ;*, 0)be an AT-algebra. A cubic set $\Omega = \langle \tilde{\mu}_{\Omega}(x), \lambda_{\Omega}(x) \rangle$ of X is called cubic AT-ideal of X if, for all x, y, z \in X: (A₁) $\tilde{\mu}_{\Omega}(0) \geq \tilde{\mu}_{\Omega}(x)$, and $\lambda_{\Omega}(0) \leq \lambda_{\Omega}(x)$

(A₂) $\tilde{\mu}_{\Omega}$ (x * z) \geq rmin{ $\tilde{\mu}_{\Omega}$ (x * (y*z)), $\tilde{\mu}_{\Omega}$ (y)}, and λ_{Ω} (z * x) \leq max{ λ_{Ω} (x * (y*z)), λ_{Ω} (y)}.

Example 4.2. Let $X = \{0,1,2,3\}$ in which the operation as in example (*) be define by the following table:

*	0	1	2	3
0	0	1	2	3
1	0	0	2	3
2	0	0	0	3
3	0	0	0	0

Then (X; *, 0) is an AT-algebra. Define a cubic set $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ of X as follows:

fuzzy subset μ : $X \rightarrow [0,1]$ by: $\tilde{\mu}_{\Omega}(x) =$ $\begin{bmatrix} [0.3,0.9] & if \ x = \{0,1\} \end{bmatrix}$

[0.1,0.6] *otherwise*

and $\lambda_{\Omega} = \begin{cases} 0.1 & \text{if } x \in \{0,1\}\\ 0.6 & \text{otherwise} \end{cases}$. The cubic set $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic AT-ideal of X.

Proposition 4.3. Let $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ be a cubic AT-ideal of an AT-algebra (X ;*, 0), if there exist a sequence $\{x_n\}$ in X such that $\lim_{n \to \infty} \tilde{\mu}_{\Omega}(x_n) = [1,1]$, then $\tilde{\mu}_{\Omega}(0) = [1, 1]$.

Proof. By definition (3.1), we have $\tilde{\mu}_{\Omega}(0) \ge \tilde{\mu}_{\Omega}(\mathbf{x})$, for all $\mathbf{x} \in \mathbf{X}$. Then $\tilde{\mu}_{\Omega}(0) \ge \tilde{\mu}_{\Omega}(\mathbf{x}_n)$, for every positive integer n.

Consider the inequality $[1,1] \ge \tilde{\mu}_{\Omega}(0) \ge \lim_{n \to \infty} \tilde{\mu}_{\Omega}(x_n) = [1,1]$. Hence $\tilde{\mu}_{\Omega}(0) = [1,1]$.

Theorem 4.4. Let (X ;*, 0) be an AT-algebra and A cubic set $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ of X. A cubic set Ω of X is a cubic AT-ideal of X if and only if, μ_A^-, μ_A^+ and λ_{Ω} are cubic AT-ideals of X.

Proof.

Suppose that Ω is a cubic AT-ideal of X. For all x, y, z $\in X$, we have

 $[\mu_A^- (\mathbf{x} \ast \mathbf{z}), \ \mu_A^+ (\mathbf{x} \ast \mathbf{z})] = \tilde{\mu}_{\Omega} \ (\mathbf{x} \ast \mathbf{z}) \geq \min\{\tilde{\mu}_{\Omega}(\mathbf{x} \ast (\mathbf{y} \ast \mathbf{z})), \tilde{\mu}_{\Omega} (\mathbf{y})\}$

 $= \operatorname{rmin} \{ [\mu_{A}^{-}(\mathbf{x}^{*}(\mathbf{y}*\mathbf{z})), \mu_{A}^{+}(\mathbf{x}^{*}(\mathbf{y}*\mathbf{z}))], [\mu_{A}^{-}(\mathbf{y}), \mu_{A}^{+}(\mathbf{y})] \} \\= [\operatorname{min} \{\mu_{A}^{-}(\mathbf{x}^{*}(\mathbf{y}*\mathbf{z})), \mu_{A}^{-}(\mathbf{y})\}, \operatorname{min} \{\mu_{A}^{+}(\mathbf{x}^{*}(\mathbf{y}*\mathbf{z})), \mu_{A}^{+}(\mathbf{y})\}].$ Therefore, $\mu_{A}^{-}(\mathbf{x}^{*}\mathbf{z}) \ge \operatorname{min} \{\mu_{A}^{-}(\mathbf{x}^{*}(\mathbf{y}*\mathbf{z})), \mu_{A}^{-}(\mathbf{y})\}$ and $\mu_{A}^{+}(\mathbf{x}^{*}\mathbf{z}) \ge \operatorname{min} \{\mu_{A}^{+}(\mathbf{x}*(\mathbf{y}^{*}\mathbf{z})), \mu_{A}^{+}(\mathbf{y})\}.$

Similarly, we can show that λ_{Ω} $(x * z) \le \max{\lambda_{\Omega}(x * (y*z)), \lambda_{\Omega}(y)}$

Conversely, If μ_A^- and μ_A^+ are cubic AT-ideals of X. For any x, y, z \in X. Observe

 $\tilde{\mu}_{\Omega} (\mathbf{x} \ast \mathbf{z}) = [\mu_{A}^{-} (\mathbf{x} \ast \mathbf{z}), \mu_{A}^{+} (\mathbf{x} \ast \mathbf{z})]$

 $\geq [\min \{\mu_{A}^{-}(x^{*}(y^{*}z)), \mu_{A}^{-}(y)\}, \min \{\mu_{A}^{+}(x^{*}(y^{*}z)), \mu_{A}^{+}(y)\}]$

 $= \operatorname{rmin} \left\{ \left[\mu_A^- \left(\mathbf{x}^* \left(\mathbf{y}^* \mathbf{z} \right) \mu_A^+ \left(\mathbf{x}^* \left(\mathbf{y}^* \mathbf{z} \right) \right) \right], \left[\mu_A^- \left(\mathbf{y} \right), \mu_A^+ \left(\mathbf{y} \right) \right] \right\} \\ = \operatorname{rmin} \left\{ \tilde{\mu}_\Omega \left(\mathbf{x}^* \left(\mathbf{y}^* \mathbf{z} \right) \right), \tilde{\mu}_\Omega \left(\mathbf{y} \right) \right].$

Similarly, we can show that $\lambda_{\Omega} (x * z) \leq \max \{ [\lambda_{\Omega} (x * (y*z)), \lambda_{\Omega} (y)] \}.$

From what was mentioned above we can conclude that Ω

is a cubic AT-ideal of X

Hence, we get that μ_A^- , μ_A^+ and λ_Ω are cubic AT-ideals of X. \triangle

Theorem 4.5. Let $\{\Omega_i | i \in \Lambda\}$ be family of cubic AT-ideals of an AT-algebra (X ;*, 0). Then $\bigcap_{i \in \Lambda} \tilde{\mu}_{\Omega}$ is a cubic AT-ideal of X.

Proof. Let $\{ \Omega_i | i \in \Lambda \}$ be family of cubic AT-ideals of X, then for any x, y, $z \in X$,

 $(\bigcap \tilde{\mu}_{\Omega i})(0) = \operatorname{rinf} (\widetilde{\mu}_{\Omega i}(0)) \geq \operatorname{rinf} (\widetilde{\mu}_{\Omega i}(\mathbf{x})) = (\bigcap \tilde{\mu}_{\Omega i})(\mathbf{x})$ $(\bigcap \tilde{\mu}_{\Omega i}(\mathbf{x}^* \mathbf{z})) = \operatorname{rinf} (\widetilde{\mu}_{\Omega i} (\mathbf{x}^* \mathbf{z})) \geq \operatorname{rinf} (\operatorname{rmin} \{\widetilde{\mu}_{\Omega i}(\mathbf{x}^* \mathbf{x})) \}$ $= \operatorname{rmin} \{\operatorname{rinf} (\widetilde{\mu}_{\Omega i}(\mathbf{x}^* (\mathbf{y}^* \mathbf{z})), \operatorname{rinf} (\widetilde{\mu}_{\Omega i}(\mathbf{y})) \} = \operatorname{rmin} \{ (\bigcap \tilde{\mu}_{\Omega i})(\mathbf{x}) \}$ $= \operatorname{rmin} \{\operatorname{rinf} (\widetilde{\mu}_{\Omega i})(\mathbf{y}) \}$ $\operatorname{Also}_{(\bigcup \lambda_{\Omega i})(0) = \operatorname{sup} (\overset{\lambda}{\Omega_{\Omega i}} (0)) \leq \operatorname{sup} (\overset{\lambda}{\Omega_{\Omega i}} (\mathbf{x})) = (\bigcup \lambda_{\Omega i})(\mathbf{x})$ $(\bigcup \lambda_{\Omega i}(\mathbf{x}^* \mathbf{z})) = \operatorname{sup} (\overset{\lambda}{\Omega_{\Omega i}} (\mathbf{x}^* \mathbf{z})) \leq \operatorname{sup} (\operatorname{max} \{ \overset{\lambda}{\Omega_{\Omega i}} (\mathbf{x}^* (\mathbf{y}^* \mathbf{z})), (\overset{\lambda}{\Omega_{\Omega i}} (\mathbf{x})) \}$ $= \operatorname{max} \{ \operatorname{sup} (\overset{\lambda}{\Lambda_{\Omega i}} (\mathbf{x}^* (\mathbf{y}^* \mathbf{z})), \operatorname{sup} (\overset{\lambda}{\Lambda_{\Omega i}} (\mathbf{y})) \} = \operatorname{max} \{ (\bigcup \lambda_{\Omega i})(\mathbf{y}) \} . \ \Delta$

Theorem 4.6. Let (X ;*, 0) be an AT-algebra. A cubic subset $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ of X, then Ω is a cubic AT-ideal of X if and only if, for all $\tilde{t} \in D[0, 1]$ and $s \in [0, 1]$, the set $\tilde{U} (\Omega; \tilde{t}, s)$ is an AT-ideal of X, where $\tilde{U} (\Omega; \tilde{t}, s) = \{x \in X | \tilde{\mu}_{\Omega}(x) \geq \tilde{t}, \lambda_{\Omega}(x) \leq s\}.$

Proof.

Assume that $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic AT-ideal of X and let $\tilde{t} \in D[0, 1]$ and $s \in [0, 1]$, be such that $\tilde{U} (\Omega; \tilde{t}, s)$ $\neq \emptyset$, and let x, y, $z \in X$ such that $(x * (y * z)), y \in \tilde{U} (\Omega; \tilde{t}, s)$, then $\tilde{\mu}_{\Omega}(x * (y * z)) \geq \tilde{t}$, $\tilde{\mu}_{\Omega}(y) \geq \tilde{t}$ and $\lambda_{\Omega}(x * (y * z)) \leq s, \lambda_{\Omega}(y) \leq s$. By (A₂), we get $\tilde{\mu}_{\Omega}(x * z) \geq \min \{\tilde{\mu}_{\Omega}(x * (y * z)), \tilde{\mu}_{\Omega}(y)\} \geq \tilde{t}$, and $\lambda_{\Omega}(x * z) \leq \max \{\lambda_{\Omega}(x * (y * z)), \tilde{\mu}_{\Omega}(y)\} \geq s$. Hence the set $\tilde{U} (\Omega; \tilde{t}, s)$ is an AT-ideal of X. Conversely, suppose that $\tilde{U} (\Omega; \tilde{t}, s)$ is an AT-ideal of X and let x, y, $z \in X$ be such that $\tilde{\mu}_{\Omega}(x * z) < \min \{\tilde{\mu}_{\Omega}(x + z) \leq T \leq X \}$.

of X and let X, Y, Z \in X be such that μ_{Ω} (x + 2)<finite { $\mu_{\Omega}(x + x)$, $\mu_{\Omega}(x + y + z)$, $\lambda_{\Omega}(x + y + z)$, $\lambda_{\Omega}(x + y + z)$, $\lambda_{\Omega}(y)$ }.

Consider $\widetilde{\beta} = 1/2 \{ \widetilde{\mu}_{\Omega}(x * z) + \operatorname{rmin}\{\widetilde{\mu}_{\Omega}(x * (y * z))), \widetilde{\mu}_{\Omega}(y)\} \}$ and B= 1/2 { $\lambda_{\Omega} (x * z) + \max\{\lambda_{\Omega} (x * (y * z))), \lambda_{\Omega} (y)\}}.$

We have $\beta \in D[0, 1]$ and $B \in [0, 1]$, and $\tilde{\mu}_{\Omega} (x * z) < \tilde{\beta}$ $\prec \min \{ \tilde{\mu}_{\Omega}(x * (y * z)), \tilde{\mu}_{\Omega} (y) \}$, and $\lambda_{\Omega} (x * z) > B > \max \{ \lambda_{\Omega}(x * (y * z)), \lambda_{\Omega} (y) \}$.

It follows that $(\mathbf{x}^*(\mathbf{y}^*\mathbf{z})), \mathbf{y} \in \widetilde{\mathbf{U}} (\Omega; \widetilde{t}, \mathbf{s})$, and $(\mathbf{x}^*\mathbf{z}) \notin \widetilde{\mathbf{U}} (\Omega; \widetilde{t}, \mathbf{s})$. This is a contradiction and therefore $\Omega = \langle \widetilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic AT-ideal of X. \triangle

Proposition4.7. If $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic AT-ideal of AT-algebra X, then

 $\tilde{\mu}_{O}(\mathbf{x} * (\mathbf{x} * \mathbf{y}) \geq \tilde{\mu}_{O}(\mathbf{y}), \text{ and } \lambda_{O}(\mathbf{x} * (\mathbf{x} * \mathbf{y})) \leq \lambda_{O}(\mathbf{y}).$ **Proof.** Taking $z=x * yin(ATI_2)$ and using $(AT_3)in (ATI_1)$),we $\tilde{\mu}_O(\mathbf{x} * (\mathbf{x} * \mathbf{y}) \ge \operatorname{rmin}\{\tilde{\mu}_O(\mathbf{x} * (\mathbf{y} * (\mathbf{x} * \mathbf{y}))), \tilde{\mu}_O(\mathbf{y})\}$ }=rmin{ $\tilde{\mu}_{\Omega}(x*(x*(y*y))),\tilde{\mu}_{\Omega}(y)$ } =rmin{ $\tilde{\mu}_{\Omega}(\mathbf{x}*(\mathbf{x}*0)), \tilde{\mu}_{\Omega}(\mathbf{y})$ }=rmin{ $\tilde{\mu}_{\Omega}(0), \tilde{\mu}_{\Omega}(\mathbf{y})$ }= $\tilde{\mu}_{\Omega}(\mathbf{y}),$ $\lambda_{\Omega}(\mathbf{x}^{*}(\mathbf{x}^{*}\mathbf{y})) \leq \max \{\lambda_{\Omega}(\mathbf{x}^{*}(\mathbf{y}^{*}(\mathbf{x}^{*}\mathbf{y}))), \lambda_{\Omega}(\mathbf{y})\}$ $=\max\{\lambda_{\Omega}(x*(x*(y*y))),\lambda_{\Omega}(y)\}=\max\{\lambda_{\Omega}(x*(x*0)),\lambda_{\Omega}(y)\}$ =max{ $\lambda_{\Omega}(0), \lambda_{\Omega}(y)$ }= $\lambda_{\Omega}(y).$ \triangle

$$f(\tilde{\mu}_{\Omega})(y) = \tilde{\mu}_{\beta}(y) = \begin{cases} r \sup_{x \in f^{-1}(y)} \tilde{\mu}_{\Omega}(x) \\ 0 \quad otherwise \end{cases}$$
$$f(\lambda_{\Omega})(y) = \lambda_{\beta}(y) = \begin{cases} \inf_{x \in f^{-1}(y)} \lambda_{\Omega}(x) \\ 1 \quad otherwise \end{cases}$$

5. Homomorphism of Cubic AT-ideal (AT-subalgebra) of AT-algebras

In this section, we will present some results on images and preimages of cubicAT-ideals of AT-algebras.

Definition 5.1[3].

Let $f: (X; *, 0) \rightarrow (Y; *', 0')$ be a mapping from the set X to a set Y. If $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic subset of X, then the cubic subset $\beta = \langle \tilde{\mu}_{\beta}, \lambda_{\beta} \rangle$ of Y defined by:

if
$$f^{-1}(y) = \{x \in X, f(x) = y\} \neq \phi$$

if
$$f^{-1}(y) = \{x \in X, f(x) = y\} \neq \phi$$

is said to be the image of Ω under f.

Similarly if $\beta = \langle \tilde{\mu}_{\beta}, \lambda_{\beta} \rangle$ is a cubic subset of Y, then the cubic subset $\Omega = (\beta \circ f)$ in X (i.e the cubic subset defined by $\tilde{\mu}_{\Omega}(\mathbf{x}) = \tilde{\mu}_{\beta}(f(\mathbf{x})), \lambda_{\Omega}(\mathbf{x}) = \lambda_{\beta}(f(\mathbf{x}))$ for all $x \in X$) is called the preimage of β under f).

Theorem 5.2. An onto homomorphic preimage of cubic AT-subalgebra is also cubic AT-subalgebra.

Proof. Let $f: (X; *, 0) \rightarrow (Y; *', 0')$ be onto homomorphism from an AT-algebra X into an AT-algebra Υ.

If $\beta = \langle \tilde{\mu}_{\beta}, \lambda_{\beta} \rangle$ is a cubic AT-subalgebra of Y and Ω =< $\tilde{\mu}_{\Omega}$, λ_{Ω} > the preimage of β under f, then $\tilde{\mu}_{\Omega}(\mathbf{x}) = \tilde{\mu}_{\beta}(\mathbf{x})$ $f_{(\mathbf{x})}, \lambda_{\Omega}(\mathbf{x}) = \lambda_{\beta} (f_{(\mathbf{x})}), \text{ for all } \mathbf{x} \in \mathbf{X}.$ Let $x \in X$, then $(\tilde{\mu}_{\Omega})(0) = \tilde{\mu}_{\beta} (f(0)) \ge \tilde{\mu}_{\beta} (f(x)) = \tilde{\mu}_{\Omega} (x), \text{ and } (\lambda_{\Omega})(0) =$ $\lambda_{\beta} (f(0)) \leq \lambda_{\beta} (f(x)) = \lambda_{\Omega} (x).$ Now, let x, y \in X, then $\tilde{\mu}_{\Omega} (\mathbf{x} * \mathbf{y}) = \tilde{\mu}_{\beta} (f_{(\mathbf{x} * \mathbf{y})}) \ge \min \{ \tilde{\mu}_{\beta} (f_{(\mathbf{x})}, \tilde{\mu}_{\beta} (f_{(\mathbf{y})}) \} \}$ = rmin { $\tilde{\mu}_{O}(\mathbf{x}), \tilde{\mu}_{O}(\mathbf{y})$ }, and $\begin{array}{l} \lambda_{\Omega} \left(\mathbf{x} \ast \mathbf{y} \right) = \lambda_{\beta} (\begin{array}{c} f \left(\mathbf{x} \ast \mathbf{y} \right) \right) \leq \max \left\{ \lambda_{\beta} \left(\begin{array}{c} f \left(\mathbf{x} \right), \lambda_{\beta} \left(\begin{array}{c} f \end{array} \right) \right) \right\} \\ = \max \left\{ \lambda_{\Omega} \left(\mathbf{x} \right), \lambda_{\Omega} \left(\mathbf{y} \right) \right\}. \end{array}$

Definition 5.3. Let $f: (X; *, 0) \rightarrow (Y; *', 0')$ be a mapping from a set X into a set Y.

 $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic subset of X has sup and inf

properties if for any subset T of X, there exist t,
$$s \in T$$
 such
 $\widetilde{\mu}_{\Omega}(t) = r \sup_{t \in T} \widetilde{\mu}_{\Omega}(t)$ and $\lambda_{\Omega}(s) = \inf_{s \in T} \lambda_{\Omega}(s)$.

Theorem 5.4. Let $f : (X; *, 0) \to (Y; *', 0')$ be a homomorphism from an AT-algebra X into an AT-algebra Y. For every cubic AT-subalgebra $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ of X, then $f(\Omega)$ is a cubic AT-subalgebra of Y. **Proof.** By definition

$$\widetilde{\mu}_{\beta}(\mathbf{y}') = f(\widetilde{\mu}_{\Omega})(\mathbf{y}') = r \sup_{t \in f^{-1}(\mathbf{y}')} \widetilde{\mu}_{\Omega}(\mathbf{x})$$

and
$$\lambda_{\beta}(\mathbf{y}') = f(\lambda_{\Omega})(\mathbf{y}') = \inf_{t \in f^{-1}(\mathbf{y}')} \lambda_{\Omega}(\mathbf{x})$$

for all \mathbf{y}'

 \in Y and

 $rsup(\emptyset) = [0, 0]$ and $inf(\emptyset) = 0$. We have prove that $\tilde{\mu}_{\Omega} (x' * y') \ge \min \{ \tilde{\mu}_{\Omega} (x'), \tilde{\mu}_{\Omega} (y') \}, \text{ and } \lambda_{\Omega} (x' * y') \le$ $\max\{\lambda_{\Omega}\left(x'\right),\lambda_{\Omega}\left(y'\right)\},\,\text{for all }x',\,y'\in Y.$

Let $f: (X; *, 0) \rightarrow (Y; *', 0')$ be a homomorphism of ATalgebras,

 $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic AT-subalgebra of X has sup and inf properties and

 $\beta = <\tilde{\mu}_{\beta}, \lambda_{\beta} >$ the image of $\Omega = <\tilde{\mu}_{\Omega}, \lambda_{\beta} >$ under f.

Since $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic AT-subalgebra of X, we have $(\tilde{\mu}_{\Omega})(0) \ge \tilde{\mu}_{\Omega}(x)$, and $(\lambda_{\Omega})(0) \le \lambda_{\Omega}(x)$, for all $x \in X$.

Note that, $0 \in f^{-1}(0)$ where 0,0' are the zero of X and Y, respectively. Thus

$$\widetilde{\mu}_{\beta}(0') = \operatorname{rsup}_{t \in f^{-1}(0')} \widetilde{\mu}_{\Omega}(t) = \widetilde{\mu}_{\Omega}(0) \qquad \operatorname{rsup}_{\delta} \widetilde{\mu}_{\Omega}(t) = \widetilde{\mu}_{\beta}(x') ,$$

$$\widehat{\lambda}_{\beta}(0') = \inf_{t \in f^{-1}(0')} \widehat{\lambda}_{\Omega}(t) = \widehat{\lambda}_{\Omega}(0) \leq \widehat{\lambda}_{\Omega}(x) = \inf_{t \in f^{-1}(x')} \widehat{\lambda}_{\Omega}(t) = \widehat{\lambda}_{\beta}(x') , \text{ for all } x \in X, \text{ which implies that } \widetilde{\mu}_{\beta}(0') \geq \widetilde{\mu}_{\beta}(x') ,$$

For any x', y' \in Y, let $x_0 \in f^{-1}$ (x') and $y_0 \in f^{-1}$ (y') be such that

$$\widetilde{\mu}_{\Omega}(x_0) = \operatorname{rsup}_{t \in f^{-1}(x')} \widetilde{\mu}_{\Omega}(t) , \quad \widetilde{\mu}_{\Omega}(y_0) = \operatorname{rsup}_{t \in f^{-1}(y')} \widetilde{\mu}_{\Omega}(t)$$

$$\operatorname{and}_{\sim 40^{\sim}}$$

World Wide Journal of Multidisciplinary Research and Development

$$\begin{split} \widetilde{\mu}_{\Omega}(x_{0} \ast y_{0}) &= \widetilde{\mu}_{\beta} \left\{ f(x_{0} \ast y_{0}) \right\} = \widetilde{\mu}_{\beta} \left(x' \ast y' \right) = \sup_{(x_{0} \ast z_{0}) \in f^{-1}(x' \ast y')} \widetilde{\mu}_{\Omega}(x_{0} \ast y_{0}) = \operatorname{rsup}_{t \in f^{-1}(x' \ast y')} \widetilde{\mu}_{\Omega}(t) \\ \lambda_{\Omega}(x_{0}) &= \inf_{t \in f^{-1}(x')} \lambda_{\Omega}(t) \xrightarrow{\lambda_{\Omega}(y_{0}) = \inf_{t \in f^{-1}(y')} \lambda_{\Omega}(t)}_{\operatorname{and}} \operatorname{and} \lambda_{\Omega}(x_{0} \ast y_{0}) = \lambda_{\beta} \left\{ f(x_{0} \ast y_{0}) \right\} = \lambda_{\beta} \left\{ f(x' \ast y') \right\} = \inf_{\substack{t \in f^{-1}(x' \ast y') \\ t \in f^{-1}(x' \ast y')}} \lambda_{\Omega}(x_{0} \ast y_{0}) \\ &= \inf_{t \in f^{-1}(x' \ast y')} \widetilde{\mu}_{\Omega}(t) \operatorname{rsup}_{t \in f^{-1}(x' \ast y)} \widetilde{\mu}_{\Omega}(x_{0} \ast y_{0}) \\ &= \operatorname{rsup}_{t \in f^{-1}(x' \ast y')} \widetilde{\mu}_{\Omega}(t) = \widetilde{\mu}_{\Omega}(x_{0} \ast y_{0}) \underset{\text{semin}}{\text{semin}} \left\{ \widetilde{\mu}_{\Omega}(x_{0}), \widetilde{\mu}_{\Omega}(y_{0}) \right\}_{\operatorname{and}} \\ \lambda_{\beta}(x' \ast y') &= \inf_{t \in f^{-1}(y')} \widetilde{\mu}_{\Omega}(t) \\ &\leq \max \left\{ \lambda_{\Omega}(x_{0}), \lambda_{\Omega}(y_{0}) \right\}_{\operatorname{semin}} \left\{ \operatorname{rsup}_{t \in f^{-1}(y')} \lambda_{\Omega}(t) \right\}_{\operatorname{semin}} \left\{ \operatorname{rsup}_{t \in f^{-1}(y')} \lambda_{\Omega}(t) \right\}_{\operatorname{semin}} \right\}$$

Hence, β is a cubic AT-subalgebra of Y. \triangle

Theorem 5.5.

Let $\Omega = (\tilde{\mu}_{\Omega}, v_{\Omega})$ be a cubic set of X such that the sets $U(\tilde{\mu}_{\Omega})$ $|[s_1,s_2]\rangle$ and $L(v_{\Omega}|t)$ are AT-subalgebras of X for every $[s_1,s_2] \in D[0,1]$ and $t \in [0,1]$, then $\Omega = (\tilde{\mu}_{\Omega}, v_{\Omega})$ is a cubic ATsubalgebra of X.

Let $U(\tilde{\mu}_{\Omega} | [s_1, s_2])$ and $L(v_{\Omega} | t)$ are AT-subalgebras of X, for

Proof.

every $[s_1, s_2] \in D[0, 1]$ and t $\in [0,1]$. on the contrary, let $x_0, y_0 \in X$ be such that $\tilde{\mu}_{\Omega}(\mathbf{x}_0, \mathbf{y}_0) < \operatorname{rmin}\{\tilde{\mu}_{\Omega}(\mathbf{x}_0), \tilde{\mu}_{\Omega}(\mathbf{y}_0)\}.$ Let $\tilde{\mu}_{\Omega}(\mathbf{x}_0) = [\theta_1, \theta_2]$ and $\tilde{\mu}_{\Omega}(\mathbf{y}_0) = [\theta_3, \theta_4]$ and $\tilde{\mu}_{\Omega}(\mathbf{x}_0, \mathbf{y}_0) = [\mathbf{s}_1, \mathbf{s}_2].$ Then[s_1, s_2] < rmin{=[θ_1, θ_2], [θ_3, θ_4]} = [min{ θ_1, θ_2 }, min{ θ_3, θ_4 }]. So,s₁<min{ θ_1, θ_3 } and $S_2 < \{\theta_2, \theta_4\}$. Let us cosider, $[\rho_1,\rho_2] = \frac{1}{2} [\tilde{\mu}_{\Omega}(\mathbf{x}_0 * \mathbf{y}_0) + \min\{\tilde{\mu}_{\Omega}(\mathbf{x}_0), \tilde{\mu}_{\Omega}(\mathbf{y}_0)\}]$ $\frac{1}{2} \big[[s_1, s_2] + [min\{\theta_1, \theta_3\}, min\{\theta_2, \theta_4\}] \big]$ $= \left[\frac{1}{2}(s_1 + \min\{\theta_1, \theta_3\}), \frac{1}{2}(s_2 + \min\{\theta_2, \theta_4\})\right].$ Therefore, $\min\{\theta_1, \theta_3\} > \rho_1 = \frac{1}{2}(s_1 + \min\{\theta_1, \theta_3\}) > s_1$ and $\min\{\theta_2, \theta_4\} > \rho_2 = \frac{1}{2}(s_2 + \min\{\theta_2, \theta_4\}) > s_2.$ Hence $[\min\{\theta_1, \theta_3\}, \min\{\theta_2, \theta_4\}] > [\rho_1, \rho_2] > [s_1, s_2]$, so that $(x_0 * y_0) \notin U(\tilde{\mu}_{\Omega} | [s_1, s_2])$ which is a contradiction since $\tilde{\mu}_{\Omega}(\mathbf{x}_0) = [\theta_1, \theta_2] > [\min\{\theta_1, \theta_3\}, \min\{\theta_2, \theta_4\}] >$ $[\rho_1, \rho_2]$ and $\tilde{\mu}_{\Omega}(\mathbf{y}_0) = [\theta_2, \theta_3] > [\min\{\theta_1, \theta_3\}, \min\{\theta_2, \theta_4\}] >$ $[\rho_1, \rho_2]$ this implies $(\mathbf{x}_0 * \mathbf{y}_0) \in U(\tilde{\mu}_{\Omega})$ $[s_1, s_2]).$ Thus $\tilde{\mu}_{\Omega}(\mathbf{x} * \mathbf{y})$ \geq rmin{ $\tilde{\mu}_{\Omega}(x), \tilde{\mu}_{\Omega}(y)$ }, for all $x, y \in X$. $x_{0,}y_{0} \in X$ such Again, Let that $v(x_0, y_0) > \max\{v_{\Omega}(x_0), v_{\Omega}(y_0)\}$. Let $v(x_0) = \eta_1$, $v_{\Omega}(y_0) = \eta_2$ and $v_{\Omega}(x_0 * y_0) = t$. Then $t > \max\{\eta_1, \eta_2\}$. Let us consider, $t_1 = \frac{1}{2} [v_{\Omega}(x_0 * y_0) + \max\{v_{\Omega}(x_0), v(y_0)\}].$ We get that $t_1 = \frac{1}{2}(t_1 + \max\{\eta_1, \eta_2\})$, therefore, $\eta_1 < t_1 = \frac{1}{2}(t_1 + \max\{\eta_1, \eta_2\}) < t$ and $\eta_2 < t_1 = \frac{1}{2}(t + t_1)$ $\max{\{\eta_1, \eta_2\}} < t$, hence, $\max{\{\eta_1, \eta_2\}} < t_1 < t = v_{\Omega}(x_0 * y_0)$. So that $x_0 * y_0 \notin L(v_{\Omega}|t)$ which is a contradiction since $v_{\Omega}(x_0) = \eta_1 \le \max\{\eta_1, \eta_2\} < t_1$ and $v(y_0) = \eta_2 \le \eta_1 \le \eta_2 \le$ $\max{\{\eta_1, \eta_2\} < t_1, \text{ this implies } x_0, y_0 \in L(v_\Omega | t)}$

this implies $v_{\Omega}(x * y) \le \max\{v_{\Omega}(x), v_{\Omega}(y)\}$, for all $x, y \in X$.

Theorem 5.6. Any AT-subalgebra of X can be realized as both the upper $[s_1, s_2]$ -Level and Lower t-Level of some cubic AT-subalgebra of X.

Proof. Let P be a cubic AT-subalgebra of X and Ω be cubic set on X defined by

Let P be a cubic AT-subalgebra of X and Ω be cubic set on X defined by

 $\widetilde{\mu}_{\Omega}(\mathbf{x}) = \begin{cases} [\alpha_1, \alpha_2], \text{ if } \mathbf{x} \in P \\ [0,0], \text{ otherwise} \end{cases} \text{ and } \mathbf{v}_{\Omega}(\mathbf{x}) = \begin{cases} \beta, \text{ if } \mathbf{x} \in P \\ 1, \text{ othrwise} \end{cases}$

For $all[\alpha_1, \alpha_2] \in D[0,1]$ and $\beta \in [0,1]$, we consider the following cases:

Case 1) if x, y \in P, then $\tilde{\mu}_{\Omega}(x) = [\alpha_1, \alpha_2], v_{\Omega}(x) = \beta$ and $\tilde{\mu}_{\Omega}(\mathbf{y}) = [\alpha_1, \alpha_2], \mathbf{v}_{\Omega}(\mathbf{y}) = \boldsymbol{\beta}.$ Thus, $\tilde{\mu}_O(x * y)$

 $= [\alpha_1, \alpha_2] = \min\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\} = \min\{\widetilde{\mu}_O(\mathbf{x}), \widetilde{\mu}_O(\mathbf{y})\}$ and

 $\mathbf{v}_{\Omega}(\mathbf{x} \ast \mathbf{y}) = \beta = \max[\beta_1, \beta_2] = \max\{\mathbf{v}_{\Omega}(\mathbf{x}), \mathbf{v}_{\Omega}(\mathbf{y})\}.$ *Case 2*)if $x \in Pand y \notin P$, then $\tilde{\mu}_{\Omega}(x) = [\alpha_1, \alpha_2], v_{\Omega}(x) = \beta$ and $\tilde{\mu}_{\Omega}(y) = [0,0], v_{\Omega}(y) = 1.$ Thus $\tilde{\mu}_{O}(x * y)$)=[0,0] \geq rmin{[α_1, α_2], [0,0]}=rmin{ $\tilde{\mu}_{\Omega}(x), \tilde{\mu}_{\Omega}(y)$ }andv $_{\Omega}(x*$ $\mathbf{y}) \leq 1 = \max[\beta_1, 1] = \max\{\mathbf{v}_{\Omega}(\mathbf{x}), \mathbf{v}_{\Omega}(\mathbf{y})\}.$ *Case3*) if $x \notin P$ and $y \in P$, then $\tilde{\mu}_{\Omega}(x) = [0,0]$, $v_{\Omega}(x) = 1$ and $\tilde{\mu}_{\Omega}(\mathbf{y}) = [\alpha_1, \alpha_2], \mathbf{v}_{\Omega}(\mathbf{y}) = \beta$ Thus, $\tilde{\mu}_{\Omega}(x * y) = [0, 0] \ge \min\{[0, 0], [\alpha_1, \alpha_2]\}$ =rmin{ $\tilde{\mu}_{\Omega}(\mathbf{x}), \tilde{\mu}_{\Omega}(\mathbf{y})$ } and

 $\mathbf{v}_{\boldsymbol{\Omega}}(\mathbf{x} \ast \boldsymbol{y}) \leq l + = \max[\mathbf{1}, \boldsymbol{\beta}_{\mathbf{1}}] = \max\{\mathbf{v}_{\boldsymbol{\Omega}}(\mathbf{x}), \mathbf{v}_{\boldsymbol{\Omega}}(\mathbf{y})\}.$ *Case4*) $x \notin P, y \notin P$ and y, then $\tilde{\mu}_{\Omega}(x) = [0,0], v_{\Omega}(x) = 1$ and $\tilde{\mu}_{\Omega}(y) = [0,0], v_{\Omega}(y) = 1$ Now, $\tilde{\mu}_{\Omega}(x * y) = [0,0] = rmin\{[0,0], [0,0]\}$

 $= rmin\{\tilde{\mu}_{O}(\mathbf{x}), \tilde{\mu}_{O}(\mathbf{y})\}$ and $v_O(x * y)$ ≤1 $= \max[1,1] =$ $\max\{\mathbf{v}_O(\mathbf{x}), \mathbf{v}_O(\mathbf{y})\}.$

Therefore, Ω is a cubic AT-subalgebra of X. \triangle

Theorem 5.7. An onto homomorphic preimage of cubic AT-ideal is also cubic AT-ideal. Proof.

Let $f: (X; *, 0) \rightarrow (Y; *', 0')$ be onto homomorphism from an AT-algebra X into an AT-algebra Y.

If
$$\beta = \langle \tilde{\mu}_{\beta}, \lambda_{\beta} \rangle$$
 is a cubic AT-ideal of Y and $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ the preimage of β under f , then $\tilde{\mu}_{\Omega}(x) = \tilde{\mu}_{\beta}(f(x)), \lambda_{\Omega}(x) = \lambda_{\beta}(f(x)),$ for all $x \in X$. Let $x \in X$, then
 $(\tilde{\mu}_{\Omega})(0) = \tilde{\mu}_{\beta}(f(0)) \geq \tilde{\mu}_{\beta}(f(x)) = \tilde{\mu}_{\Omega}(x), \text{ and } (\lambda_{\Omega})(0) = \lambda_{\beta}(f(0)) \leq \lambda_{\beta}(f(x)) = \lambda_{\Omega}(x).$
Now, let $x, y, z \in X$, then
 $\tilde{\mu}_{\Omega}(x * z) = \tilde{\mu}_{\beta}(f(x * z)) \geq \min \{\tilde{\mu}_{\beta}(f(x * (y * z)), \tilde{\mu}_{\beta}(f(y))\} = \min \{\tilde{\mu}_{\Omega}(x * (y * z)), \tilde{\mu}_{\Omega}(y)\}, \text{ and } \lambda_{\Omega}(x * z) = \lambda_{\beta}(f(z * x)) \leq \max \{\lambda_{\beta}(f(x * (y * z)), \lambda_{\beta}(f(y))\} = \max \{\lambda_{\Omega}(x * (y * z)), \lambda_{\Omega}(y)\}. \Delta$

Definition 5.8.Let $\mathcal{F}: (X; *, 0) \to (Y; *', 0')$ be a mapping from a set X into a set Y. $\Omega = \langle \widetilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic subset of X has sup and inf properties if for any subset T of X, there exist t, $s \in T$ such that $\widetilde{\mu}_{\Omega}(t) = r \sup_{t \in T} \widetilde{\mu}_{\Omega}(t)$ there $\sum_{s \in T} \lambda_{\Omega}(s)$ and

Theorem 5.9. Let $f: (X; *, 0) \rightarrow (Y; *', 0')$ be a homomorphism from an AT-algebra X into an AT-algebra Y. For every cubic AT-ideal $\Omega =<\tilde{\mu}_{\Omega}, \lambda_{\Omega}>$ of X, then $f(\Omega)$ is a cubic AT-ideal of Y. **Proof.** By definition $\tilde{\mu}_{\beta}(y') = f(\tilde{\mu}_{\Omega})(y') = \underset{t \in f^{-1}(y')}{\operatorname{sup}} \tilde{\mu}_{\Omega}(x)$

$$\lambda_{\beta}(\mathbf{y}') = f(\lambda_{\Omega})(\mathbf{y}') = \inf_{\substack{t \in f^{-1}(\mathbf{y}')}} \lambda_{\Omega}(\mathbf{x})$$
for all $\mathbf{y}' \in \mathbf{Y}$ and rsup $(\emptyset) = [0, 0]$ and inf $(\emptyset) = 0$. We have prove that

 $\widetilde{\mu}_{\Omega} (\mathbf{x}' \ast \mathbf{z}') \geq \min \{ \widetilde{\mu}_{\Omega} (\mathbf{x}' \ast (\mathbf{y}' \ast \mathbf{z}')), \widetilde{\mu}_{\Omega} (\mathbf{y}') \}, \text{ and } \lambda_{\Omega} (\mathbf{x}' \ast \mathbf{z}') \leq \max \{ \lambda_{\Omega} (\mathbf{x}' \ast (\mathbf{y}' \ast \mathbf{z}')), \lambda_{\Omega} (\mathbf{y}') \}, \text{ for all } \mathbf{x}', \mathbf{y}', \mathbf{z}' \in \mathbf{Y}.$

Let $f: (X; *, 0) \to (Y; *', 0')$ be a homomorphism of ATalgebras, $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic AT-idealof X has sup and inf properties and $\beta = \langle \tilde{\mu}_{\beta}, \lambda_{\beta} \rangle$ the image of $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\beta} \rangle$

 λ_{β} >under f.

Since $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ is a cubic AT-ideal of X, we have $(\tilde{\mu}_{\Omega})(0) \ge \tilde{\mu}_{\Omega}(x)$, and $(\lambda_{\Omega})(0) \le \lambda_{\Omega}(x)$, for all $x \in X$.

Note that, $0 \in \mathcal{F}^{-1}(0)$ where 0,0' are the zero of X and Y, respectively. Thus

$$\widetilde{\mu}_{\beta}(0') = \operatorname{rsup}_{t \in f^{-1}(0')} \widetilde{\mu}_{\Omega}(t) = \widetilde{\mu}_{\Omega}(0)$$

$$r \operatorname{sup} \widetilde{\mu}_{\Omega}(t) = \widetilde{\mu}_{\beta}(x')$$

 $t \in f^{-1}(x')$

$$\lambda_{\beta}(0') = \inf_{t \in f^{-1}(0')} \lambda_{\Omega}(t) = \lambda_{\Omega}(0) \le \lambda_{\Omega}(x) =$$

 $\inf_{\substack{t \in f^{-1}(x')}} \lambda_{\Omega}(t) = \lambda_{\beta}(x'), \text{ for all } x \in X, \text{ which implies}$ $\lim_{t \to a} \widetilde{\mu}_{\beta}(0') \geq \widetilde{\mu}_{\beta}(x'), \text{ and } \lambda_{\beta}(0') \leq \lambda_{\beta}(x'), \text{ for all } x' \in Y.$

For any x', y', z' \in Y, let $x_0 \in f^{-1}(x')$, $y_0 \in f^{-1}(y')$, and $z_0 \in f^{-1}(z')$ be such that

$$\begin{split} & \mu_{\Omega}(x_{0}*(y_{0}+z_{0})=\underset{i\in f^{-1}(x^{i}(y^{i}+z^{i}))}{\operatorname{red}} \mu_{\Omega}(t) \\ & \tilde{\mu}_{\Omega}(y_{0})=\underset{i\in f^{-1}(y^{i})}{\operatorname{rsup}} \tilde{\mu}_{\Omega}(t) \\ & \tilde{\mu}_{\Omega}(x_{0}*z_{0}) = \underset{(x_{0}*z_{0})\in f^{-1}(x^{i}+z^{i})}{\operatorname{rsup}} \tilde{\mu}_{\Omega}(x_{0}*z_{0}) \\ & = \underset{i\in f^{-1}(x^{i}+z^{i})}{\operatorname{rsup}} \tilde{\mu}_{\Omega}(t) \\ & \tilde{\mu}_{\Omega}(x_{0}*(y_{0}*z_{0}))=\underset{i\in f^{-1}(x^{i}+z^{i})}{\operatorname{nsup}} \lambda_{\Omega}(t) \\ & \lambda_{\Omega}(x_{0}*(y_{0}*z_{0}))=\underset{i\in f^{-1}(x^{i}+z^{i})}{\operatorname{nsup}} \lambda_{\Omega}(t) \\ & \lambda_{\Omega}(y_{0})=\underset{i\in f^{-1}(x^{i}+z^{i})}{\operatorname{nsup}} \lambda_{\Omega}(t) \\ & \text{and} \\ & \lambda_{\Omega}(x_{0}*z_{0})=\lambda_{\beta}\{f(x_{0}*z_{0})\} \\ & = \underset{i\in f^{-1}(x^{i}+z^{i})}{\operatorname{nsup}} \lambda_{\Omega}(x_{0}*z_{0}) \\ & = \underset{i\in f^{-1}(x^{i}+z^{i})}{\operatorname{nsup}} \lambda_{\Omega}(x_{0}*z_{0}) \\ & = \underset{i\in f^{-1}(x^{i}+z^{i})}{\operatorname{nsup}} \lambda_{\Omega}(t) \\ & = \underset{i\in f^{-1}(x^{i}+y^{i}+z^{i})) \\ & = \underset{i\in f^{-1}(x^{i}+z^{i})}{\operatorname{nsup}} \tilde{\mu}_{\Omega}(t) \\ & = \underset{i\in f^{-1}(x^{i}+y^{i}+z^{i})}{\operatorname{nsup}} \tilde{\mu}_{\Omega}(t) \\ & = \underset{i\in f^{-1}(y^{i}+y^{i}+z^{i})}{\operatorname{nsup}} \tilde{\mu}_{\Omega}(t) \\ & = \underset{i\in f^{-1}(y^{i}+y^{i}+z^{i})}{\operatorname{nsup}} \tilde{\mu}_{\Omega}(t) \\ & = \underset{i\in f^{-1}(y^{i}+y^{i}+z^{i})}{\operatorname{nsup}} \tilde{\mu}_{\Omega}(t) \\ & = \underset{i\in f^{-1}(x^{i}+y^{i}+y^{i}+z^{i})}{\operatorname{nsup}} \tilde{\mu}_{\Omega}(t) \\ & = \underset{i\in f^{-1}(y^{i}+y^{i}+z^{i})}{\operatorname{nsup}} \tilde{\mu}_{\Omega}$$

~ (1)

6. Cartesain product of cubic AT-ideals

 $\{\lambda_{\Omega_1}(\mathbf{x}),\lambda_{\Omega_2}(\mathbf{y})\}.$

In the section, we will provide some definition on Cartesain product of cubic AT-ideals in AT-algebras.

Definition 6.1[10]. Let $\Omega_1 = \langle \tilde{\mu}_{\Omega 1}, \lambda_{\Omega 1} \rangle$ and $\Omega_2 = \langle \tilde{\mu}_{\Omega 2}, \lambda_{\Omega 2} \rangle$ be two cubic subsets of AT-algebras X_1 and X_2 respectively. Cartesian product of cubic subsets Ω_1 and Ω_2 is denoted by $\Omega_1 \times \Omega_2 = \langle \tilde{\mu}_{\Omega 1 \times \Omega 2}, \lambda_{\Omega 1 \times \Omega 2} \rangle$ and is defined as, for all $(x,y) \in X_1 \times X_2$: $\tilde{\mu}_{\Omega 1 \times \Omega 2}(x,y) = \min \{ \tilde{\mu}_{\Omega 1}(x), \tilde{\mu}_{\Omega 2}(y) \}, \lambda_{\Omega 1 \times \Omega 2}(x,y) = \max \}$

Remark 6.2. Let X and Y be AT-algebras. We defined * on X×Y by(x,y)*(u,v) = (x*u, y*v) for every (x,y),(u,v) \in X×Y. Clearly (X×Y, *, (0,0)) is an AT-algebra.

Definition 6.3. A cubic subset $\Omega_1 \times \Omega_2 = \langle \tilde{\mu}_{\Omega_1 \times \Omega_2}, \lambda_{\Omega_1 \times \Omega_2} \rangle$ of $X_1 \times X_2$ is called a cubic AT-ideal of $X_1 \times X_2$ if, for all $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X_1 \times X_2$: $(1)\tilde{\mu}_{\Omega_1 \times \Omega_2}(0,0) \geq \tilde{\mu}_{\Omega_1 \times \Omega_2}(x,y)$ and $\lambda_{\Omega_1 \times \Omega_2}(0,0) \leq \lambda_{\Omega_1 \times \Omega_2}(x,y)$ $\begin{aligned} &(2)\tilde{\mu}_{\Omega_{1}\times\Omega_{2}}((\mathbf{x}_{1},\mathbf{y}_{1})*(\mathbf{x}_{3},\mathbf{y}_{3})) \geq \\ &\min\{\tilde{\mu}_{\Omega_{1}\times\Omega_{2}}((\mathbf{x}_{1},\mathbf{y}_{1})*((\mathbf{x}_{2},\mathbf{y}_{2})*(\mathbf{x}_{3},\mathbf{y}_{3}))), \\ &\tilde{\mu}_{\Omega_{1}\times\Omega_{2}}(\mathbf{x}_{2},\mathbf{y}_{2})\}, \text{and} \\ &\lambda_{\Omega_{1}\times\Omega_{2}}((\mathbf{x}_{1},\mathbf{y}_{1})*(\mathbf{x}_{3},\mathbf{y}_{3})) \leq \max\{\lambda_{\Omega_{1}\times\Omega_{2}}((\mathbf{x}_{1},\mathbf{y}_{1})*((\mathbf{x}_{2},\mathbf{y}_{2})*(\mathbf{x}_{3},\mathbf{y}_{3}))), \\ &\lambda_{\Omega_{1}\times\Omega_{2}}(\mathbf{x}_{2},\mathbf{y}_{2})\}. \end{aligned}$

Theorem 6.4. Let $\Omega_1 = \langle \tilde{\mu}_{\Omega 1}, \lambda_{\Omega 1} \rangle$ and $\Omega_2 = \langle \tilde{\mu}_{\Omega 2}, \lambda_{\Omega 2} \rangle$ be twocubic AT-ideals of AT-algebras X_1 and X_2 , respectively. Then $\Omega_1 \times \Omega_2 = \langle \tilde{\mu}_{\Omega 1 \times \Omega 2}, \lambda_{\Omega 1 \times \Omega 2} \rangle$ is acubic AT-ideal of AT-algebra $X_1 \times X_2$.

Proof. For any $(x,y) \in X_1 \times X_2$, $\tilde{\mu}_{\Omega_1 \times \Omega_2}(0,0) = \text{rmin} \{ \tilde{\mu}_{\Omega_1}(0), \tilde{\mu}_{\Omega_2}(0) \} \ge \text{rmin} \{ \tilde{\mu}_{\Omega_1}(x), \tilde{\mu}_{\Omega_2}(y) \}$ $= \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}, \mathbf{y})$ $\lambda_{\Omega_1 \times \Omega_2}(0,0) = \max \{\lambda_{\Omega_1}(0), \lambda_{\Omega_2}(0)\} \le \max \{\lambda_{\Omega_1}(x), \lambda_{\Omega_2}(y)\}$ $=\lambda_{\Omega_1\times\Omega_2}(x,y)$ For any $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X_1 \times X_2$, $\tilde{\mu}_{\Omega \times \Omega 2}(\mathbf{x}_{1} * \mathbf{x}_{3}, y_{1} * y_{3}) = \min\{\tilde{\mu}_{\Omega 1}(\mathbf{x}_{1} * \mathbf{x}_{3}), \tilde{\mu}_{\Omega 2}(y_{1} * y_{3})\},\$ $\geq \min\{\min\{\tilde{\mu}_{\Omega 1}(\mathbf{x}_{1} * (\mathbf{x}_{2} * \mathbf{x}_{3})), \tilde{\mu}_{\Omega 1}(\mathbf{x}_{2})\}, \min\{\tilde{\mu}_{\Omega 2}(y_{1} * (y_{2} * \mathbf{x}_{3})), \tilde{\mu}_{\Omega 2}(\mathbf{x}_{2})\}, \min\{\tilde{\mu}_{\Omega 2}(y_{1} * (y_{2} * \mathbf{x}_{3})), \tilde{\mu}_{\Omega 2}(y_{2} + y_{2})\}, \min\{\tilde{\mu}_{\Omega 2}(y_{2} + y_{2}), \tilde{\mu}_{\Omega 2}(y_{2} + y_{2})\}, \min\{\tilde{\mu}_{\Omega 2}(y_{2} + y_{2}), \tilde{\mu}_{\Omega 2}(y_{2} + y_{2}), \tilde{\mu}_{\Omega 2}(y_{2} + y_{2})\}, \min\{\tilde{\mu}_{\Omega 2}(y_{2} + y_{2}), \tilde{\mu}_{\Omega 2}(y_{2} + y_{2}), \tilde{\mu}_{\Omega 2}(y_{2} + y_{2})\}, \tilde{\mu}_{\Omega 2}(y_{2} + y_{2}), \tilde{\mu}_{\Omega 2}(y_{2} + y_{2}), \tilde{\mu}_{\Omega 2}(y_{2} + y_{2})\}, \tilde{\mu}_{\Omega 2}(y_{2} + y_{2}), \tilde{\mu}_{\Omega$ $y_3)), \tilde{\mu}_{\Omega 2}(y_2)\}\}$ $= \min\{\min\{\widetilde{\mu}_{\Omega 1}(\mathbf{x}_1 \ast (\mathbf{x}_2 \ast \mathbf{x}_3)), \widetilde{\mu}_{\Omega 2}(y_1 \ast (y_2 \ast y_3))\},\$ $\min\{\{\tilde{\mu}_{\Omega 2}(\mathbf{x}_2), \tilde{\mu}_{\Omega 2}(y_2)\}\$ $= \min\{\widetilde{\mu}_{\mathcal{Q}1\times\mathcal{Q}2}((\mathbf{x}_1\ast(\mathbf{x}_2\ast\mathbf{x}_3)),(y_1\ast(y_2\ast y_3)))$ $, \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, y_2) \}$ $\geq \min\{\tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, y_1) * ((\mathbf{x}_2, y_2) * (\mathbf{x}_3, y_3)), \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, y_2)\}$ $\lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_1 * \mathbf{x}_3, y_1 * y_3) = \max\{\lambda_{\Omega_1}(\mathbf{x}_1 * \mathbf{x}_3), \lambda_{\Omega_2}(y_1 * y_3)\}$ $\leq \max\{\max\{\lambda_{\Omega 1}(\mathbf{x}_1 * (\mathbf{x}_2 * \mathbf{x}_3)), \lambda_{\Omega 1}(\mathbf{x}_2)\}, \max\{\lambda_{\Omega 2}(y_1 * (y_2 * \mathbf{x}_3)), \lambda_{\Omega 1}(\mathbf{x}_2)\}, \max\{\lambda_{\Omega 2}(y_1 * (y_2 * \mathbf{x}_3)), \lambda_{\Omega 2}(\mathbf{x}_2)\}, \max\{\lambda_{\Omega 2}(y_2 * \mathbf{x}_3)\}, \max\{\lambda_{\Omega 2}(y_1 * (y_2 * \mathbf{x}_3)), \lambda_{\Omega 2}(\mathbf{x}_2)\}, \max\{\lambda_{\Omega 2}(y_2 * \mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_2)\}, \max\{\lambda_{\Omega 2}(y_2 * \mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_2)\}, \max\{\lambda_{\Omega 2}(y_2 * \mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_2)\}, \max\{\lambda_{\Omega 2}(y_2 * \mathbf{x}_3)\}, \max\{\lambda_{\Omega 2}(y_2 * \mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_3)\}, \lambda_{\Omega 2}(\mathbf{x}_3)\}, \max\{\lambda_{\Omega 2}(y_2 * \mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_3)\}, \lambda_{\Omega 2}(\mathbf{x}_3)\}, \lambda_{\Omega 2}(\mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_3)\}, \lambda_{\Omega 2}(\mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_3)\}, \lambda_{\Omega 2}(\mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_3)\}, \lambda_{\Omega 2}(\mathbf{x}_3)\}, \lambda_{\Omega 2}(\mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_3), \lambda_{\Omega 2}(\mathbf{x}_3)\}, \lambda_{\Omega 2}(\mathbf{x}_3)\}, \lambda_{\Omega 2}(\mathbf{x}_3), \lambda_{$ $y_3)),\lambda_{\Omega 2}(y_2)\}\}$ $=\max\{\max\{\lambda_{\Omega 1}(x_{1}*(x_{2}*x_{3})),\lambda_{\Omega 2}(y_{1}*(y_{2}*y_{3})),$ $\max\{\lambda_{\Omega 1}(\mathbf{x}_2), \lambda_{\Omega 2}(\mathbf{y}_2)\}\}$ $=\max\{\lambda_{\Omega_1\times\Omega_2}((x_1 * (x_2 * x_3)), (y_1 * (y_2 * x_3)))$ $y_3)),\lambda_{\Omega_1\times\Omega_2}(x_2,y_2)\}$ $\leq \max\{\lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, y_1) * ((\mathbf{x}_2, y_2) * (\mathbf{x}_3, y_3)), \lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, y_2)\}$ $\operatorname{Hence}, \Omega_1 \times \Omega_2 = \langle \tilde{\mu}_{\Omega 1 \times \Omega 2}, \lambda_{\Omega 1 \times \Omega 2} \rangle \ \text{is cubic AT-ideal of AT-}$ algebra $X_1 \times X_2$. \triangle

Theorem 6.5. If $\Omega_1 \times \Omega_2 = \langle \tilde{\mu}_{\Omega_1 \times \Omega_2}, \lambda_{\Omega_1 \times \Omega_2} \rangle$ is a cubic

AT-ideal of AT- algebra $X_1 \times X_2$ and if $(x_1, y_1) \leq (x_2, y_2)$, we have $\langle \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1) \leq \lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, \mathbf{y}_2) \rangle$ and $\lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, y_2) \ge \lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, y_1)$, for $all(x_1, y_1), (x_2, y_2) \in X_1 \times X_2.$ **Proof:** Let(x_1, y_1), $(x_2, y_2) \in X_1 \times X_2$ such that $(x_1, y_1) \le (x_2, y_2) \Rightarrow (x_2, y_2) * (x_1, y_1) = (0,0)$. This together with $(0,0)*(\mathbf{x}_1,\mathbf{y}_1)=(\mathbf{x}_1,\mathbf{y}_1)=\text{and}\ \tilde{\mu}_{\mathcal{Q}\,1\times\mathcal{Q}\,2}\big(\mathbf{x}_2,\mathbf{y}_2\big) \preccurlyeq \tilde{\mu}_{\mathcal{Q}\,1\times\mathcal{Q}\,2}\,(0,0).$ Also, $\lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, \mathbf{y}_2) \ge \lambda_{\Omega_1 \times \Omega_2}(0, 0)$. Consider $\tilde{\mu}_{\Omega_1 \times \Omega_2}((0,0) * (\mathbf{x}_1, \mathbf{y}_1)) = \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1)$ $\geq \{\tilde{\mu}_{\Omega 1 \times \Omega 2}((0,0) * ((\mathbf{x}_2,\mathbf{y}_2) * (\mathbf{x}_1,\mathbf{y}_1))), \tilde{\mu}_{\Omega 1 \times \Omega 2}(\mathbf{x}_2,\mathbf{y}_2)\}$ $= \operatorname{rmin} \left\{ \widetilde{\mu}_{\mathcal{O}1 \times \mathcal{O}2}((0,0)*(0,0)), \widetilde{\mu}_{\mathcal{O}1 \times \mathcal{O}2}(\mathbf{x}_2,\mathbf{y}_2) \right\}$ $= \operatorname{rmin}\{\tilde{\mu}_{\Omega_1 \times \Omega_2}(0,0), \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_2,\mathbf{y}_2)\}\$ $= \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, \mathbf{y}_2)$ $\lambda_{\Omega_1 \times \Omega_2}((0,0), (\mathbf{x}_1, \mathbf{y}_1)) = \lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1)$ $\leq \{\lambda_{\Omega_1 \times \Omega_2}((0,0)*(x_2,y_2)*(x_1,y_1))), \lambda_{\Omega_1 \times \Omega_2}(x_2,y_2)\}$ $= \max \left\{ \lambda_{\mathcal{Q}1 \times \mathcal{Q}2}((0,0) \ast (0,0)), \lambda_{\mathcal{Q}1 \times \mathcal{Q}2}(\mathbf{x}_2,\mathbf{y}_2) \right\}$ $= \max\{\lambda_{\mathcal{Q}1\times\mathcal{Q}2}(0,0), \lambda_{\mathcal{Q}1\times\mathcal{Q}2}(\mathbf{x}_2,\mathbf{y}_2)\}\$ $=\lambda_{\Omega_1\times\Omega_2}(\mathbf{x}_2,\mathbf{y}_2)$ This shows that $\tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, \mathbf{y}_2) \leq \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1)$ and $\lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, \mathbf{y}_2) \ge \lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1)$, for all $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2) \in X_1 \times X_2$. \Box

Theorem 6.6. If $\Omega_1 \times \Omega_2 = \langle \tilde{\mu}_{\Omega_1 \times \Omega_2}, \lambda_{\Omega_1 \times \Omega_2} \rangle$ is a cubic AT-ideal of AT- algebra $X_1 \times X_2$. If $(x_1, y_1) * (x_2, y_2) \le (x_3, y_3)$ holds $X_1 \times X_2$, then we have $\tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, \mathbf{y}_2) \geq \min\{\tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1), \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_3, \mathbf{y}_3)\}$ and $\lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, \mathbf{y}_2) \le \max\{\lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1), \lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_3, \mathbf{y}_3)\},\$ for all $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X_1 \times X_2$. Proof Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X_1 \times X_2$ and $let(x_1, y_1) * (x_2, y_2) \le (x_3, y_3)$ holds in $X_1 \times X_2$, then $(x_3, y_3) * ((x_1, y_1) * (x_2, y_2)) = (0, 0).$ Now for any $(0,0) = (x_3,y_3)$ and from (2)

```
\tilde{\mu}_{\Omega_1 \times \Omega_2}((x_3, y_3) * (x_2, y_2)) \geq \min\{\tilde{\mu}_{\Omega_1 \times \Omega_2}((x_3, y_3) * ((x_1, y_1) * (x_2, y_2))), \tilde{\mu}_{\Omega_1 \times \Omega_2}(x_1, y_1)\},\
                             \tilde{\mu}_{\Omega_1 \times \Omega_2}((\mathbf{x}_3, \mathbf{y}_3) \ast (\mathbf{x}_2, \mathbf{y}_2)) \tilde{\mu}_{\Omega_1 \times \Omega_2} ((0, 0) \ast (\mathbf{x}_2, \mathbf{y}_2)) = \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_2, \mathbf{y}_2)
                                                  \geq \operatorname{rmin}\{\tilde{\mu}_{\Omega_1 \times \Omega_2}((\mathbf{x}_1, \mathbf{y}_1) \ast (\mathbf{x}_2, \mathbf{y}_2)), \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1)\}
     \geq \min\{\min\{\tilde{\mu}_{\Omega_1 \times \Omega_2}((\mathbf{x}_1, \mathbf{y}_1) * ((\mathbf{x}_3, \mathbf{y}_3) * (\mathbf{x}_2, \mathbf{y}_2))), \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_3, \mathbf{y}_3)\}, \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1)\}
     = \min\{\min\{\tilde{\mu}_{\Omega_{1}\times\Omega_{2}}((x_{3}, y_{3})*((x_{2}, y_{2})*(x_{1}, y_{1}))), \tilde{\mu}_{\Omega_{1}\times\Omega_{2}}(x_{3}, y_{3})\}, \tilde{\mu}_{\Omega_{1}\times\Omega_{2}}(x_{1}, y_{1})\}
                                   = \min\{\min\{\tilde{\mu}_{\Omega_1 \times \Omega_2}((0,0), \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_3, \mathbf{y}_3)\}, \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1)\}\
                                                                = \operatorname{rmin}\{\tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_3, \mathbf{y}_3)\}, \tilde{\mu}_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1)\}
                                                = \operatorname{rmin}\{\tilde{\mu}_{\varOmega 1 \times \varOmega 2}(\mathbf{x}_1, \mathbf{y}_1), \tilde{\mu}_{\varOmega 1 \times \varOmega 2}(\mathbf{x}_3, \mathbf{y}_3)\} \text{ and from}(2)
\lambda_{\Omega_1 \times \Omega_2}((x_3, y_3) * (x_2, y_2)) \le \max\{\lambda_{\Omega_1 \times \Omega_2}((x_3, y_3) * ((x_1, y_1) * (x_2, y_2))), \lambda_{\Omega_1 \times \Omega_2}(x_1, y_1)\},\
                                                    We have, \lambda_{\Omega_1 \times \Omega_2} ((0,0) \ast (x_2, y_2)) = \lambda_{\Omega_1 \times \Omega_2} (x_2, y_2)
                                                   \leq \max\{\lambda_{\Omega_1 \times \Omega_2}((\mathbf{x}_1, \mathbf{y}_1) \ast (\mathbf{x}_2, \mathbf{y}_2)), \lambda_{\Omega_1 \times \Omega_2}(\mathbf{x}_1, \mathbf{y}_1)\}
     \leq \max\{\max\{\lambda_{\Omega_1 \times \Omega_2}((x_1, y_1) * ((x_2, y_2) * (x_3, y_3))), \lambda_{\Omega_1 \times \Omega_2}(x_3, y_3)\}, \lambda_{\Omega_1 \times \Omega_2}(x_1, y_1)\}
     =max{max {\lambda_{\Omega_1 \times \Omega_2}((x_3, y_3)*((x_2, y_2)*(x_1, y_1))), \lambda_{\Omega_1 \times \Omega_2}(x_3, y_3)}, \lambda_{\Omega_1 \times \Omega_2}(x_1, y_1)}
                                    =max{max {\lambda_{\Omega_1 \times \Omega_2}((0,0), \lambda_{\Omega_1 \times \Omega_2}(x_3, y_3)},\lambda_{\Omega_1 \times \Omega_2}(x_1, y_1)}
                                                                   =\max\{\lambda_{\Omega_1\times\Omega_2}(\mathbf{x}_3,\mathbf{y}_3),\lambda_{\Omega_1\times\Omega_2}(\mathbf{x}_1,\mathbf{y}_1)\}
                            =max{\lambda_{\Omega_1 \times \Omega_2}(x_1, y_1), \lambda_{\Omega_1 \times \Omega_2}(x_3, y_3)}. This completes the proof. \triangle
```

Definition 6.7. Let $\Omega_1 \times \Omega_2 = {\{\tilde{\mu}_{\Omega 1 \times \Omega 2}, \lambda_{\Omega 1 \times \Omega 2}\}}$ is a cubic AT-ideal of AT-algebra $X_1 \times X_2$ and for any $\tilde{t} \in D[0,1]$ and $s \in [0,1]$ the set

$$\begin{split} & \mathrm{U}(\Omega_1 \times \Omega_2; \tilde{t}, s) = \{(\mathbf{x}, \mathbf{y}) \in X_1 \times X_2; \tilde{\mu}_{\Omega 1 \times \Omega 2}(\mathbf{x}, \mathbf{y}) \geqslant \\ & \tilde{t}, \lambda_{\Omega 1 \times \Omega 2}(\mathbf{x}, \mathbf{y}) \leq s \}, \text{ is called the cubic level set of } \Omega_1 \times \\ & \Omega_2 = \langle \tilde{\mu}_{\Omega 1 \times \Omega 2}, \lambda_{\Omega 1 \times \Omega 2} \rangle. \end{split}$$

Theorem 6.8. Let $\Omega_1 \times \Omega_2 = {\{\tilde{\mu}_{\Omega 1 \times \Omega 2}, \lambda_{\Omega 1 \times \Omega 2}\}}$ is a cubic subset of AT-algebra $X_1 \times X_2$, then $\Omega_1 \times \Omega_2 = {\{\tilde{\mu}_{\Omega 1 \times \Omega 2}, \lambda_{\Omega 1 \times \Omega 2}\}}$ is a cubic AT-ideal of AT-algebra $X_1 \times X_2$ if and only if, for any $\tilde{t} \in D[0,1]$ and $s \in [0,1]$ the set

$$\begin{split} & U(\Omega_1 \times \Omega_2; \tilde{t}, s \text{ }) \text{ is either empty or a AT-ideal of } X_1 \times X_2. \\ & \textbf{Proof: } \text{Let} \Omega_1 \times \Omega_2 = \{ \tilde{\mu}_{\Omega 1 \times \Omega 2}, \lambda_{\Omega 1 \times \Omega 2} \} \text{ is a cubic AT-ideal of AT- algebra } X_1 \times X_2, \text{ for any } \tilde{t} \in D[0,1] \text{ and } s \in [0,1] \text{ define the set} \\ & U(\Omega_1 \times \Omega_2; \tilde{t}, s) = \{ (x,y) \in X_1 \times X_2; \tilde{\mu}_{\Omega 1 \times \Omega 2}(x,y) \geqslant \tilde{t}, \lambda_{\Omega 1 \times \Omega 2}(x,y) \leq s \}. \text{Since} \\ & U(\Omega_1 \times \Omega_2; \tilde{t}, s) \neq \emptyset, \text{ let } (x,y) \in U(\Omega_1 \times \Omega_2; \tilde{t}, s) \text{ implies} \\ & \tilde{\mu}_{\Omega 1 \times \Omega 2}(x,y) \geqslant \tilde{t} \text{ and} \lambda_{\Omega 1 \times \Omega 2}(x,y) \leq s. \text{ So } \tilde{\mu}_{\Omega 1 \times \Omega 2}(0,0) \geqslant \tilde{t} \\ & \Rightarrow \tilde{\mu}_{\Omega 1 \times \Omega 2}(0,0) \geqslant \tilde{t}, \lambda_{\Omega 1 \times \Omega 2}(0,0) \leq \lambda_{\Omega 1 \times \Omega 2}(x,y) \leq s \Rightarrow \\ & \lambda_{\Omega 1 \times \Omega 2}(0,0) \leq s. \text{This shows that } (0,0) \in U(\Omega_1 \times \Omega_2; \tilde{t}, s). \end{split}$$

 $\begin{array}{ll} \text{Let} & (\mathbf{x}_{1},\mathbf{y}_{1})*((\mathbf{x}_{2},\mathbf{y}_{2})*(\mathbf{x}_{3},\mathbf{y}_{3})) \in U(\varOmega_{1} \times \varOmega_{2}; \tilde{t}, s \) \quad \text{and} \\ & (\mathbf{x}_{2},\mathbf{y}_{2}) \in U(\varOmega_{1} \times \varOmega_{2}; \tilde{t}, s \), \text{this implies} \\ & \tilde{\mu}_{\varOmega_{1} \land \varOmega_{2}}((\mathbf{x}_{1},\mathbf{y}_{1})*((\mathbf{x}_{2},\mathbf{y}_{2})*(\mathbf{x}_{3},\mathbf{y}_{3}))) \geqslant \tilde{t}, \tilde{\mu}_{\varOmega_{1} \land \varOmega_{2}}(\mathbf{x}_{2},\mathbf{y}_{2}) \geqslant \tilde{t}, \\ & \lambda_{\varOmega_{1} \land \varOmega_{2}}((\mathbf{x}_{1},\mathbf{y}_{1})*((\mathbf{x}_{2},\mathbf{y}_{2})*(\mathbf{x}_{3},\mathbf{y}_{3}))) \geqslant \tilde{s}, \tilde{\mu}_{\varOmega_{1} \land \varOmega_{2}}(\mathbf{x}_{2},\mathbf{y}_{2}) \ge \tilde{t}, \\ & \tilde{\mu}_{\varOmega_{1} \land \varOmega_{2}}((\mathbf{x}_{1},\mathbf{y}_{1})*((\mathbf{x}_{3},\mathbf{y}_{3})) \geqslant \min\{\tilde{\mu}_{\varOmega_{1} \land \varOmega_{2}} \\ & ((\mathbf{x}_{1},\mathbf{y}_{1})*((\mathbf{x}_{2},\mathbf{y}_{2})*(\mathbf{x}_{3},\mathbf{y}_{3}))), \tilde{\mu}_{\varOmega_{1} \land \varOmega_{2}}(\mathbf{x}_{2},\mathbf{y}_{2})\} \geqslant \min\{\tilde{t}, \tilde{t}\} = \tilde{t} \\ & \lambda_{\varOmega_{1} \land \varOmega_{2}}((\mathbf{x}_{1},\mathbf{y}_{1})*(\mathbf{x}_{3},\mathbf{y}_{3})) \ge \max\lambda_{\varOmega_{1} \land \varOmega_{2}} \\ & ((\mathbf{x}_{1},\mathbf{y}_{1})*((\mathbf{x}_{2},\mathbf{y}_{2})*(\mathbf{x}_{3},\mathbf{y}_{3}))), \tilde{\mu}_{\varOmega_{1} \land \varOmega_{2}}(\mathbf{x}_{2},\mathbf{y}_{2})\} \\ \leq \max\{s,s\} = s \end{array}$

This implied that $(x_1,y_1)*(x_3,y_3) \in U(\Omega_1 \times \Omega_2; \tilde{t}, s)$. hence, U($\Omega_1 \times \Omega_2$; \tilde{t} , s) is an AT-ideal of $X_1 \times X_2$. Conversely, suppose $U(\Omega_1 \times \Omega_2; \tilde{t}, s)$ is an AT-ideal of $X_1 \times X_2$, for any $\tilde{t} \in D[0,1]$ And $s \in [0,1]$. Assume $(x_1,y_1) \in X_1 \times X_2$, such that $\tilde{\mu}_{\varOmega 1 \times \varOmega 2} \quad (0,0) \prec \tilde{\mu}_{\varOmega 1 \times \varOmega 2} \quad (\mathbf{x}_1,\mathbf{y}_1), \lambda_{\varOmega 1 \times \varOmega 2} \\ (0,0) > \lambda_{\varOmega 1 \times \varOmega 2}$ $(x_1, y_1).$ $\operatorname{Put} \tilde{t}_{\circ} = \frac{1}{2} \quad \{ \tilde{\mu}_{\varOmega 1 \times \varOmega 2} \quad (0,0) + \tilde{\mu}_{\varOmega 1 \times \varOmega 2} \quad (\mathbf{x}_{1},\mathbf{y}_{1}) \} \Longrightarrow \tilde{\mu}_{\varOmega 1 \times \varOmega 2}$ $(0,0) {\prec} \ \tilde{t}_{\circ} {\prec} \tilde{\mu}_{\mathcal{Q}\,1 {\times} \mathcal{Q}\,2} \ ({\rm x}_1,{\rm y}_1),$ $s_{\circ} = \frac{1}{2} \left\{ \lambda_{\Omega_{1} \times \Omega_{2}} (0,0) + \lambda_{\Omega_{1} \times \Omega_{2}} (\mathbf{x}_{1},\mathbf{y}_{1}) \right\} \Longrightarrow \lambda_{\Omega_{1} \times \Omega_{2}} (0,0) >$ $t_{\circ} > \lambda_{\Omega_1 \times \Omega_2} (\mathbf{x}_1, \mathbf{y}_1)$. This implies $(\mathbf{x}_1, \mathbf{y}_1) \in U(\Omega_1 \times \Omega_2; \tilde{t}, s)$) but $(0,0)\notin U(\Omega_1 \times \Omega_2; \tilde{t}, s)$, which is contradiction. Therefore $\tilde{\mu}_{\Omega_1 \times \Omega_2}$ (0,0) $\geq \tilde{\mu}_{\Omega_1 \times \Omega_2}$ (x,y) and $\lambda_{\Omega_1 \times \Omega_2}$ (0,0) \leq $\lambda_{\varOmega 1 \times \varOmega 2}(\mathbf{x}, y), \text{for all } (\mathbf{x}, y)) \in X_1 \times X_2. \text{Assum}(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2),$ $(x_3, y_3) \in X_1 \times X_2$ such that $\tilde{\mu}_{\Omega_1 \times \Omega_2}((\mathbf{x}_1, \mathbf{y}_1) * (\mathbf{x}_3, \mathbf{y}_3)) < \min\{\lambda_{\Omega_1 \times \Omega_2}\}$ $((x_1,y_1)*((x_2,y_2)*(x_3,y_3))), \tilde{\mu}_{\mathcal{O}1\times\mathcal{O}2}(x_2,y_2)\}.$ $\operatorname{Let} \tilde{t}_{\circ} = \frac{1}{2} \tilde{\mu}_{\Omega 1 \times \Omega 2} \left((\mathbf{x}_{1}, \mathbf{y}_{1}) * (\mathbf{x}_{3}, \mathbf{y}_{3}) \right) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}_{1}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_{\Omega 1 \times \Omega 2} ((\mathbf{x}, \mathbf{y}_{1}) + \operatorname{rmin} \{ \tilde{\mu}_$ *((x₂, y₂)*(x₃, y₃))), $\tilde{\mu}_{\Omega 1 \times \Omega 2}(x_2, y_2)$ } Then $\tilde{\mu}_{\Omega_1 \times \Omega_2}((x_1, y_1) * (x_3, y_3)) \prec$ $\tilde{t}_{\circ} \prec \operatorname{rmin}\{\tilde{\mu}_{\Omega_1 \times \Omega_2}((\mathbf{x}_1, \mathbf{y}_1) \ast ((\mathbf{x}_2, \mathbf{y}_2) \ast (\mathbf{x}_3, \mathbf{y}_3))),$ $\tilde{\mu}_{\Omega_1 \times \Omega_2}$ (x₂,y₂)}. Also $\lambda_{\Omega_1 \times \Omega_2}$ $((x_1,y_1)*(x_3,y_3)) > \max\{\lambda_{\Omega_1 \times \Omega_2}((x_1,y_1)*((x_2,y_2)*(x_3,y_3))) > \max\{\lambda_{\Omega_1 \times \Omega_2}((x_1,y_1)*(x_2,y_2)*(x_3,y_3))\}$ $\mathbf{x}_3,\mathbf{y}_3))),\lambda_{\varOmega 1\times \varOmega 2}(\mathbf{x}_2,\mathbf{y}_2)\}.$ Let $S_{\circ} = \frac{1}{2}$ $\{\lambda_{\Omega_1 \times \Omega_2} \left((\mathbf{x}_1, \mathbf{y}_1) \ast (\mathbf{x}_3, \mathbf{y}_3) \right) + \max\{\lambda_{\Omega_1 \times \Omega_2} ((\mathbf{x}_1, \mathbf{y}_1) \ast ((\mathbf{x}_1, \mathbf{y}_1) \ast (\mathbf{y}_1) \ast (\mathbf{y$ $(x_2, y_2) * (x_3, y_3))),$ $\lambda_{\Omega_1 \times \Omega_2} (\mathbf{x}_2, \mathbf{y}_2)$ }. Then $\lambda_{\Omega_1 \times \Omega_2} \left((\mathbf{x}_1, \mathbf{y}_1) \ast (\mathbf{x}_3, \mathbf{y}_3) \right) >$ $s_{\circ} > \max\{\lambda_{\Omega_1 \times \Omega_2}((x_1, y_1) * ((x_2, y_2) * (x_3, y_3))),$ $\lambda_{\Omega_1 \times \Omega_2} (x_2, y_2) \}.$ This show that $(x_1, y_1) * ((x_2, y_2) * (x_3, y_3)) \in U(\Omega_1 \times \Omega_2; \tilde{t}, s)$),(x₂,y₂) \in U($\Omega_1 \times \Omega_2$; \tilde{t} , s). But $(x_1, y_1) * (x_3, y_3) \notin U(\Omega_1 \times \Omega_2; \tilde{t}, s)$ which is a contradiction, therefore $\tilde{\mu}_{\Omega 1 \times \Omega 2}$ $((x_1,y_1)*(x_3,y_3)) \ge \min\{\tilde{\mu}_{\Omega_1 \times \Omega_2}((x_1,y_1)*((x_2,y_2)*(x_3,y_3)))\}$ $(x_3, y_3)), \tilde{\mu}_{\Omega_1 \times \Omega_2} (x_2, y_2)\}.$ Similarly, $\lambda_{\Omega_1 \times \Omega_2} ((x_1, y_1) * (x_3, y_3)) \le \max \{\lambda_{\Omega_1 \times \Omega_2} ((x_1, y_1) * ((x_2, y_2)) \}$

 $)*(\mathbf{x}_{3},\mathbf{y}_{3}))),\lambda_{\varOmega 1\times \varOmega 2}(\mathbf{x}_{2},\mathbf{y}_{2})\}.$

Hence $\Omega_1 \times \Omega_2 = \{ \tilde{\mu}_{\Omega 1 \times \Omega 2}, \lambda_{\Omega 1 \times \Omega 2} \}$ is a cubic AT-ideal of AT-algebra $X_1 \times X_2$. \triangle

References

1. A.T. Hameed, Fuzzy ideal of some algebras, PH.D.SC. Thesis, Faculty of Science, Ain Shams University, Egypt, 2015.

- 2. A.T. Hameed, AT-ideals and Fuzzy AT-ideals of ATalgebras, Journal of Iraqi AL-Khwarizmi Society, vol.1, no.2, (2018).
- A.T. Hameed, S.M. Mostafa and A.H. Abed, Cubic KUS-ideals of KUS-algebras, Asian Journal of Mathematical Sciences, vol.8, no.2, pp:36 - 43, (2017).
- C. Prabpayak and U. Leerawat, On isomorphisms of KU-algebras, Scientia magna journal, vol.5, no. 3 (2009), 25-31.
- 5. K. Is'eki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon., vol.21 (1976), 351-366.
- L. A. Zadeh, Fuzzy sets, Inform. And Control, vol. 8 (1965) 338-353.
- 7. L. A. Zadeh, The concept of a linguistic variable and its application to approximate I, Information Sci. And Control, vol.8(1975), 199-249.
- O. G. Xi, Fuzzy BCK-algebra, Math. Japon., vol.36 (1991) 935-942.
- 9. S.M. Mostafa, M.A. AbdelNaby, F. Abdel Halim and A.T. Hameed, On KUS-algebras, Int. Journal of Algebra, vol. 7, no. 3 (2013), 131-144.
- Y.B. Jun, C.S. Kim, and M.S. Kang, Cubic subalgebras and ideals of BCK/BCI-algebras, Far East Journal of Math. Sciences, vol. 44, no. 2 (2010), 239-250.