

~ 32 ~

WWJMRD 2025; 11(06): 32-43

www.wwjmrd.com

International Journal

Peer Reviewed Journal

Refereed Journal

Indexed Journal

Impact Factor SJIF 2017:

5.182 2018: 5.51, (ISI) 2020-

2021: 1.361

E-ISSN: 2454-6615

Ezekiel Nnamere Aneke

Department of Electrical &

Electronics Engineering, State

University of Medical and

Applied Sciences Igbo-Enu,

Enugu, Nigeria.

Nnamdi Ahuchaogu

Department of Electrical

Electronic Engineering, Abia

State University, Uturu,

Nigeria.

Correspondence:

Ezekiel Nnamere Aneke

Department of Electrical &

Electronics Engineering, State

University of Medical and

Applied Sciences Igbo-Enu,

Enugu, Nigeria.

Design and Simulation of an Artificial Neural

Network-Based Controller for DC Motor Speed

Regulation: A Comparative Analysis with PID Control

Ezekiel Nnamere Aneke, Nnamdi Ahuchaogu

Abstract
This study investigates the application of Artificial Neural Networks (ANNs) for the speed control of

a DC motor. It examines key aspects of ANN design, including learning mechanisms, training

procedures, and model development. To evaluate performance, both an ANN-based controller and a

conventional Proportional-Integral-Derivative (PID) controller were designed and simulated. A

comparative analysis of the simulation results revealed that the ANN controller offered superior

stability and accuracy. Specifically, the ANN controller achieved a significantly lower speed control

error of 0.242%, compared to the PID controller’s deviation of 1.435%. These findings highlight the

effectiveness of the ANN model in enhancing control precision and demonstrate its advantages over

the traditional PID approach. The ANN model was trained using the Levenberg–Marquardt

algorithm, which ensured efficient convergence and robust performance. Simulations were carried

out in MATLAB/Simulink, enabling a detailed comparison of the controllers' dynamic responses.

This work underscores the potential of ANN-based intelligent control strategies in industrial

automation and motor drive applications.

Keywords: Artificial Intelligent, Neural Network, Proportional Integral Derivative, Simulation,

Network Topologies.

1.0 Introduction

Artificial Neural Networks (ANNs) have emerged as a powerful tool in modern engineering

applications, especially in areas requiring intelligent decision-making and control. Neural

network research has significantly influenced multiple fields including control systems,

speech recognition, medicine, image processing, and robotics (Mehr & Richfield, 1987;

Schmidhuber, 2015). As computational models inspired by the structure and function of the

human brain, ANNs simulate the way biological neurons process and transmit information

through interconnected layers (LeCun, Bengio, & Hinton, 2015).

Artificial intelligence (AI) seeks to replicate human intelligence in machines, enabling them

to solve complex problems more adaptively and efficiently (Wajeeha et al., 2022). One of the

core subsets of AI, neural networks, focuses on pattern recognition, learning, and

generalization from data. These networks function by converting real-world information—

such as sound, images, or text—into numerical data that can be analyzed through supervised,

unsupervised, or reinforcement learning (Mano, 2014; Goodfellow, Bengio, & Courville,

2016).

In control system engineering, ANNs are gaining traction due to their capacity for non-linear

system modeling and adaptive learning. Traditional controllers like the Proportional-Integral-

Derivative (PID) controllers, while reliable, often struggle to adapt to the dynamic and non-

linear nature of many real-world systems (Åström & Hägglund, 2006). Conversely, ANN-

based controllers can learn system behavior through training and improve control

performance even when exact system models are unavailable (Lewis et al., 1999; Narendra

& Parthasarathy, 1990).

According to Caudill and Butler (1989), neural networks can process information by their

dynamic state response to external input, making them well-suited for real-time control tasks.

World Wide Journal of Multidisciplinary Research and Development (June-2025)

~ 33 ~

World Wide Journal of Multidisciplinary Research and Development

Their topology, which defines how neurons are connected,

plays a critical role in determining network functionality

and performance. Common ANN architectures include

feedforward, recurrent, and convolutional topologies, each

adapted to specific problem types (Haykin, 2009).

Modeling a neuron mathematically involves weighted

inputs, bias terms, and a non-linear activation function,

typically chosen from step, linear, or sigmoid functions

depending on the task (Lewis et al., 1999). While a single

neuron is limited in function, networks of interconnected

neurons—ANNs—can perform complex computations such

as classification, regression, and time-series prediction

(Kenji, 2011).

In this context, this study investigates the application of an

ANN-based controller for the speed regulation of a DC

motor, comparing its performance with that of a

conventional PID controller. The research aims to highlight

the potential of ANN to enhance system stability and

control precision in industrial motor applications.

Fig. 1.0: Components of a neuronal cell.

The basic component of brain circuitry is a specialized cell

called the neuron, which consist the cell body made up of

dendrites and axon the biological neuronal cell system has

its components, the components are shown in

Figure1(Eduardo, 1992). The components are made up of

the dendrites which gets signals from other neurons into the

body cell or soma. (Lewis. and. Ildirek 1999). Most often

the dendrites multiply each input signal by a transfer

weighting coefficient. In the soma, cell capacitance

separates the signals which are collected in the axon. When

the composite signal exceeds a cell threshold signal, the

action is transmitted through the axon. From research it was

noticed that cell nonlinearities make the composite action

potential a nonlinear function of the combination of

arriving signals. Axon which is another component

connects through synapses with the dendrites of subsequent

neurons and synapses operate through the discharge of

neurotransmitter chemicals across intercellular gaps, also it

can be either excitatory (tending to fire the next neuron) or

inhibitory (tending to prevent firing of the next neuron)

(Lewis. and. Ildirek 1999)

Fig. 2.0: Mathematical Model Representing a Neuron.

A Neuron can also be model mathematically and this can

be shown in Figure 2.0. The figure consists of the dendrite

which weight is yj , the firing threshold yo which is also

called the ‘bias’, the summing weight incoming signals,

and the nonlinear function σ(·). The cell inputs are the n

time signals x1(t), x2(t), . . . xn(t) and the output is the

scalar y(t), which can be expressed as

Z(t) = (∑ 𝑦𝑗 𝑥𝑗 (𝑡) + 𝑌𝑜
𝑛

𝑖=1
) ---------------------(1)

Equation 1 shows the positive weights vj correspond to

excitatory synapses and negative weights to inhibitory

synapses (Lewis. and. Ildirek 1999).

To gain a comprehensive grasp of the mathematical

intricacies achievable through the interconnection of

individual artificial neurons, it is advisable to steer clear of

random interconnections. Random interconnections can

result in an excessively complex system that becomes

unmanageable. Early researchers have devised standardized

topologies for artificial neural networks. These predefined

topologies facilitate more straightforward, quicker, and

efficient problem-solving. Various artificial neural network

topologies are tailored for solving specific problem types.

Once the problem type is identified, the choice of the

artificial neural network's topology becomes crucial for the

system.

The topology and its parameters need to be modified to

solve the problem. Modifying topology of artificial neural

network does not mean that we cannot use the artificial

neural network, it is only a precondition. Before artificial

neural network can be used, we need to teach it or train it

on solving that type or particular problem. The artificial

neural networks use the inputs they have just as biological

neural networks to learn the behavior/responses from their

environment or surroundings.

Research has demonstrated that artificial neural networks

utilize three primary learning methods: supervised learning,

unsupervised learning, and reinforcement learning. The

choice of learning method parallels the selection of the

neural network's topology and depends on the nature of the

problem at hand. Each learning method operates based on

distinct principles, yet they share common elements,

namely, learning data and learning rules. These two

parameters play a critical role in determining the network's

functions and associated costs. The fundamental objective

of an artificial neural network is to generate appropriate

output responses based on given input data. In summary,

the process involves the selection of an optimal topology,

potential modifications to it, and the subsequent choice of

an appropriate learning method as prerequisites to

effectively utilizing artificial neural networks for problem-

solving Artificial neural networks has been in existence for

many years and have been can find working in many areas

such as process control, chemistry, gaming, radar systems,

automotive industry, space industry, astronomy, genetics,

banking, fraud detection, etc. and solving of problems like

function approximation, regression analysis, time series

prediction, classification, pattern recognition, decision

making, data processing, filtering, clustering, etc (Kenji

2011).

~ 34 ~

World Wide Journal of Multidisciplinary Research and Development

Fig. 3.0: Artificial and Biological Neural.

Figure 3.0. depicts the designs of a biological neuron and

an artificial neuron. In the biological neuron, information

enters through the dendrite, is processed within the soma,

and then transmitted through the axon. However, in the

case of an artificial neuron, information enters the neuron's

body through weighted inputs (each input is individually

multiplied by a weight). The artificial neuron's body is

responsible for summing the weighted inputs, incorporating

a bias, and processing this sum using a transfer function.

Finally, the artificial neuron conveys the processed

information through its output(s). The important of

artificial neuron model is the simplicity, which can be seen

in its mathematical description (F.I. Lewis, S. J and A.

Ildirek 1999]

Yi (k) F E wi(k) . xi (k) + b (2)

Where: Xi (k) is input value in discrete time K and t goes

from 0 to m; Wi is weight value in discrete time k where t

goes from 0 to m, b is bias, F is a transfer function

and Yi(k) is output value in discrete time k. the model of an

artificial neuron and its equation has unknown variable, the

major unknown variable of the model is its transfer

function. The transfer function describes the properties of

artificial neuron and it can be a mathematical function. We

choose it on the basis of problem that artificial neuron

(artificial neural network) needs to solve and in most cases,

we choose it from the following set of functions: Step

function, Linear function and Non-linear (Sigmoid)

function. Step function normally should be a binary

function that has only two output values, which must be

zero and one. That means if input value meets specific

threshold the output value results in one value and if

specific threshold is not meet that results in different output

value. The threshold can be described using equation (3).

1 if f wi Xi > threshold

 (3)

0 if wi Xt < thresholds

Equation 3 illustrates the artificial neuron perceptron and

the type of transfer function employed within artificial

neurons. Perceptron are primarily applied in solving

classification problems and are typically located in the

output layer of artificial neural networks. Regarding the

role of the linear transfer function within an artificial

neuron, it serves to transform the sum of weighted inputs

and bias. Such artificial neurons, in contrast to perceptions,

are frequently situated in the input layer of artificial neural

networks. The most prevalent nonlinear function used in

this context is the sigmoid function.An artificial neural

network is produced when two or more artificial neuron are

combined. One artificial neuron is not enough or effective

in solving real-life problems, but combination of may

artificial neuron which forms artificial neural networks

have the capacity to solving real life time problems. The

artificial neural networks have the ability of solving

complicated problems. They solve problems making use of

the building blocks which they use in processing

information or data in a non-linear, distributed, parallel and

local manner.

2.0 Materials and Methods

2.1 Neural Network Learning

The learning process in a neural network involves six key

stages, each contributing to a researcher's understanding of

how it operates. These stages can be summarized as

Initialization, in this stage, all neurons are assigned initial

weights. Forward Propagation, here training set inputs are

passed through the neural network, and the output is

computed. Error Calculation. Since we work with a known

training set, the correct output is available. Therefore, an

error function can be defined by measuring the difference

between the model's output and the actual result. Back

Propagation, the goal in this stage is to minimize the error

function with respect to the neurons. Weight Update: The

optimal weights are adjusted to affect the back propagation

and improve the results, often using algorithms like

Levenberg Marquardt. Iterate Until Convergence. the

artificial neural network (ANN) is trained here, through

repeated iterations until it accurately and adequately learns

the underlying rule, enabling it to replicate this knowledge

when required. Back propagation networks acquire the

ability to classify and generalize patterns. (Mano, 2014)

The connections between the artificial neurons change as a

pattern appears until they provide the right response.

It's important to note that minimizing the error function is

equivalent to optimizing convergence. These stages help

illustrate the general process of training in a neural

network.

~ 35 ~

World Wide Journal of Multidisciplinary Research and Development

Table 1.0: Stages and learning process in Neural Network.

S/N Stages Description

1 Initialization
Neurons were identified with initial weights at this stage

2 Forward Propagation
Data from the input are processed here which will eventually computed and captured at the output.

3 Error Calculation

The error is calculated at this point by computing the difference between the output and the desired output

model

4 Back Propagation
Minimization of error is done here by adjusting the weights

5 Weight Update
Weights update is done to improve convergence. Levenberg-Marquardt can be used to do weight update

6
Iterate Until

Convergence
Learning is done here, ANN learns the rule accurately when the process is repeated iteratively

Table 1.0 summarized the learning process. Table 2 demonstrates the process where the input is twice the desired output

Table 2.0: LM propagation applied in the forward direction and initialized.

S/N Input Desired Output

1 0 0

2 2 4

3 3 6

4 4 8

5 5 10

Let the weight value be w = 3, then the mode output becomes

Table 3.0: Forward training showing the error and w.

S/N Input Desired Output Model Output (w = 3)

1 0 0 0

2 2 4 6

3 3 6 9

4 4 8 12

5 5 10 15

Table 4.0: Increased error and further increase of the value of w.

S/N Input Desired output Model output w =3 Absolute error Square error

1 0 0 0 0 0

2 2 4 6 2 4

3 3 6 9 4 8

4 4 8 12 3 6

5 5 10 15 1 1

Table 5.0: A backward training in LM with decrease value of w.

S/N Input Desired output Model output w =3 Absolute error Square error

1 0 0 0 0 0

2 2 4 6 1 1

3 3 6 9 3 6

4 4 8 12 2 4

5 5 10 15 0 0

Increasing the value of w increases the error, thus we stop increasing the value of w further.

Suppose the value of w is now decreased

Table 6.0: Reduction in the error value.

Input Desired output
Model output

w =3
Absolute error Square error Model output (w=2) Absolute error Absolute error

0 0 0 0 0 0 0 0

2 2 4 1 1 2 0 0

2 4 6 4 4 4 0 0

3 6 9 6 6 6 0

Tables (1.0 to 6.0) provided illustrate that both the absolute

error and squared error decrease as the weight (w)

decreases. The following steps were carried out in the

previous illustration:

Weight Initialization: The weight (w) was initialized, and

LM (Levenberg-Marquardt) propagation was applied in the

~ 36 ~

World Wide Journal of Multidisciplinary Research and Development

forward direction. Initial Error: Some errors were noticed

during the forward training. Weight Adjustment: To

address the errors, the weight (w) was increased, and

forward training was continued. Increased Error:

Unfortunately, this led to an increase in the error.

Backward Training: Backward training using the LM

algorithm was applied with a decrease in the value of w.

Reduced Error: This resulted in a reduction in the error

value. The primary objective was to find the optimal weight

value that minimizes the error. Once this state is reached

and convergence of the neurons is achieved, the training

process is halted. It's worth noting that the Levenberg-

Marquardt training algorithm incorporates elements of the

Newton algorithm. Levenberg–Marquardt, (LM),

optimization training method is normally used to carry out

the training in ANN.

There are some other training algorithms such as the

steepest descent algorithm, and the Gauss Newton

algorithm. Even though the EBP algorithm is still widely in

use, but the algorithm has low convergence.

Levenberg–Marquardt Training

The LM algorithm is adjudged to be much faster than other

algorithms, this is because the size of the multi– layer

perceptron (MLP) is not very large,

H  JTJ + I 4

Is always positive, combination coefficient and I is

identity matrix

With this approximation in equation 2.1, the assurance that

matrix H is always invertible is guaranteed. Square error

(SSE) is usually defined to evaluate the training process. To

calculate this quantity, for all training patterns and network

outputs, the following relation is used:

= ½ 5

Where

x is the required input

w is the highest vector

ep, m is the training error at output m, when applying

pattern p and defined as

 = - 6

Table 7.0: Summary of the updates for various algorithms.

S/N Algorithm Rules used Convergence status Computation of the algorithm

1 EBP algorithm wk+1 = wk - gki Stable, Slow Gradient

2 Newton algorithm wk+1 = wk - gk Unstable/fast Gradient/Hessian

3 Gauss-Newton alg. wk+1=wk-(Jk
TJk)-1Jkek Unstable, fast Jacobian

4 LM algorithm wk+1 = wk – (Jk
TJk)-1Jkek Stable, fast Jacobian

Table 7.0 summarizes the performance of different

algorithms with respect to their stability

To implement the Levenberg–Marquardt algorithm for

training neural network, two problems need to be solved

namely: organizing the training process iteratively for

weight updating, and calculating the Jacobian matrix.

These two problems are addressed shortly. In this study,

since parameters for training were extracted from results

obtained from the optimization results, the major work will

be cantered on how to organize the training process

iteratively for weight updating. This is because the

calculation of the Jacobian matrix was part of the

optimization calculation.

Fig. 4.0 is a flow chart for the training using Levenberg – Marquardt algorithm.

Figure 4.0: Flow Chart for the training process using Levenber – Marquardt algorithm

~ 37 ~

World Wide Journal of Multidisciplinary Research and Development

Wx is the current weight, wk+1 is the next weight, Ek+1 is the

current total error, while Ek is the last total error. From the

algorithm, using Levenberg-Marquardt algorithm, the

training process was designed following the algorithm:

Initial weights to be generated randomly and evaluation of

the total error (SSE)

Applying the equation wk+1 = wk (Jk
TJk + I)-1Jkek 7

An update was carried out to update and adjust weights.

Evaluation of the total error with addition of the new

weights. Increasing the total current error due to the update

requires thereafter, a repeat of step 2 is made for the update

again. The Levenberg-Marquardt training algorithm gives a

better result because it solves the problems existing in both

the gradient descent (or EBP) method and Gauss – Newton

method for neural network training.

3.0 Discussion and Results

3.1 Artificial Neural Network model controller

The focus here is using the application of artificial neural

network (ANN) in controlling DC motor.

In the development of the control system, for instance using

ANN inverse model controller of dc motor is shown in the

block diagram of Figure 5.0

Fig. 5.0: Block diagram of ANN inverse model.

The inverse model when given a particular motor speed

generate at the output a corresponding voltage produces a

speed. The inverse model as the name implies uses the

inverse model of the dc motor. The dc motor takes voltage

as input to give speed at the output but the inverse model

takes speed as input and generates voltage at its output. In

this case, speed at three consecutive instants of time for a

particular trajectory are presented to the inputs while the

inverse model produces at the output, the voltage that is

required at the motor’s inputs to generate the particular

target reference speed.

The ANN inverse model structure

The ANN inverse model of the dc motor can be described

as a three-input single output structure with three speeds

taken at three-time instants of n, n+1, and n-1. These three

speeds serve as the inputs while the motor terminal voltage

serves as the output. The structure of the ANN inverse

model of the dc motor is shown in Figure 6.0.

Fig. 6.0: ANN inverse model structure.

The values of

)1()(),1(−+ nandnn mmm 
, are

seen and taken as the independent inputs of the ANN

inverse model. It is pertinent to state here that the ANN

inverse model can be trained to provide the terminal

voltage for any DC motor with unknown parameters. The

Artificial Neural Network Inverse Model (ANNIM) of the

dc motor is achieved through simulation. Simulation is the

imitation of the operation of real-world process or system

over time. Simulation involves the generation of an

artificial history of a system, and the observation of that

artificial history to draw inferences concerning the

operating characteristics of the real system that is

represented.

Simulation is an indispensable problem-solving

methodology for the solution of many real-world problems.

Simulation is used to describe and analyse the behaviour of

a system, ask what if questions about the real system, and

aid in the design of real systems. Both existing and

conceptual systems can be modelled with simulation. The

network data used in the training of this network is

obtained from the physical reading taken from the

developed dc servomotor system. The data is a two-

dimensional data. One is voltage and time while the other is

speed and time. The network parameters used in the neural

network controller network coding are shown below:

3.1 Building Artificial Neural Network (ANN)

Model

The following steps are used in the building of ANN

model.

Step 1: At the input layer, the number of inputs=number of

input neurons.

Step 2: At the output layer, the number of outputs=number

of output neurons.

Step 3: At the hidden layer, the number of neurons and

layers are not fixed and may take any number more than

zero to map any complex functions.

Step 4: Assign weights

X1` Y1

Yo

X2 Y2

Z

X3 Y3

Inputs

)(n
m



)1(+n
m



)1(−n
m



F(X)

)(nV
t

~ 38 ~

World Wide Journal of Multidisciplinary Research and Development

Step 5: Decide activation function. Here logistic function is

taken for all neurons.

x

x

e

e
xf

+
=

1
)(

 8

Step 6: Select appropriate training pattern, that is, input-

output pairs.

 Inputs Outputs

X1 X2 X3 Y

Step 7: Training of ANN model; Here, the ANN output is

calculated and compared with the desired output to

determine the error E (desired output-actual output).

Finally, minimize this error using some optimization

technique. The sum-squared error may be written as

2

1

)(i

n

i

i VYE −=
= 9

The weights of the network have to be updated for the error

to be minimized. This process is known as training of the

neural network. In the training of the artificial neural

network, the error is fed back to the network to update the

weights. This will complete one cycle, the complete cycle

is performed many times till the predicted error is reduced.

The complete stage is called epoch.

Back propagation

Weight adjustment is done by the method of back

propagation. The total prediction error E , is also a

function of W

.


−−

−= 2)]([)(WVYW
ii

 10

Training Algorithm

The training algorithm has two process of information flow

given, as back propagation and feed forward. Decide the

network architecture (Hidden layers, neurons in each

hidden layer)

Decide the learning parameter and momentum. Initialize

the network with random weights

Do till convergence criterion is met, for i=1 to # training

data points. Feed forward the i-th observation through the

net, Compute the prediction error on i-th observation, Back

propagate the error and adjust weights, Next, I, check for

convergence, End Do, When the global minima are

reached, the network training has to stop. Practically, if the

decrease in total prediction error since the last cycle is

small or if the overall changes in the weights (since last

cycle) are small. The training data is partitioned into

training set and validation set. Training set to build the

model, and validation set to test the performance of the

model on unseen data.

Simulation Model

The Matlab Simulink was used in modelling and building

of the model network that behaves exactly as the system. It

was from this model that the input/output data pairs to train

the model network is generated. Here, Artificial Neural

Network Inverse Model (ANN) of DC motor was used. For

the speed control, Artificial Neural Network inverse model

was used. Block diagram of Figure 7.0 represents the

system, and the designed model.

Fig. 6: Steps in simulation of ANNIM.

Runs & analysis

Experimental

design

 Problem

formulation

 objective

 setting

 Model

building
 Data

collection

Coding

Verified?

Validated?

more

runs?

Document

Program &

Implementation

1

2

3 4

5

6

7
N

o

N

o

8

9

10

11

12

No

Yes

Yes

N

o

Yes Yes

~ 39 ~

World Wide Journal of Multidisciplinary Research and Development

Fig. 7.0: Block diagram for speed of DC motor.

Fig. 8.0 Block diagram for Simulink model.

3.2: Presentation of Results

3.3: Speed control using ANN and PID controllers

in Simulink

The speed control using artificial neural network and

proportional integral derivative controllers were carried out

to see the performance of the two controllers, and know the

best controller.

Different models were presented, namely DC motor model,

Artificial Neural Network (ANN) model and Proportional

Integral Derivative (PID) model. The simulation of the

models are shown in Figure 8.0. Models for ANN and PID

are shown in figure 9.0 and 10.0 respectively.

Fig. 9.0: Artificial Neural Network Model for speed control.

Proportional Integral Derivative PID controller was

developed. PID controller is a conventional controller used

when the system requires improvement under steady state

transient condition, (Sukka et al, 2022). The conventional

controller was used to compare its performance with the

artificial neural network controller performance. The

simulation graph for the two controllers was shown in

Figures (12.0 and 14.0) respectively.

Out

put

S

u

m

T

r

a

n

s

f

e

r

f

u

RLs

k

+ bJs +

1

s

1

=X10
Restore wx

M

=

M

H

emfBack

E

x

)(sV
s

Wk+1+ = wk –

(JkTJ+)-

1Jkek

Ex + 1 Ek+1 <Er Ek+1 <Emax END

Input Speed Voltage

voltage

Feedback

ANNIM ∑ Plant
Output Speed

~ 40 ~

World Wide Journal of Multidisciplinary Research and Development

Fig. 10.0: Designed Proportional Integral Derivative (PID) model.

Fig. 11.0: Simulated Artificial Neural Network (ANN) model.

Fig. 12.0: Simulated graph of ANN model.

~ 41 ~

World Wide Journal of Multidisciplinary Research and Development

Fig. 13.0: PID Controller Model.

Fig. 14.0: Simulated PID controller model.

From the simulation graphs of the proposed models, it was

noticed that the ANN model is more stable than the PID

model.

Table 8.0: DC Motor Voltage vs Speed (Designed, ANN, PID).

S/N
Voltage of DC motor

(Volt)

Speed (designed

model) (m/s)

Speed (ANN Controller)

(m/s)
Speed (PID controller) (m/s)

1 0.9 202.0 202.2 207.2

2 1.0 226.8 230.3 234.7

3 1.1 254.8 258.3 263.2

4 1.2 282.8 286.3 291.7

5 1.3 310.9 314.3 320.2

6 1.4 338.9 342.4 348.7

7 1.5 366.9 370.4 377.2

8 1.6 395.0 398.4 405.7

9 1.7 423.0 426.4 434.2

10 1.8 451.0 454.4 462.7

Table 9.0: Speed and Percentage error for ANN and PID Controllers.

S/N

Speed from DC

Motor model

(m/s)

Speed from ANN model

controller output (m/s)

Speed from PID model

controller (m/s)

Percentage error in ANN

controller (%)

Percentage error in PID

controller (%)

1 202.1 202.5 205.9 0.20 1.88

2 273.7 274.5 278.8 0.29 1.87

3 287.2 288.0 290.3 0.28 1.08

4 291.9 292.5 295.9 0.21 1.37

5 298.6 299.3 303.5 0.23 1.64

6 305.3 306.0 309.9 0.23 1.51

7 202.1 202.5 205.9 0.20 1.88

8 273.7 274.5 278.8 0.29 1.87

9 287.2 288.0 290.3 0.28 1.08

10 291.9 292.5 295.9 0.21 1.37

~ 42 ~

World Wide Journal of Multidisciplinary Research and Development

Percentage Error for Artificial Neural Network (ANN)

and Proportional Integral Derivative (PID) controllers

The average % error for Artificial Neural Network (ANN)

and Proportional Integral Derivative (PID) controllers was

calculated from Table 9.0 as follows:

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 % 𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝐴𝑁𝑁) =
2.42

10
 = 0.242

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 % 𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝑃𝐼𝐷) =
14.35

10
 = 1.435

Figure 15.0: Analysis on Percentage error for ANN and PID Controllers

4.0 Summary and Conclusion

4.1: Summary

In this study, our primary objective was to enhance the

control system for a DC motor. To accomplish this, two

different control approaches was developed, an Artificial

Neural Network (ANN) model controller and conventional

Proportional-Integral-Derivative (PID) controller. Then

simulations were conducted to compare the performance of

these controllers, with a focus on stability and precision in

regulating the motor's speed. Our simulations showed that

the ANN controller significantly outperformed the PID

controller in terms of stability. When assessing the

precision of speed control for the DC motor, the PID

controller exhibited a deviation of 1.435%, while the ANN

model achieved a remarkable deviation of just 0.242%.

This substantial improvement in performance underscores

the effectiveness of the ANN model in achieving precise

and stable control.

4.2 Conclusion

In summary, this research has shown that using an

Artificial Neural Network (ANN) controller offers

significant advantages in the speed regulation of DC motors

when compared to the conventional Proportional-Integral-

Derivative (PID) controller. The ANN controller

demonstrated superior stability and higher accuracy,

confirming its effectiveness in motor control applications.

These results underscore the promise of intelligent control

systems in advancing motor control technologies. With its

enhanced precision and robustness, the ANN approach

presents a compelling alternative for various real-world

applications. As control technologies continue to evolve,

the insights gained from this study highlight the growing

relevance of ANN-based systems in industries that demand

precise and reliable motor control solutions.

Reference

1. K. J. Åström and T. Hägglund, Advanced PID Control,

Instrumentation, Systems, and Automation Society

(ISA), 2006, ISBN: 978-1-55617-942-6.

2. I. Goodfellow, Y. Bengio, and A. Courville, Deep

Learning, MIT Press, Cambridge, Massachusetts,

2016, ISBN: 978-0-262-03561-3.

3. S. Haykin, Neural Networks and Learning Machines,

3rd ed., Pearson Education, 2009, ISBN: 978-0-13-

147139-9.

4. Y. LeCun, Y. Bengio, and G. Hinton, “Deep

Learning,” Nature, vol. 521, no. 7553, pp. 436–444,

2015, doi: 10.1038/nature14539.

5. K. S. Narendra and K. Parthasarathy, “Identification

and control of dynamical systems using neural

networks,” IEEE Trans. Neural Netw., vol. 1, no. 1,

pp. 4–27, 1990, doi: 10.1109/72.80202.

6. J. Schmidhuber, “Deep learning in neural networks:

An overview,” Neural Netw., vol. 61, pp. 85–117,

2015, doi: 10.1016/j.neunet.2014.09.003.

7. A. Hamza and N. B. Yahia, “Artificial neural networks

controller of active suspension for ambulance based on

ISO standards,” Proc. Inst. Mech. Eng. Part D J.

Automob. Eng., vol. 237, no. 1, pp. 34–47, Jan. 2023,

doi: 10.1177/09544070221075456.

8. B. Sukka, R. Rameshappa, and N. M. P.

Shadaksharappa, “Performance analysis of PID and

ANN based speed controller for DC motor,” Int. J.

Electr. Comput. Eng., vol. 12, no. 5, pp. 4700–4711,

2022, ISSN: 2088-8708.

~ 43 ~

World Wide Journal of Multidisciplinary Research and Development

9. M. Caudill and C. Butler, Naturally Intelligent

Systems, Bradford Books, 1989.

10. E. E. de Barros Ruano, Application of Neural Network

to Control System, PhD thesis, University of Wales,

School of Electrical Engineering Science, 1992.

11. K. Suzuki, “Applications of Artificial Neural

Networks: Past, Present and Future,” Tokyo Institute

of Technology, Apr. 2011, doi: 10.5772/644, ISBN:

978-953-307-243-2.

12. F. I. Lewis, S. Jagannathan, and A. Ildirek, “Neural

network control of robot manipulators and non-linear

systems,” Artif. Intell. Eng., vol. 13, pp. 55–68, 1999.

13. C. Mano, “Neural Networks Explained,” eHow, 2014.

[Online]. Available:

http://www.ehow.com/print/about_5585309_neural-

networks-explained.html

14. D. Mehr and S. Richfield, “Neural net application to

optical character recognition,” in Proc. 1st Int. Conf.

Neural Netw., vol. 4, pp. 711–777, 1987.

15. W. Ahmed, A. Chaudhary, and G. Naqvi, “Role of

Artificial Neural Networks in AI,” NeuroQuantology,

vol. 20, no. 13, pp. 3365–3370, 2022.

