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Abstract 
This study investigates the application of Artificial Neural Networks (ANNs) for the speed control of 

a DC motor. It examines key aspects of ANN design, including learning mechanisms, training 

procedures, and model development. To evaluate performance, both an ANN-based controller and a 

conventional Proportional-Integral-Derivative (PID) controller were designed and simulated. A 

comparative analysis of the simulation results revealed that the ANN controller offered superior 

stability and accuracy. Specifically, the ANN controller achieved a significantly lower speed control 

error of 0.242%, compared to the PID controller’s deviation of 1.435%. These findings highlight the 

effectiveness of the ANN model in enhancing control precision and demonstrate its advantages over 

the traditional PID approach. The ANN model was trained using the Levenberg–Marquardt 

algorithm, which ensured efficient convergence and robust performance. Simulations were carried 

out in MATLAB/Simulink, enabling a detailed comparison of the controllers' dynamic responses. 

This work underscores the potential of ANN-based intelligent control strategies in industrial 

automation and motor drive applications. 

 

Keywords: Artificial Intelligent, Neural Network, Proportional Integral Derivative, Simulation, 

Network Topologies. 

 

1.0 Introduction 

Artificial Neural Networks (ANNs) have emerged as a powerful tool in modern engineering 

applications, especially in areas requiring intelligent decision-making and control. Neural 

network research has significantly influenced multiple fields including control systems, 

speech recognition, medicine, image processing, and robotics (Mehr & Richfield, 1987; 

Schmidhuber, 2015). As computational models inspired by the structure and function of the 

human brain, ANNs simulate the way biological neurons process and transmit information 

through interconnected layers (LeCun, Bengio, & Hinton, 2015). 

Artificial intelligence (AI) seeks to replicate human intelligence in machines, enabling them 

to solve complex problems more adaptively and efficiently (Wajeeha et al., 2022). One of the 

core subsets of AI, neural networks, focuses on pattern recognition, learning, and 

generalization from data. These networks function by converting real-world information—

such as sound, images, or text—into numerical data that can be analyzed through supervised, 

unsupervised, or reinforcement learning (Mano, 2014; Goodfellow, Bengio, & Courville, 

2016). 

In control system engineering, ANNs are gaining traction due to their capacity for non-linear 

system modeling and adaptive learning. Traditional controllers like the Proportional-Integral-

Derivative (PID) controllers, while reliable, often struggle to adapt to the dynamic and non-

linear nature of many real-world systems (Åström & Hägglund, 2006). Conversely, ANN-

based controllers can learn system behavior through training and improve control 

performance even when exact system models are unavailable (Lewis et al., 1999; Narendra 

& Parthasarathy, 1990). 

According to Caudill and Butler (1989), neural networks can process information by their 

dynamic state response to external input, making them well-suited for real-time control tasks.   
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Their topology, which defines how neurons are connected, 

plays a critical role in determining network functionality 

and performance. Common ANN architectures include 

feedforward, recurrent, and convolutional topologies, each 

adapted to specific problem types (Haykin, 2009). 

Modeling a neuron mathematically involves weighted 

inputs, bias terms, and a non-linear activation function, 

typically chosen from step, linear, or sigmoid functions 

depending on the task (Lewis et al., 1999). While a single 

neuron is limited in function, networks of interconnected 

neurons—ANNs—can perform complex computations such 

as classification, regression, and time-series prediction 

(Kenji, 2011). 

In this context, this study investigates the application of an 

ANN-based controller for the speed regulation of a DC 

motor, comparing its performance with that of a 

conventional PID controller. The research aims to highlight 

the potential of ANN to enhance system stability and 

control precision in industrial motor applications. 
 

 
 

Fig. 1.0: Components of a neuronal cell. 

 

The basic component of brain circuitry is a specialized cell 

called the neuron, which consist the cell body made up of 

dendrites and axon the biological neuronal cell system has 

its components, the components are shown in 

Figure1(Eduardo, 1992). The components are made up of 

the dendrites which gets signals from other neurons into the 

body cell or soma. (Lewis. and. Ildirek 1999). Most often 

the dendrites multiply each input signal by a transfer 

weighting coefficient. In the soma, cell capacitance 

separates the signals which are collected in the axon. When 

the composite signal exceeds a cell threshold signal, the 

action is transmitted through the axon. From research it was 

noticed that cell nonlinearities make the composite action 

potential a nonlinear function of the combination of 

arriving signals. Axon which is another component 

connects through synapses with the dendrites of subsequent 

neurons and synapses operate through the discharge of 

neurotransmitter chemicals across intercellular gaps, also it 

can be either excitatory (tending to fire the next neuron) or 

inhibitory (tending to prevent firing of the next neuron) 

(Lewis. and. Ildirek 1999) 
 

 
 

Fig. 2.0: Mathematical Model Representing a Neuron. 

A Neuron can also be model mathematically and this can 

be shown in Figure 2.0. The figure consists of the dendrite 

which weight is  yj , the firing threshold yo which is also 

called the ‘bias’, the summing weight incoming signals, 

and the nonlinear function σ(·). The cell inputs are the n 

time signals x1(t), x2(t), . . . xn(t) and the output is the 

scalar y(t), which can be expressed as   

Z(t) =   (∑ 𝑦𝑗 𝑥𝑗 (𝑡) +  𝑌𝑜
𝑛

𝑖=1
)  ---------------------(1) 

 

Equation 1 shows the positive weights vj correspond to 

excitatory synapses and negative weights to inhibitory 

synapses (Lewis. and. Ildirek 1999). 

To gain a comprehensive grasp of the mathematical 

intricacies achievable through the interconnection of 

individual artificial neurons, it is advisable to steer clear of 

random interconnections. Random interconnections can 

result in an excessively complex system that becomes 

unmanageable. Early researchers have devised standardized 

topologies for artificial neural networks. These predefined 

topologies facilitate more straightforward, quicker, and 

efficient problem-solving. Various artificial neural network 

topologies are tailored for solving specific problem types. 

Once the problem type is identified, the choice of the 

artificial neural network's topology becomes crucial for the 

system. 

The topology and its parameters need to be modified to 

solve the problem. Modifying topology of artificial neural 

network does not mean that we cannot use the artificial 

neural network, it is only a precondition. Before artificial 

neural network can be used, we need to teach it or train it 

on solving that type or particular problem. The artificial 

neural networks use the inputs they have just as biological 

neural networks to learn the behavior/responses from their 

environment or surroundings.  

Research has demonstrated that artificial neural networks 

utilize three primary learning methods: supervised learning, 

unsupervised learning, and reinforcement learning. The 

choice of learning method parallels the selection of the 

neural network's topology and depends on the nature of the 

problem at hand. Each learning method operates based on 

distinct principles, yet they share common elements, 

namely, learning data and learning rules. These two 

parameters play a critical role in determining the network's 

functions and associated costs. The fundamental objective 

of an artificial neural network is to generate appropriate 

output responses based on given input data. In summary, 

the process involves the selection of an optimal topology, 

potential modifications to it, and the subsequent choice of 

an appropriate learning method as prerequisites to 

effectively utilizing artificial neural networks for problem-

solving Artificial neural networks has been in existence for 

many years and have been can find working in many areas 

such as process control, chemistry, gaming, radar systems, 

automotive industry, space industry, astronomy, genetics, 

banking, fraud detection, etc. and solving of problems like 

function approximation, regression analysis, time series 

prediction, classification, pattern recognition, decision 

making, data processing, filtering, clustering, etc (Kenji 

2011). 
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Fig. 3.0:  Artificial and Biological Neural. 

 

Figure 3.0. depicts the designs of a biological neuron and 

an artificial neuron. In the biological neuron, information 

enters through the dendrite, is processed within the soma, 

and then transmitted through the axon. However, in the 

case of an artificial neuron, information enters the neuron's 

body through weighted inputs (each input is individually 

multiplied by a weight). The artificial neuron's body is 

responsible for summing the weighted inputs, incorporating 

a bias, and processing this sum using a transfer function. 

Finally, the artificial neuron conveys the processed 

information through its output(s). The important of 

artificial neuron model is the simplicity, which can be seen 

in its mathematical description (F.I. Lewis, S. J and A. 

Ildirek 1999] 

Yi (k)  F    E wi(k) . xi (k) + b        (2) 

 

Where:  Xi (k) is input value in discrete time K and t goes 

from 0 to m; Wi is weight value in discrete time k where t 

goes from 0 to m, b is bias, F is a transfer function 

and Yi(k) is output value in discrete time k. the model of an 

artificial neuron and its equation has unknown variable, the 

major unknown variable of the model is its transfer 

function. The transfer function describes the properties of 

artificial neuron and it can be a mathematical function. We 

choose it on the basis of problem that artificial neuron 

(artificial neural network) needs to solve and in most cases, 

we choose it from the following set of functions: Step 

function, Linear function and Non-linear (Sigmoid) 

function.  Step function normally should be a binary 

function that has only two output values, which must be 

zero and one. That means if input value meets specific 

threshold the output value results in one value and if 

specific threshold is not meet that results in different output 

value. The threshold can be described using equation (3). 

 

 

1 if f wi Xi > threshold    

      (3) 

0 if wi Xt  < thresholds 

 

 

Equation 3 illustrates the artificial neuron perceptron and 

the type of transfer function employed within artificial 

neurons. Perceptron are primarily applied in solving 

classification problems and are typically located in the 

output layer of artificial neural networks. Regarding the 

role of the linear transfer function within an artificial 

neuron, it serves to transform the sum of weighted inputs 

and bias. Such artificial neurons, in contrast to perceptions, 

are frequently situated in the input layer of artificial neural 

networks. The most prevalent nonlinear function used in 

this context is the sigmoid function.An artificial neural 

network is produced when two or more artificial neuron are 

combined. One artificial neuron is not enough or effective 

in solving real-life problems, but combination of may 

artificial neuron which forms artificial neural networks 

have the capacity to solving real life time problems. The 

artificial neural networks have the ability of solving 

complicated problems. They solve problems making use of 

the building blocks which they use in processing 

information or data in a non-linear, distributed, parallel and 

local manner.  

 

2.0 Materials and Methods  

2.1 Neural Network Learning 

The learning process in a neural network involves six key 

stages, each contributing to a researcher's understanding of 

how it operates. These stages can be summarized as 

Initialization, in this stage, all neurons are assigned initial 

weights. Forward Propagation, here training set inputs are 

passed through the neural network, and the output is 

computed. Error Calculation. Since we work with a known 

training set, the correct output is available. Therefore, an 

error function can be defined by measuring the difference 

between the model's output and the actual result. Back 

Propagation, the goal in this stage is to minimize the error 

function with respect to the neurons. Weight Update: The 

optimal weights are adjusted to affect the back propagation 

and improve the results, often using algorithms like 

Levenberg Marquardt. Iterate Until Convergence. the 

artificial neural network (ANN) is trained here, through 

repeated iterations until it accurately and adequately learns 

the underlying rule, enabling it to replicate this knowledge 

when required. Back propagation networks acquire the 

ability to classify and generalize patterns. (Mano, 2014) 

The connections between the artificial neurons change as  a 

pattern  appears  until  they  provide  the  right  response. 

It's important to note that minimizing the error function is 

equivalent to optimizing convergence. These stages help 

illustrate the general process of training in a neural 

network. 
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Table 1.0:  Stages and learning process in Neural Network. 

 

S/N Stages Description 

1 Initialization 
Neurons were identified with initial weights at this stage 

 

2 Forward Propagation 
Data from the input are processed here which will eventually computed and captured at the output. 

 

3 Error Calculation 

The error is calculated at this point by computing the difference between the output and the desired output 

model 

 

4 Back Propagation 
Minimization of error is done here by adjusting the weights 

 

5 Weight Update 
Weights update is done to improve convergence.  Levenberg-Marquardt can be used to do weight update 

 

6 
Iterate Until 

Convergence 
Learning is done here, ANN learns the rule accurately when the process is repeated iteratively 

 

Table 1.0 summarized the learning process. Table 2 demonstrates the process where the input is twice the desired output 

 

Table 2.0: LM propagation applied in the forward direction and initialized. 
 

S/N Input Desired Output 

1 0 0 

2 2 4 

3 3 6 

4 4 8 

5 5 10 

Let the weight value be w = 3, then the mode output becomes 

 

Table 3.0: Forward training showing the error and w. 
 

S/N Input Desired Output Model Output (w = 3) 

1 0 0 0 

2 2 4 6 

3 3 6 9 

4 4 8 12 

5 5 10 15 

 

Table 4.0: Increased error and further increase of the value of w. 
 

S/N Input Desired output Model output  w =3 Absolute error Square error 

1 0 0 0 0 0 

2 2 4 6 2 4 

3 3 6 9 4 8 

4 4 8 12 3 6 

5 5 10 15 1 1 

 

Table 5.0: A backward training in LM with decrease value of w. 
 

S/N Input Desired output Model output w =3 Absolute error Square error 

1 0 0 0 0 0 

2 2 4 6 1 1 

3 3 6 9 3 6 

4 4 8 12 2 4 

5 5 10 15 0 0 

 

Increasing the value of w increases the error, thus we stop increasing the value of w further. 

Suppose the value of w is now decreased 

 

Table 6.0: Reduction in the error value. 
 

Input Desired output 
Model output 

w =3 
Absolute error Square error Model output (w=2) Absolute error Absolute error 

0 0 0 0 0 0 0 0 

2 2 4 1 1 2 0 0 

2 4 6 4 4 4 0 0 

3 6 9 6 6 6 0  

 

Tables (1.0 to 6.0) provided illustrate that both the absolute 

error and squared error decrease as the weight (w) 

decreases. The following steps were carried out in the 

previous illustration: 

Weight Initialization: The weight (w) was initialized, and 

LM (Levenberg-Marquardt) propagation was applied in the 
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forward direction. Initial Error: Some errors were noticed 

during the forward training. Weight Adjustment: To 

address the errors, the weight (w) was increased, and 

forward training was continued. Increased Error: 

Unfortunately, this led to an increase in the error. 

Backward Training: Backward training using the LM 

algorithm was applied with a decrease in the value of w. 

Reduced Error: This resulted in a reduction in the error 

value. The primary objective was to find the optimal weight 

value that minimizes the error. Once this state is reached 

and convergence of the neurons is achieved, the training 

process is halted. It's worth noting that the Levenberg-

Marquardt training algorithm incorporates elements of the 

Newton algorithm. Levenberg–Marquardt, (LM), 

optimization training method is normally used to carry out 

the training in ANN.   

There are some other training algorithms such as the 

steepest descent algorithm, and the Gauss Newton 

algorithm. Even though the EBP algorithm is still widely in 

use, but the algorithm has low convergence.  

Levenberg–Marquardt Training  

The LM algorithm is adjudged to be much faster than other 

algorithms, this is because the size of the multi– layer 

perceptron (MLP) is not very large, 

H  JTJ + I      4 

 

Is always positive, combination coefficient and I    is 

identity matrix  

With this approximation in equation 2.1, the assurance that 

matrix H is always invertible is guaranteed.  Square error 

(SSE) is usually defined to evaluate the training process. To 

calculate this quantity, for all training patterns and network 

outputs, the following relation is used: 

= ½   5 

 

Where  

x is the required input 

w is the highest vector  

ep, m is the training error at output m, when applying 

pattern p and defined as  

  =   -    6 

 

Table 7.0:  Summary of the updates for various algorithms. 
 

S/N Algorithm Rules used Convergence status Computation of the algorithm 

1 EBP algorithm wk+1 = wk - gki Stable, Slow Gradient 

2 Newton algorithm wk+1 = wk - gk Unstable/fast Gradient/Hessian 

3 Gauss-Newton alg. wk+1=wk-(Jk
TJk)-1Jkek Unstable, fast Jacobian 

4 LM algorithm wk+1 = wk – (Jk
TJk)-1Jkek Stable, fast Jacobian 

 

Table 7.0 summarizes the performance of different 

algorithms with respect to their stability 

To implement the Levenberg–Marquardt algorithm for 

training neural network, two problems need to be solved 

namely: organizing the training process iteratively for 

weight updating, and calculating the Jacobian matrix. 

These two problems are addressed shortly. In this study, 

since parameters for training were extracted from results 

obtained from the optimization results, the major work will 

be cantered on how to organize the training process 

iteratively for weight updating. This is because the 

calculation of the Jacobian matrix was part of the 

optimization calculation. 

 

 
 

Fig. 4.0 is a flow chart for the training using Levenberg – Marquardt algorithm. 

Figure 4.0: Flow Chart for the training process using Levenber – Marquardt algorithm  
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Wx is the current weight, wk+1 is the next weight, Ek+1 is the 

current total error, while Ek is the last total error. From the 

algorithm, using Levenberg-Marquardt algorithm, the 

training process was designed following the algorithm: 

Initial weights to be generated randomly and evaluation of 

the total error (SSE) 

Applying the equation wk+1 = wk (Jk
TJk + I)-1Jkek      7 

 

An update was carried out to update and adjust weights. 

Evaluation of the total error with addition of the new 

weights. Increasing the total current error due to the update 

requires thereafter, a repeat of step 2 is made for the update 

again. The Levenberg-Marquardt training algorithm gives a 

better result because it solves the problems existing in both 

the gradient descent (or EBP) method and Gauss – Newton 

method for neural network training.  

 

3.0 Discussion and Results  

3.1 Artificial Neural Network model controller   

The focus here is using the application of artificial neural 

network (ANN) in controlling DC motor.  

In the development of the control system, for instance using 

ANN inverse model controller of dc motor is shown in the 

block diagram of Figure 5.0 
 

 
 

Fig. 5.0: Block diagram of ANN inverse model. 

 

The inverse model when given a particular motor speed 

generate at the output a corresponding voltage produces a 

speed. The inverse model as the name implies uses the 

inverse model of the dc motor. The dc motor takes voltage 

as input to give speed at the output but the inverse model 

takes speed as input and generates voltage at its output. In 

this case, speed at three consecutive instants of time for a 

particular trajectory are presented to the inputs while the 

inverse model produces at the output, the voltage that is 

required at the motor’s inputs to generate the particular 

target reference speed.  

The ANN inverse model structure 

The ANN inverse model of the dc motor can be described 

as a three-input single output structure with three speeds 

taken at three-time instants of n, n+1, and n-1. These three 

speeds serve as the inputs while the motor terminal voltage 

serves as the output. The structure of the ANN inverse 

model of the dc motor is shown in Figure 6.0. 
 

 
 

Fig. 6.0: ANN inverse model structure. 

 

The values of  

)1()(),1( −+ nandnn mmm 
, are 

seen and taken as the independent inputs of the ANN 

inverse model.  It is pertinent to state here that the ANN 

inverse model can be trained to provide the terminal 

voltage for any DC motor with unknown parameters. The 

Artificial Neural Network Inverse Model (ANNIM) of the 

dc motor is achieved through simulation. Simulation is the 

imitation of the operation of real-world process or system 

over time. Simulation involves the generation of an 

artificial history of a system, and the observation of that 

artificial history to draw inferences concerning the 

operating characteristics of the real system that is 

represented.  

Simulation is an indispensable problem-solving 

methodology for the solution of many real-world problems. 

Simulation is used to describe and analyse the behaviour of 

a system, ask what if questions about the real system, and 

aid in the design of real systems. Both existing and 

conceptual systems can be modelled with simulation. The 

network data used in the training of this network is 

obtained from the physical reading taken from the 

developed dc servomotor system. The data is a two-

dimensional data. One is voltage and time while the other is 

speed and time. The network parameters used in the neural 

network controller network coding are shown below: 

3.1 Building Artificial Neural Network (ANN) 

Model 

The following steps are used in the building of ANN 

model. 

Step 1: At the input layer, the number of inputs=number of 

input neurons. 

Step 2: At the output layer, the number of outputs=number 

of output neurons. 

Step 3: At the hidden layer, the number of neurons and 

layers are not fixed and may take any number more than 

zero to map any   complex functions. 

Step 4: Assign weights 

X1` Y1
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Step 5: Decide activation function. Here logistic function is 

taken for all neurons. 

  

x

x

e

e
xf

+
=

1
)(

                8 

 

Step 6: Select appropriate training pattern, that is, input-

output pairs. 

    Inputs            Outputs 

X1    X2    X3             Y 

Step 7: Training of ANN model; Here, the ANN output is 

calculated and compared with the desired output to 

determine the error E  (desired output-actual output). 

Finally, minimize this error using some optimization 

technique. The sum-squared error may be written as 

  

2

1

)( i

n

i

i VYE −=
=     9         

 

The weights of the network have to be updated for the error 

to be minimized. This process is known as training of the 

neural network. In the training of the artificial neural 

network, the error is fed back to the network to update the 

weights. This will complete one cycle, the complete cycle 

is performed many times till the predicted error is reduced. 

The complete stage is called epoch. 

Back propagation 

Weight adjustment is done by the method of back 

propagation. The total prediction error E , is also a 

function of W  

. 


−−

−= 2)]([)( WVYW
ii

                10 

 

Training Algorithm 

The training algorithm has two process of information flow 

given, as back propagation and feed forward. Decide the 

network architecture (Hidden layers, neurons in each 

hidden layer) 

Decide the learning parameter and momentum. Initialize 

the network with random weights 

Do till convergence criterion is met, for i=1 to # training 

data points. Feed forward the i-th observation through the 

net, Compute the prediction error on i-th observation, Back 

propagate the error and adjust weights, Next, I, check for 

convergence, End Do, When the global minima are 

reached, the network training has to stop. Practically, if the 

decrease in total prediction error since the last cycle is 

small or if the overall changes in the weights (since last 

cycle) are small. The training data is partitioned into 

training set and validation set. Training set to build the 

model, and validation set to test the performance of the 

model on unseen data. 

 

Simulation Model 

The Matlab Simulink was used in modelling and building 

of the model network that behaves exactly as the system. It 

was from this model that the input/output data pairs to train  

the model network is generated. Here, Artificial Neural 

Network Inverse Model (ANN) of DC motor was used. For 

the speed control, Artificial Neural Network inverse model 

was used.  Block diagram of Figure 7.0 represents the 

system, and the designed model. 
 

 
 

Fig. 6: Steps in simulation of ANNIM. 
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Fig. 7.0:  Block diagram for speed of DC motor. 

 

 
 

Fig. 8.0 Block diagram for Simulink model. 

 

3.2: Presentation of Results  

3.3:  Speed control using ANN and PID controllers 

in Simulink 

The speed control using artificial neural network and 

proportional integral derivative controllers were carried out 

to see the performance of the two controllers, and know the 

best controller. 

Different models were presented, namely DC motor model, 

Artificial Neural Network (ANN) model and Proportional 

Integral Derivative (PID) model. The simulation of the 

models are shown in Figure 8.0. Models for ANN and PID 

are shown in figure 9.0 and 10.0 respectively. 
 

 
 

Fig. 9.0: Artificial Neural Network Model for speed control. 

 

Proportional Integral Derivative PID controller was 

developed. PID controller is a conventional controller used 

when the system requires improvement under steady state 

transient condition, (Sukka et al, 2022). The conventional 

controller was used to compare its performance with the 

artificial neural network controller performance. The 

simulation graph for the two controllers was shown in 

Figures (12.0 and 14.0) respectively. 
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Fig. 10.0:  Designed Proportional Integral Derivative (PID) model. 

 

 
 

Fig. 11.0:  Simulated Artificial Neural Network (ANN) model. 

 

 
 

Fig. 12.0:  Simulated graph of ANN model. 
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Fig. 13.0:  PID Controller Model. 

 

 
 

Fig. 14.0: Simulated PID controller model. 

 

From the simulation graphs of the proposed models, it was 

noticed that the ANN model is more stable than the PID 

model.  

 

Table 8.0: DC Motor Voltage vs Speed (Designed, ANN, PID). 
 

S/N 
Voltage of DC motor 

(Volt) 

Speed (designed 

model) (m/s) 

Speed (ANN Controller) 

(m/s) 
Speed (PID controller) (m/s) 

1 0.9 202.0 202.2 207.2 

2 1.0 226.8 230.3 234.7 

3 1.1 254.8 258.3 263.2 

4 1.2 282.8 286.3 291.7 

5 1.3 310.9 314.3 320.2 

6 1.4 338.9 342.4 348.7 

7 1.5 366.9 370.4 377.2 

8 1.6 395.0 398.4 405.7 

9 1.7 423.0 426.4 434.2 

10 1.8 451.0 454.4 462.7 

 

Table 9.0:  Speed and Percentage error for ANN and PID Controllers. 
 

S/N 

Speed from DC 

Motor model 

(m/s) 

Speed from ANN model 

controller output (m/s) 

Speed from PID model 

controller (m/s) 

Percentage error in ANN 

controller (%) 

Percentage error in PID 

controller (%) 

1 202.1 202.5 205.9 0.20 1.88 

2 273.7 274.5 278.8 0.29 1.87 

3 287.2 288.0 290.3 0.28 1.08 

4 291.9 292.5 295.9 0.21 1.37 

5 298.6 299.3 303.5 0.23 1.64 

6 305.3 306.0 309.9 0.23 1.51 

7 202.1 202.5 205.9 0.20 1.88 

8 273.7 274.5 278.8 0.29 1.87 

9 287.2 288.0 290.3 0.28 1.08 

10 291.9 292.5 295.9 0.21 1.37 
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Percentage Error for Artificial Neural Network (ANN) 

and Proportional Integral Derivative (PID) controllers 

The average % error for Artificial Neural Network (ANN) 

and Proportional Integral Derivative (PID) controllers was 

calculated from Table 9.0 as follows: 

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 % 𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝐴𝑁𝑁) =
2.42

10
      = 0.242 

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 % 𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝑃𝐼𝐷) =
14.35

10
      = 1.435 

 

 
 

Figure 15.0: Analysis on Percentage error for ANN and PID Controllers 

 

4.0 Summary and Conclusion  

4.1:  Summary 

In this study, our primary objective was to enhance the 

control system for a DC motor. To accomplish this, two 

different control approaches was developed, an Artificial 

Neural Network (ANN) model controller and conventional 

Proportional-Integral-Derivative (PID) controller. Then 

simulations were conducted to compare the performance of 

these controllers, with a focus on stability and precision in 

regulating the motor's speed. Our simulations showed that 

the ANN controller significantly outperformed the PID 

controller in terms of stability. When assessing the 

precision of speed control for the DC motor, the PID 

controller exhibited a deviation of 1.435%, while the ANN 

model achieved a remarkable deviation of just 0.242%. 

This substantial improvement in performance underscores 

the effectiveness of the ANN model in achieving precise 

and stable control. 

 

4.2 Conclusion 

In summary, this research has shown that using an 

Artificial Neural Network (ANN) controller offers 

significant advantages in the speed regulation of DC motors 

when compared to the conventional Proportional-Integral-

Derivative (PID) controller. The ANN controller 

demonstrated superior stability and higher accuracy, 

confirming its effectiveness in motor control applications. 

These results underscore the promise of intelligent control 

systems in advancing motor control technologies. With its 

enhanced precision and robustness, the ANN approach 

presents a compelling alternative for various real-world 

applications. As control technologies continue to evolve, 

the insights gained from this study highlight the growing 

relevance of ANN-based systems in industries that demand 

precise and reliable motor control solutions. 
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