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Abstract 
The paper deals with the propagation of natural waves in dissipative inhomogeneous planar bodies. 

Wave motions are described by linear Integra-differential equations. Solving this problem, we obtain 

a relationship between the wave velocity and its length. The task of this kind is of great interest for 

geophysicists, in the field of engineering and construction. 
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Introduction 

Many construction and engineering structures that operate under dynamic conditions consist 

of deformable bodies with different visco elastic properties [1,2,3]. In addition, wave 

processes in elastic bodies play an important role in connection with the tasks of signal 

processing, in particular in connection with the creation of mechanical resonators and filters 

[4,5,6]. The mechanisms by which the energy of elastic waves is converted into heat are not 

entirely clear. Various loss mechanisms are proposed [7 ± 11], but not one of them does not 

fully meet all the requirements. Probably the most important mechanisms are internal friction 

in the form of sliding friction (or sticking, and then slipping) and viscous losses in pore 

fluids; the latter mechanism is most significant in strongly permeable rocks. Other effects 

that are probably generally less significant are the loss of some of the heat generated in the 

phase of compression of wave motion by thermal conductivity, piezoelectric and 

thermoelectric effects and the energy going to the formation of new surfaces (which plays an 

important role only near the source). Therefore, the development of a unified methodology 

and algorithm for calculating the wave fields of dissipative inhomogeneous layered bodies is 

an actual problem of the mechanics of a deformable solid [12, 13].  
 
Formulation of the problem. 

Suppose that in a Cartesian (x, y, z) coordinate system, with the origin and the OZ axis, a 

sequence of parallel planes is given (Fig. 1)  

nhhhzhhzhzz  ...,.....,,,0 21211  

The plane, nhhhz  ...21  (for n = 2) will be called the nth horizon. Suppose that 

the spaces between the planes mentioned are filled with isotropic elastic media forming 

parallel layers. Layers hz 0 , characterized by permanent ,000 ,,  , will be called 

zero. Wednesday, however, 12121 ......  nnn hhhhzhhh  filling the 

space between the n-m and n+1–m horizons, characterized by constant ,111 ,,  , will be 

called the n-m layer. It will always be assumed that adjacent layers differ from each other in 

at least one of the constants ,  and . In the theoretical study of the described processes, 

we shall assume that within each layer the wave propagation is described by the usual 

equations of the theory of elasticity. As for the conditions on the interfaces of adjacent layer,
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we assume that the components of the vector of elastic 

displacements and the stress tensor remain continuous 

when passing through them. This contact is called hard 

[15]. The dynamics of dissipative inhomogeneous two-

layer flat structures is investigated in the article. 

 

 
 

Fig. 1: The design scheme: the body on the half-space 

 

Accounting for internal friction, caused by the dissipation 

of energy in the material of structures, is a more difficult 

task. Soft layers of multilayer structures (aggregates), as a 

rule, are made of materials with developed rheological 

properties. Therefore, the scattering of energy must first of 

all be taken into account for soft layers, since it mainly 

occurs precisely when deforming these layers. Mechanical 

systems, for which the visco elastic properties of their 

elements are identical, will be called dissipative 

homogeneous, systems with different rheological 

characteristics are dissipative heterogeneous [1,8,9]. 

Equations of motion of the deformed layer in the absence 

of mass forces have the form [1]
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 t – arbitrary time function;  tREj – relaxation 

core; 01E – instantaneous modulus of elasticity; We assume 

the integral terms in (2) to be small, then the functions 
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 , where  t - slowly varying function 

of time, R - real constant. Further, applying the freezing 

procedure [9], we note relations (2) with approximations of 

the form  
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cosine and sine Fourier images of the relaxation core of the 

material. As an example of a visco elastic material, we take 

three parametric relaxation nuclei   jj teAtR
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On the influence function  tR j  the usual 

requirements of inerrability, continuity (except for ), 

signs - certainty and monotony: 

u


 - Vector of displacements of the environment of the j-th 

layer. On the boundary of two bodies, we can specify two 

types of conditions: 

 In the case of a rigid contact at the interface, the 

condition of continuity of the corresponding 

components of the stress tensor and displacement 

vector is set, i.e. 
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If there is no friction at the interface,  
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 On the free surface, the condition of freedom from 

stress is set, i.e. 
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Methods of solution 
Now consider the solution of the differential equation (1) - 

(2) for one layer. The equation of motion in displacements 

reduces to the following form: 
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where n  - density of the material. We find the solution of 

the problem in the form: 

 

 

      (4)

 

where )(yU n  and )(yVn  Is the amplitude complex 

vector-function; k  – wave number; ,IR iCCC  – 

complex phase velocity; a ω – Complex frequency. 

To clarify their physical meaning, consider two cases: 

 ,; IRR iCCCkk   then the solution (4) has 

the form of a sinusoid with respect to x, whose 

amplitude decays in time; 

 ,; RIR CCikkk   Then at each point x the 

oscillations are steady, but with respect to x they 

decay. 

 

In both cases, the imaginary parts Ik  or ,IC  

characterize the intensity of dissipative processes. 

Substituting (4) into (3), we obtain:  

 

   (5) 
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Thus, we have equations (5) of the second order for two 

domains each. We solve the problem directly, without 

reducing the equation to a fourth-order equation. All the 

arguments are given for the layer. We find the particular 

solution of system (5) in the form 
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Where nr  – constant. A homogeneous algebraic system 

with respect to nA  and nB  has non-trivial solutions if its 

determinant is zero  
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As a result, we find four particular solutions of the form 
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Consequently, for both the hard and sliding contacts, we 

obtain a set of six boundary conditions that lead to six 

homogeneous equations with six unknowns

242214131211 ,,,,, CCCCCC . For such a system of 

equations to have non-trivial solutions, the determinant of 

the coefficients must be zero. The last equation gives the 
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dispersion equation for dissipative systems, where 

1,0),/1(;)/1( 222/122  nCCqCCS Lnnnn  

As an example, let us consider the problem of propagation 

of natural waves in a viscoelastic layer on a half-space.  

Hard contact 

The dispersion equation has the following form 
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Where ζ – dimensionless wave number 
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 Rizhanitena-Koltunova [13], which has a 

weak singularity, where ,,A - parameters materials 

[13]. We take the following parameters:

1,0;05,0;048,0  A .  Using the 

complex representation for the elastic modulus, described 

earlier. The roots of the frequency equation are solved by 

the Mueller method, at each iteration of the Muller method 

is applied by the Gauss method with the separation of the 

principal element. Thus, the solution of equation (8) does 

not require the disclosure of the determinant. As the initial 

approximation, we choose the phase velocities of the waves 

of the elastic system. For free waves with 0jR  the 

phase velocities and the wave number are real quantities. In 

the calculations, we accept the following parameter values: 

.1;10;75,0 4

2

1   n



  

Let us consider two variants of the dissipative system. In 

the first variant, the dissipative system is structurally 

homogeneous. The wave number ξ varies from 0 to 3. The 

results of the calculations are shown in Fig. 2a. The 

dependence of the frequencies and damping on the 

dimensionless wave number ξ turned out to be monotonic, 

and the character of the dependence is the same for the 

frequencies and damping coefficients. In the second 

variant, the dissipative system is structurally 

inhomogeneous: the half-space under consideration, 

equation (8), and elastic parameters coincide with those 

adopted above. The results of the calculations are shown in 

Fig. The frequency dependence of ξ is the same as for a 

homogeneous system: the corresponding curves coincide 

with an accuracy of up to 5%. Dependence of the damping 

coefficients on ξ is no monotonic. 

Of particular interest is the minimum value of ξ for a fixed 

damping coefficient: 

 (9) 

Here δ is a coefficient that determines the damping 

properties of the system (we call it the global damping 

coefficient).  

IR  ,  

 
 

Fig. 2.a: Variation of complex Eigen frequencies from the 

wave number. 

(8) 
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A) Dissipatedly homogeneous mechanical system 

For a homogeneous system, the coefficient δ is entirely 

determined by the imaginary part of the first complex-

frequency modulus. For an inhomogeneous system, the 

imaginary parts of both the first and second frequencies 

may act as the coefficient δ depending on their values. 

"Change of roles" occurs at a characteristic value of ξ, at 

this value the real parts of the first and second frequencies 

are the closest. The coefficient δ at the indicated 

characteristic value has a pronounced maximum.  
 

Sliding contact 

The dispersion equation is similar in form to equation (8). 

All parameter values are the same as those used above. 

Figures 3a and b show the dependence of the frequencies 

and damping coefficients on the wave number ξ, 

respectively, for a structurally homogeneous and 

inhomogeneous system. The obtained results confirm the 

earlier conclusions. Change the parameter, from 

 
 

Fig.2.b: Change in complex Eigen frequencies from the wave 

number 

b) Dissipatedly inhomogeneous mechanical system 

Which depends so much on the value of the coefficient δ, 

can be achieved by varying the geometric dimensions of 

the elements without changing their mechanical properties. 

 
 

a) Dissipative homogeneous mechanical system. 
 

 
 

b) Dissipative inhomogeneous system. 

Fig.3: The change in complex eigenfrequencies 

from the wave number 
 

b) Dissipative inhomogeneous system Thus, a promising 

opportunity for effective control of the damping 

characteristics of structurally inhomogeneous viscoelastic 

systems opens up by changing their inhomogeneous 

systems with close frequencies. As a second example, let us 

consider the propagation of natural waves in a plane layer 

located in a deformable (viscoelastic) medium (Fig. 7). The 

results of the calculation are shown in Fig. 7. The 

frequency dependence of ξ turned out to be the same as for 

a dissipatedly homogeneous system: the corresponding 

curves coincide with an accuracy of up to 5%. As for the 

coefficients of damping, their behavior has changed 

radically: the dependence ωI ~ ξ became no monotonic. The 

global damping coefficient for a given characteristic value 

of ξ has a pronounced maximum.  
 

Conclusions 

 In the course of solving the problem, the propagation 

of waves in dissipative-inhomogeneous media revealed 

no monotonic dependences of the damping rate on the 

physic mechanical and geometric parameters of the 

system. In dissipatedly inhomogeneous media, the 

dependence of the phase velocity and the damping rate 

on the geometric and physic-mechanical parameters of 

the system turned out to be no monotonic; 

 
 

Fig. 7. Dispersion curves of phase velocities
21, RR   and 

attenuation coefficient 
21, II   for the duralumin strip in contact 

with the acrylic medium 
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Ср1=5400 m/s;  1=0.35; Ср2=2300 m/s;   1=0.35; 

СS1=1311m/s; 1 =0.138 kg/m3; Сs2=1311 m/s; 2 =0.126 kg/m3. 

 Based on the obtained numerical results, it is revealed that 

the possibility of detachment of thin-walled structures from a 

soft layer and the effect of magnitude up to the resonance 

speed on the dimensions of the contact area. Also taking into 

account the viscous properties of the material, 15 - 10% 

increases the values of the phase velocities; 

  revealed that the phase higher forms of the expansion and 

torsion waves exceed the highest possible speed (C) of waves 

in an infinite medium, the group velocity never exceeds C. 

Also found that the group velocity of 10-15% exceeds the 

non-dispersive medium, comparison by a dispersive medium. 

In other words, the forms of the pulses do not remain 

unchanged, as in homogeneous elastic bodies.  
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