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Elements of the Homometric Vector K-Product 

Part I 
 

Francisco Zau  

 
Abstract 
This paper aims to generalize the usual vector product between two given vectors, defined by Gibbs 

and Heaviside, from three-space to n-space. Next, although not very intuitive, this idea will be 

generalized to define an axial vector simultaneously orthogonal to any k given vectors of an n-

dimensional vector space ℍ𝑛, with  2 ≤ 𝑘 ∈ ℕ, considering the orthogonality condition defined by the 

usual scalar product. The vector product thus generalized is given the name homometric vector k-

product, because an axial vector of ℍ𝑛, whose components are solutions of a homogeneous linear 

system of 𝑘 equations with n unknowns, results from this product. For this first part, some specific 

properties of the homometric vector product will be analyzed, highlighting the high theoretical and 

practical value of this operation for science and engineering. 

 

Keywords: Vector product, homometric 𝑘-product, n-dimensional vector spaces. 

 

1. Introduction 

The usual vector product is a very useful vector operation in science and engineering, 

participating in various concepts and operations such as rotational, surface integrals, angular 

momentum, changes of variables in multiple integrals, Lorentz force, orientation of surfaces, 

among other related. Thus, one of the major limitations of this operation is the fact that its 

validity occurs only in three-dimensional vector spaces, which imposes the use of tensor 

calculus, often with limiting and not very enlightening clippings about the nature of the 

phenomena studied. 

This paper aims to generalize this usual vector product, making it valid for vector spaces of 

any dimensions. Thus, as certain properties of this product valid in three-dimensional spaces, 

such as the Jacobi identity, are not valid in all dimensions, and taking into account the need to 

introduce a more general definition to characterize this product of vectors, there is an urgent 

need to call the generalized vector product a homometric vector k-product.  

The homometric vector 𝑘-product of n-dimensional vector space is a vector operation from 

which results an axial vector simultaneously orthogonal to the given k vectors. It generalizes 

the classical vector product, valid only on ℝ3 and for 2 multiplicative vectors, to n-dimensional 

vector spaces and product of 𝑘 vectors (Anton & Rorres, 2012). 

Hence, the classical vector product, denoted by 𝒗0 × 𝒗1, is an antisymmetric bilinear operation 

from which also results a vector simultaneously orthogonal to the two given vectors, whose 

modulus is ‖𝒗0 × 𝒗1‖ =  ‖𝒗0‖‖𝒗1‖ sin 𝜃, where 𝜃 is the angle between these vectors 

(Hoffman & Kunze, 1971), and also admits an algebraic form (EVES, 2011). Thus, this vector 

product is a particular case of the homometric vector 2-product. 

 

2. Materials and methods  
For the achievement of the objectives of this work, exploratory research was used, with logical-

deductive methods (HOEFEL, 2002), aiming to define the homometric vector 𝑘-product and 

present some properties and functionalities of the homometric vector 2-product. For the 

calculation of components of homometric vector 𝑘-product, the systematic dimensional 

shrinkage method was used. 
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3. Definition of the Homometric Vector 𝑲-Product  

The definition of the homometric vector k-product presented 

in this article is quite general, and the different specific 

products, classified according to the number of vectors 

multiplied, should be treated in parts, being this article 

focused to the homometric vector 2-product of only two 

multiplicative vectors. 

 

Definition 01.   Be   ℍ𝑛   a    vector    space    over   ℝ,  and  

 𝒗1 = (𝑎11; … ;  𝑎1𝑛−1;  𝑎1𝑛),     𝒗2 = (𝑎21;  … ;  𝑎2𝑛−1;  𝑎2𝑛) 
 (𝑎21;  … ;  𝑎2𝑛−1;  𝑎2𝑛); … ;  𝒗𝑘 =  (𝑎31; … ;  𝑎3𝑛−1;  𝑎3𝑛)  ∈
 ℍ𝑛, 𝑘 vectors.  A multilinear application, : ℍ1

𝑛 × …×
ℍ𝑘
𝑛  →   ℍ𝑛,  is called homometric vector 𝑘-product if: 

i) The axial vector  𝒗1 𝒗2 … 𝒗𝑘   is  simultaneously 

orthogonal to the   𝑘  vectors,  𝒗1, 𝒗2, … , 𝒗𝑘, given; 

ii) 𝒗1 𝒗2 … 𝒗𝑘 = (∆𝑥1;  ∆𝑥2; ∆𝑥3; … ; ∆𝑥𝑛−1; ∆)  ∈
ℍ𝑛, if and only if there is a homogeneous linear 

system 

 

{
  
 

  
 
𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥13 +⋯+ 𝑎1𝑛−1𝑥𝑛−1 + 𝑎1𝑛𝑥𝑛 = 0

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 +⋯+ 𝑎2𝑛−1𝑥𝑛−1 + 𝑎2𝑛𝑥𝑛  = 0

…………………………………………………………………

𝑎𝑘1𝑥1 + 𝑎𝑘2𝑥2 + 𝑎𝑘3𝑥3 +⋯+ 𝑎𝑘𝑛−1𝑥𝑛−1 + 𝑎𝑘𝑛𝑥𝑛  = 0

(1) 

 

which can be converted into, at least, one Cramer system, 

such that the following equalities are fulfilled: 

  

 
𝑥1
𝑥𝑛
=
∆𝑥1
∆
; 
𝑥2
𝑥𝑛
=
∆𝑥2
∆
;… ; 

𝑥𝑛−1
𝑥𝑛

=
∆𝑥𝑛−1
∆

; 𝑥𝑛 = ∆, ∀∆

≠ 0; 𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛 ∈ ℝ. 
 

As already referenced above, for this first part of the results 

of this research, only the homometric vector 2-product, for 

𝑘 = 2, of ℍ𝑛, will be analyzed.  
 

Proposition 01. Be  𝒗1, 𝒗2, … , 𝒗𝑘 ∈ ℍ
𝑛. The components 

∆𝑥1, ∆𝑥2, ∆𝑥3, … , ∆𝑥𝑛−1, ∆  of the axial vector  𝒗1 𝒗2 …
𝒗𝑘  are solutions of the homogeneous linear system (01). 

 

Demonstration. Considering the homogeneous linear 

system (01) and dividing the 𝑘 equations by 𝑥𝑛 ≠ 0, we have 

below. 

 

{
 
 
 

 
 
 𝑎11

𝑥1
𝑥𝑛
+ 𝑎12

𝑥2
𝑥𝑛
+ 𝑎13

𝑥3
𝑥𝑛
+⋯+ 𝑎1𝑛−1

𝑥𝑛−1
𝑥𝑛

 = −𝑎1𝑛

𝑎21
𝑥1
𝑥𝑛
+ 𝑎22

𝑥2
𝑥𝑛
+ 𝑎23

𝑥3
𝑥𝑛
+⋯+ 𝑎2𝑛−1

𝑥𝑛−1
𝑥𝑛

 = −𝑎2𝑛

………………………………………………………………

𝑎𝑘1
𝑥1
𝑥𝑛
+ 𝑎𝑘2

𝑥2
𝑥𝑛
+ 𝑎𝑘3

𝑥3
𝑥𝑛
+⋯+ 𝑎𝑘𝑛−1

𝑥𝑛−1
𝑥𝑛

 = −𝑎𝑘𝑛

 

 

Given definition 01, it follows: 

{
 
 
 

 
 
 𝑎11

∆𝑥1
∆
+ 𝑎12

∆𝑥2
∆
+ 𝑎13

∆𝑥3
∆
+ ⋯+ 𝑎1𝑛−1

∆𝑥𝑛−1
∆

 = −𝑎1𝑛

𝑎21
∆𝑥1
∆
+ 𝑎22

∆𝑥2
∆
+ 𝑎23

∆𝑥3
∆
+ ⋯+ 𝑎2𝑛−1

∆𝑥𝑛−1
∆

 = −𝑎2𝑛

……………………………………………………………………

𝑎𝑘1
∆𝑥1
∆
+ 𝑎𝑘2

∆𝑥2
∆
+ 𝑎𝑘3

∆𝑥3
∆
+ ⋯+ 𝑎𝑘𝑛−1

∆𝑥𝑛−1
∆

 = −𝑎𝑘𝑛

 . 

From this last linear system we conclude, as we wanted to 

demonstrate, that ∆𝑥1, ∆𝑥2, ∆𝑥3, … , ∆𝑥𝑛−1, ∆  are 

solutions of the homogeneous linear system (01): 

 

{
  
 

  
 
𝑎11∆𝑥1 + 𝑎12∆𝑥2 + 𝑎13∆𝑥3 +⋯+ 𝑎1𝑛−1∆𝑥𝑛−1 + 𝑎1𝑛∆ = 0

𝑎21∆𝑥1 + 𝑎22∆𝑥2 + 𝑎23∆𝑥3 +⋯+ 𝑎2𝑛−1∆𝑥𝑛−1 + 𝑎2𝑛∆ = 0

……………………………………………………………………

𝑎𝑘1∆𝑥1 + 𝑎𝑘2∆𝑥2 + 𝑎𝑘3∆𝑥3 +⋯+ 𝑎𝑘𝑛−1∆𝑥𝑛−1 + 𝑎𝑘𝑛∆ = 0

 . 

 

Proposition 02.  Be  𝒗0, 𝒗1  ∈ ℍ
𝑛.  The components of  𝒗0

𝒗1  are uniquely calculated by systematically reducing the 

number of unknowns of the associated homogeneous system 

from 𝑛 to 𝑛 = 3. 

 

Demonstration. Consider the following homogeneous 

linear system that defines the homometric vector 2-product: 

{
𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 +⋯+ 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛𝑥𝑛  = 0

𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 +⋯+ 𝑏𝑛−1𝑥𝑛−1 + 𝑏𝑛𝑥𝑛  = 0
  

 

Cramer's theorem requires that the given system have the 

number of equations equal to the number of unknowns. 

Thus, the system of definition 01 can only be Cramer's if: 

i) The number of unknowns reduces to 𝑛 = 2; 

ii) Transform this system of definition 01 into a 

non-homogeneous linear system.  

To transform this homogeneous linear system into Cramer's 

system, must first reduce the number of unknowns to  𝑛 = 3  

and then, using the following procedure, transform it from 

homogeneous to non-homogeneous: 

{
𝑎1𝑥1 + 𝑎2𝑥2 = −𝑎3𝑥3/÷ 𝑥3 ≠ 0

𝑏1𝑥1 + 𝑏2𝑥2 = −𝑏3𝑥3/÷ 𝑥3 ≠ 0
 

⇒  {

𝑎1
𝑥1
𝑥3
 +  𝑎2

𝑥2
𝑥3
= −𝑎3

𝑏1
𝑥1
𝑥3
 +  𝑏2

𝑥2
𝑥3
= −𝑏3

 . (1) 

So, there are numbers  ∆, ∆𝑥1, ∆𝑥2, ∀∆≠ 0, such that, as it 

was intended to demonstrate: 

∆ =  |
𝑎1 𝑎2

𝑏1 𝑏2
| ;   

𝑥1
𝑥3
=  
∆𝑥1
∆
,

∆𝑥1 = |
−𝑎3 𝑎2

−𝑏3 𝑏2
| ;   

𝑥2
𝑥3
= 
∆𝑥2
∆
 ,

∆𝑥2 = |
𝑎1 −𝑎3

𝑏1 −𝑏3
| . 

 

Definition 02. The method of obtaining the components of 

𝒗0 𝒗1 from the homogeneous system that defines it by 

systematically reducing the number of its unknowns is called 

systematic dimensional contraction. 

This method follows the steps below, considering the 

homogeneous system 𝐴𝒙 = 𝟎 (ZAU, 2021): 

 

Example 01. Using systematic dimensional contraction, 

calculate  𝒗0 𝒗1 ∈ ℝ
4.      

Step 1.  

{
𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 = 0

𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 = 0
 .  

Decompose the unknowns into sums of 𝑛 − 1 subunits and 

replace them in this system. 
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𝑛 = 4 ⇒   {

𝑥1 = 𝑥11 + 𝑥12 +  𝑥13
𝑥2 = 𝑥21 + 𝑥22 +  𝑥23
𝑥3 = 𝑥31 + 𝑥32 +  𝑥33
𝑥4 = 𝑥41 + 𝑥42 +  𝑥43

  . 

⇔ 

{
  
 

  
 
𝑎1(𝑥11 + 𝑥12 +  𝑥13) + 𝑎2(𝑥21 + 𝑥22 +  𝑥23) +

+ 𝑎3(𝑥31 + 𝑥32 +  𝑥33) +
+ 𝑎4(𝑥41 + 𝑥42 +  𝑥43) = 0

𝑏1(𝑥11 + 𝑥12 +  𝑥13) + 𝑏2(𝑥21 + 𝑥22 +  𝑥23) +

+ 𝑏3(𝑥31 + 𝑥32 +  𝑥33) +
+ 𝑏4(𝑥41 + 𝑥42 +  𝑥43) = 0

  . 

Step 2. Form a system from each homogeneous equation in 

Step 1: 

{

𝑎1𝑥11  +  𝑎2𝑥21 +  𝑎3𝑥31  +  0 = 0
𝑎1𝑥12 +  𝑎2𝑥22 +  0   + 𝑎4𝑥41  = 0
𝑎1𝑥13  +   0  + 𝑎3𝑥32  + 𝑎4𝑥42  = 0
0   +    𝑎2𝑥23 +  𝑎3𝑥33 + 𝑎4𝑥43 = 0

 

_________________________________________________________ 
𝑎1(𝑥11 + 𝑥12 +  𝑥13) + 𝑎2(𝑥21 + 𝑥22 +  𝑥23)

+ 𝑎3(𝑥31 + 𝑥32 +  𝑥33) + 

+ 𝑎4(𝑥41 + 𝑥42 +  𝑥43) = 0 

 

{

𝑏1𝑥11  +  𝑏2𝑥21 +  𝑏3𝑥31  +  0 = 0
𝑏1𝑥12 +  𝑏2𝑥22 +  0   + 𝑏4𝑥41  = 0
𝑏1𝑥13  +   0  + 𝑏3𝑥32  + 𝑏4𝑥42  = 0
0   +    𝑏2𝑥23 +  𝑏3𝑥33 + 𝑏4𝑥43 = 0

 

_________________________________________________________ 
𝑏1(𝑥11 + 𝑥12 +  𝑥13) + 𝑏2(𝑥21 + 𝑥22 +  𝑥23)

+ 𝑏3(𝑥31 + 𝑥32 +  𝑥33) + 

+ 𝑏4(𝑥41 + 𝑥42 +  𝑥43) = 0 
Step 3. Form the partial systems of two equations extracted 

from each of the two systems formed above, allowing to 

extract the solutions ∆𝑥𝑘𝑗.  

1) {
𝑎1𝑥11 + 𝑎2𝑥21 + 𝑎3𝑥31 = 0

𝑏1𝑥11  + 𝑏2𝑥21 + 𝑏3𝑥31 = 0
  ⇒  {

∆𝑥11 =  𝑎2𝑏3 − 𝑏2𝑎3
∆𝑥21 =  𝑎3𝑏1 − 𝑎1𝑏3
∆𝑥31 =  𝑎1𝑏2 − 𝑎2𝑏1

 

2) {
𝑎1𝑥12 + 𝑎2𝑥22 + 𝑎4𝑥41 = 0

𝑏1𝑥12  + 𝑏2𝑥22 + 𝑏4𝑥41 = 0
  ⇒  {

∆𝑥12 =  𝑎2𝑏4 − 𝑎4𝑏2
∆𝑥22 =  𝑎4𝑏1 − 𝑎1𝑏4
∆𝑥41 =  𝑎1𝑏2 − 𝑏1𝑎2

 

3) {
𝑎1𝑥13 + 𝑎3𝑥32 + 𝑎4𝑥42 = 0

𝑏1𝑥13 + 𝑏3𝑥32 + 𝑏4𝑥42 = 0
  ⇒  {

∆𝑥13 =  𝑎3𝑏1 − 𝑎4𝑏3
∆𝑥32 =  𝑎4𝑏1 − 𝑎1𝑏4
∆𝑥42 =  𝑎1𝑏3 − 𝑎3𝑏1

 

4) {
𝑎2𝑥23 + 𝑎3𝑥33 + 𝑎4𝑥43 = 0

𝑏2𝑥23  + 𝑏3𝑥33 + 𝑏4𝑥43 = 0
  ⇒  {

∆𝑥23 =  𝑎3𝑏4 − 𝑎4𝑏3
∆𝑥33 =  𝑎4𝑏2 − 𝑎2𝑏4
∆𝑥43 =  𝑎2𝑏3 − 𝑎3𝑏2

  

. 

⇒

{
 
 

 
 
∆𝑥1 = 𝑎2𝑏3 − 𝑏2𝑎3   +   𝑎2𝑏4 − 𝑎4𝑏2  +    𝑎3𝑏4 − 𝑎4𝑏3

∆𝑥2 = 𝑎3𝑏1 − 𝑎1𝑏3   +   𝑎4𝑏1 − 𝑎1𝑏4  +    𝑎3𝑏4 − 𝑎4𝑏3

∆𝑥3 = 𝑎1𝑏2 − 𝑎2𝑏1   +   𝑎4𝑏1 − 𝑎1𝑏4  +    𝑎4𝑏2 − 𝑎2𝑏4

∆𝑥4 = 𝑎1𝑏2 − 𝑏1𝑎2   +   𝑎1𝑏3 − 𝑎3𝑏1  +    𝑎2𝑏3 − 𝑎3𝑏2

 . 

 

4. Some Properties of the Homometric Vector 2-Product 

on ℝ𝑛 

Theorem 01.  Consider 𝒗0 = 𝑎1𝒆1 + 𝑎2𝒆2 + 𝑎3𝒆3 +⋯+
𝑎𝑛𝒆𝑛  and 𝒗1 = 𝑏1𝒆1 + 𝑏2𝒆2 + 𝑏3𝒆3 +⋯+ 𝑏𝑛𝒆𝑛. The 

axial vector 𝒗0 𝒗1 can be calculated by multiplying these 

vectors:  

(𝑎1𝒆1 + 𝑎2𝒆2 + 𝑎3𝒆3 +⋯+ 𝑎𝑛𝒆𝑛) (𝑏1𝒆1 + 𝑏2𝒆2 + 𝑏3𝒆3
+⋯+ 𝑏𝑛𝒆𝑛)

= ∑ ∑ (|
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

| 𝒆𝑘 𝒆𝑗)

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

 

Demonstration. Considering these vectors: 

𝒗0 𝒗1 = (𝑎1𝒆1 + 𝑎2𝒆2 + 𝑎3𝒆3 +⋯+ 𝑎𝑛𝒆𝑛) (𝑏1𝒆1 +
𝑏2𝒆2 + 𝑏3𝒆3 +⋯+ 𝑏𝑛𝒆𝑛). 
Multiplying this right member, follows: 

𝒗0 𝒗1   =  𝑎1𝑏1𝒆1 𝒆1 + 𝑎1𝑏2𝒆1 𝒆2 + 𝑎1𝑏3𝒆1 𝒆3 +⋯
+ 𝑎1𝑏𝑛𝒆1 𝒆𝑛 + 𝑎2𝑏1𝒆2 𝒆1 + 

+𝑎2𝑏2𝒆2 𝒆2 + 𝑎2𝑏3𝒆2 𝒆3 +⋯+ 𝑎2𝑏𝑛𝒆2 𝒆𝑛 + 𝑎3𝑏1𝒆3 𝒆1
+ 𝑎3𝑏2𝒆3 𝒆2 + 𝑎3𝑏3𝒆3 𝒆3 

+⋯+ 𝑎3𝑏𝑛𝒆3 𝒆𝑛 +⋯+ 𝑎𝑛𝑏1𝒆𝑛 𝒆1 + 𝑎𝑛𝑏2𝒆𝑛 𝒆2
+ +𝑎𝑛𝑏3𝒆𝑛 𝒆3 +⋯+ 𝑎𝑛𝑏𝑛𝒆𝑛 𝒆𝑛. 

Given corollary 01, we have 𝒆𝑘 𝒆𝑘 = 0:              

𝒗0 𝒗1   =  𝑎1𝑏2𝒆1 𝒆2 + 𝑎1𝑏3𝒆1 𝒆3 +⋯+ 𝑎1𝑏𝑛𝒆1 𝒆𝑛
+ 𝑎2𝑏1𝒆2 𝒆1 + 𝑎2𝑏3𝒆2 𝒆3 

+⋯+ 𝑎2𝑏𝑛𝒆2 𝒆𝑛 + 𝑎3𝑏1𝒆3 𝒆1 + 𝑎3𝑏2𝒆3 𝒆2 +⋯
+ 𝑎3𝑏𝑛𝒆3 𝒆𝑛 +⋯+ 𝑎𝑛𝑏1𝒆𝑛 𝒆1
+ 𝑎𝑛𝑏2𝒆𝑛 𝒆2 + 𝑎𝑛𝑏3𝒆𝑛 𝒆3 +⋯
+ 𝑎𝑛𝑏𝑛−1𝒆𝑛 𝒆𝑛−1. 

Considering definition 01: 

𝒗0 𝒗1 = (𝑎2𝑏1 − 𝑎1𝑏2)𝒆2 𝒆1 + (𝑎3𝑏1 − 𝑎1𝑏3)𝒆3 𝒆1 +⋯ 

+ (𝑎𝑛𝑏1 − 𝑎1𝑏𝑛)𝒆𝑛 𝒆1  + (𝑎3𝑏2 − 𝑎2𝑏3)𝒆3 𝒆2 +⋯ 

+(𝑎𝑛𝑏2 − 𝑎2𝑏𝑛)𝒆𝑛 𝒆2 +⋯+ (𝑎𝑛𝑏3 − 𝑎3𝑏𝑛)𝒆𝑛 𝒆3 + 

+⋯+ (𝑎𝑛𝑏𝑛−1 − 𝑎𝑛−1𝑏𝑖)𝒆𝑛 𝒆𝑛−1 . 
Using the summation symbol: 

𝒗0 𝒗1  = ∑(𝑎𝑘𝑏1 − 𝑎1𝑏𝑘)𝒆𝑘 𝒆1

𝑛

𝑘=2

+ 

+∑(𝑎𝑘𝑏2 − 𝑎2𝑏𝑘)𝒆𝑘 𝒆2

𝑛

𝑘=3

+∑(𝑎𝑘𝑏3 − 𝑎3𝑏𝑘)𝒆𝑘 𝒆3

𝑛

𝑘=4

+⋯

+∑(𝑎𝑘𝑏𝑛−1 − 𝑎𝑛−1𝑏𝑘)𝒆𝑘 𝒆𝑛

𝑛

𝑘=𝑛

 . 

Considering  𝑎𝑘𝑏𝑗 − 𝑎𝑗𝑏𝑘 = |
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

|,  we have: 

𝒗0 𝒗1 =∑ |
𝑎𝑘 𝑎1
𝑏𝑘 𝑏1

| 𝒆𝑘 𝒆1

𝑛

𝑘=2

+∑|
𝑎𝑘 𝑎2
𝑏𝑘 𝑏2

| 𝒆𝑘 𝒆2

𝑛

𝑘=3

+∑ |
𝑎𝑘 𝑎3
𝑏𝑘 𝑏3

| 𝒆𝑘 𝒆3

𝑛

𝑘=𝑛

+⋯

+∑ |
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

| 𝒆𝑘 𝒆𝑛−1

𝑛

𝑘=𝑛

 . 

The right member contains a sum (from 1 to 𝑛 − 1 plots) of 

other sums (from 𝑗 + 1 to 𝑛 plots), whence, finally:  

∑ ∑ (|
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

| 𝒆𝑘 𝒆𝑗)

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

= 

= (𝑎1𝒆1 + 𝑎2𝒆2 + 𝑎3𝒆3 +⋯+ 𝑎𝑛𝒆𝑛) (𝑏1𝒆1 + 𝑏2𝒆2 +
 𝑏3𝒆3 +⋯+ 𝑏𝑛𝒆𝑛). 
The calculation of   𝒗0 𝒗1 from this expression of the 

theorem 01 requires the calculation of the homometric 2-

product of the versors, using the definition 01. 

 

Theorem 02. Be  𝒗0 𝒗1, 𝒗0, 𝒗1 ∈ ℍ
𝑛. Then, there exist 

component vectors 𝒗0𝑗𝑘 and 𝒗𝑗𝑘 such that, for angles 𝜃𝑗𝑘 

between these vectors, the equality below is fulfilled: 

𝒗0 𝒗1  =  ∑ ∑ (‖𝒗0𝑗𝑘‖‖𝒗𝑗𝑘‖ sin 𝜃𝑗𝑘 𝒆𝑘 𝒆𝑗)

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

 . 

 

Demonstration. From Theorem 01 it is known that: 

𝒗0 𝒗1  =  ∑ ∑ (|
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

| 𝒆𝑘 𝒆𝑗)

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

 . 



 

~ 61 ~ 

World Wide Journal of Multidisciplinary Research and Development 
 

Considering   |
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

|  =  𝑎𝑘𝑏𝑗 − 𝑎𝑗𝑏𝑘, there  exist  angles  

𝛾0𝑗𝑘  and  𝛾𝑗𝑘,  in  the  planes 𝑋𝑗𝑋𝑘,    𝑘 ≠ 𝑗 ∈ ℕ,  of  any  n-

dimensional   coordinate  system   𝑂𝑋1𝑋2…𝑋𝑛,   such that 

𝑎𝑗 = ‖𝒗0𝑗𝑘‖ sin 𝛾0𝑗𝑘 , 𝑎𝑘 = ‖𝒗0𝑗𝑘‖ cos 𝛾0𝑗𝑘 ,   𝑏𝑗 =

‖𝒗𝑗𝑘‖ sin 𝛾𝑗𝑘,  𝑏𝑘 = ‖𝒗𝑗𝑘‖ cos 𝛾𝑗𝑘 

are orthogonal projections of 𝒗0𝑗𝑘 ,  𝒗𝑗𝑘 on these planes 𝑋𝑗𝑋𝑘, 

according to the following figure. 
 

 
 

Source: Own elaboration. 

Fig. 01: Representation of vectors 𝒗0𝑗𝑘 , 𝒗𝑗𝑘 and angles 𝛾0𝑗𝑘 , 𝛾𝑗𝑘. 

 

From this figure 01, follows: 

|
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

| =  ‖𝒗0𝑗𝑘‖ cos 𝛾0𝑗𝑘 ‖𝒗𝑗𝑘‖ sin 𝛾𝑗𝑘

−‖𝒗𝑗𝑘‖ cos 𝛾𝑗𝑘 ‖𝒗0𝑗𝑘‖ sin 𝛾0𝑗𝑘 

⇒ |
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

| = ‖𝒗0𝑗𝑘‖‖𝒗𝑗𝑘‖(cos 𝛾0𝑗𝑘 sin 𝛾𝑗𝑘

−cos 𝛾𝑗𝑘 sin 𝛾0𝑗𝑘) .  

Thus, there exist angles 𝜃𝑗𝑘 = 𝛾𝑗𝑘 − 𝛾0𝑗𝑘 such that, as it was 

intended to show: 

|
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

| = ‖𝒗0𝑗𝑘‖‖𝒗𝑗𝑘‖ sin 𝜃𝑗𝑘  

⇔  𝒗0 𝒗1 =∑ ∑ (‖𝒗0𝑗𝑘‖‖𝒗𝑗𝑘‖ sin 𝜃𝑗𝑘 𝒆𝑘 𝒆𝑗)

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

 . 

Theorem 03. Be  𝒗0 𝒗1, 𝒗0, 𝒗1 ∈ ℍ
𝑛 e ‖𝒗0 𝒗1‖, ‖𝒗0‖, 

‖𝒗1‖  their modules, respectively. Being 𝜃 the angle 

between the vectors 𝒗0, 𝒗1 ∈ ℍ
𝑛, then follows: 

‖𝒗0 𝒗1‖ =  ‖𝒗0‖‖𝒗1‖ sin 𝜃 . 
 

Demonstration. It is known from Theorem 02 that: 

𝒗0 𝒗1 =∑ ∑ (‖𝒗0𝑗𝑘‖‖𝒗𝑗𝑘‖ sin 𝜃𝑗𝑘 𝒆𝑘 𝒆𝑗)

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

 . 

Considering the plane 𝜒𝜓 that contains the vectors 𝒗0 and 

𝒗1, the calculation of the homometric vector 2-product 

between these two vectors, in this plane, follows below: 

𝒗0 𝒗1 =∑∑(‖𝒗0𝑗𝑘‖‖𝒗𝑗𝑘‖ sin 𝜃𝑗𝑘 𝒆𝜓 𝒆𝜒)

2

𝑘=2

1

𝑗=1

 . 

⇒  𝒗0 𝒗1 = ‖𝒗012‖‖𝒗12‖ sin 𝜃12 𝒆𝜓 𝒆𝜒 

Now, in this case of the plan 𝜒𝜓,  ‖𝒗012‖ = ‖𝒗0‖, ‖𝒗12‖ =
‖𝒗1‖ and  𝜃12 = 𝜃. Then, we have, as we wanted to show: 

‖𝒗0 𝒗1‖ =  ‖𝒗0‖‖𝒗1‖ sin 𝜃 . 
The plane 𝜒𝜓 or 𝑃ℎ,  which follows represented in figure 02 

below, is called homometric plane. 
 

 
 

Source: Own elaboration. 

Fig. 02: Representation of vectors 𝑣0, 𝑣1 and angles 𝛾0, 𝛾1, 𝜃 in 

the homometric plane. 

 

Theorem 04. Let ℍ be a vector space over ℝ. Then, the axial 

vector  𝒗0 𝒗1 satisfies the following equality: 

  𝒗0 𝒗1 = −  𝒗1 𝒗0 . 
 

Demonstration. Considering 𝑎𝑖 , 𝑎𝑗, as components of 𝒗0, 

and  𝑏𝑖 , 𝑏𝑗, as components of  𝒗1, follows below: 

  𝒗0 𝒗1 = ∑ ∑ (|
𝑎𝑘 𝑎𝑗
𝑏𝑘 𝑏𝑗

| 𝒆𝑘 𝒆𝑗)

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

  

⇒   𝒗1 𝒗0 = − ∑ ∑ (|
𝑏𝑘 𝑏𝑗
𝑎𝑘 𝑎𝑗

| 𝒆𝑘 𝒆𝑗)

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

. 

⇔   𝒗0 𝒗1 = −  𝒗1 𝒗0 . 
Corolary 01.  The homometric vector 2-product of a vector 

with itself is null: 

𝒗 𝒗 = 𝟎 . 
Demonstration. Consider the vector  𝒗 = 𝒗0 + 𝒗1. Then: 

(𝒗0 + 𝒗1) (𝒗0 + 𝒗1) = 𝟎  
 ⇒  𝒗0 𝒗0 + 𝒗0 𝒗1 + 𝒗1 𝒗0 + 𝒗1 𝒗1 = 0 . 
⇒ 𝒗0 𝒗0 + 𝒗0 𝒗1 − 𝒗0 𝒗1 + 𝒗1 𝒗1 = 0   

⇒ 𝒗0 𝒗0 + 𝒗1 𝒗1 = 0 ⇔ 𝒗0 𝒗0 = −𝒗1 𝒗1. 

So, we have, as wanted to demonstrate: 

𝒗0 𝒗0 − 𝒗1 𝒗1 = 0 ⇔ 𝒗0 𝒗0 = 𝒗1 𝒗1 = 0 . 
 

Theorem 05. Consider 𝒗0, 𝒗1, 𝒗2 ∈ ℍ
𝑛. The homometric 

vector 2-product of these three vectors does not, in general, 

comply with Jacobi's identity: 

𝒗0 (𝒗1 𝒗2) + 𝒗1 (𝒗2 𝒗0) + 𝒗2 (𝒗0 𝒗1) ≠ 𝟎  ∀𝒗𝟎, 𝒗𝟏,
𝒗𝟐 ∈ ℍ

𝒏 . 

Demonstration.  A counterexample is enough to verify that 

Jacobi's identity does not hold in ℍ𝑛. Take, as multiplicative 

vectors, versors   of   the   canonical   basis 𝐵 =
⟨𝒆1; 𝒆2;  𝒆3;  𝒆4;  𝒆5⟩: 

𝒆1 (𝒆2 𝒆3) + 𝒆2 (𝒆3 𝒆1) + 𝒆3 (𝒆1 𝒆2) ≠ 𝟎. 

Considering theorem 02 above, it follows: 

𝒆1 ( 𝒆4 + 𝒆5 + 𝒆1) + 𝒆2 (𝒆2 − 𝒆4 − 𝒆5) + 𝒆3 (𝒆3 + 𝒆4 +
𝒆1) ≠ 𝟎. 

⇒ 𝒆1 𝒆4 + 𝒆1 𝒆5 + 𝒆1 𝒆1 + 𝒆2 𝒆2 − 𝒆2 𝒆4 − 𝒆2 𝒆5 + 

+ 𝒆3 𝒆3 + 𝒆3 𝒆4 + 𝒆3 𝒆1 ≠ 𝟎. 
Applying elementary properties of the 2-product, it follows: 

𝒆1 𝒆4 + 𝒆1 𝒆5 + 𝟎 + 𝟎 − 𝒆2 𝒆4 − 𝒆2 𝒆5 + 𝟎 + 𝒆3 𝒆4
+ 𝒆3 𝒆1 ≠ 𝟎  

⇒ 𝒆1 𝒆4 + 𝒆1 𝒆5 − 𝒆2 𝒆4 − 𝒆2 𝒆5 + 𝒆3 𝒆4 + 𝒆3 𝒆1 ≠ 𝟎. 

Applying the definition 01 again: 

𝒆5 − 𝒆2 − 𝒆3 − 𝒆2 − 𝒆3 − 𝒆4 + 𝒆3 − 𝒆1 − 𝒆5 + 𝒆3 + 𝒆4
− 𝒆1 + 𝒆1 + 𝒆2 + 𝒆5 + 
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+ 𝒆2 − 𝒆4 − 𝒆5 ≠ 𝟎. 

From this last expression, we finally have: 

−𝒆4 − 𝒆1 ≠ 0 . 
 

Concluding Remarks 

After a brief review of the definition and some properties of 

the homometric  vector 2-product, some concluding remarks 

can be made, as follows below: 

1. The axial vector 𝒗0 𝒗1 is simultaneously orthogonal to 

the two given multiplicative vectors, 𝒗0 and 𝒗1, by 

definition, and results from an antisymmetric bilinear 

operation between these two vectors given; 

2. This axial 𝒗0 𝒗1 is zero if one of its multiplicative 

vectors is zero, both of its vectors are zero, or one of its 

given vectors is a multiple of the other; 

3. The axial vector 𝒗0 𝒗1 belongs to the same vector space 

as the two multiplicative vectors, 𝒗0 and 𝒗1, thus 

fulfilling the closure property of this vector operation; 

4. 2-vector belongs to the outer product, while the 

expression 2-product belongs to the homometric 

product. The result of the outer product is a bivector or 

2-vector, denoted by 𝒗0 ∧ 𝒗1, while the result of the 

homometric vector 2-product is a axial vector, denoted 

by 𝒗0 𝒗1 ∈ ℍ
𝑛; 

5. The necessary condition for a second-order 

antisymmetric tensor to be a 2-vector is that its 

components satisfy the Jacobi identity, when the 

homometric vector 2-product does not, in general, 

satisfy the Jacobi identity. 
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