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Abstract 
An Evolutionary Algorithms as a technique of optimization presented in this paper to solving the 

reactive dispatch problem RDP. This reactive dispatching RD consists to minimize three objectives 

functions which are respectively the voltage deviation function, the power losses in transmission lines 

and the function cost for the reactive power compensation device in electrical power system. This 

recent technique based on Evolutionary Algorithms, in particular the NPGA (Niched Pareto Genetic 

Algorithm) and the NSGA-II technique (non-dominated sorting genetic algorithm) are used to solve 

this reactive dispatching problem RDP. In order to demonstrate the advantage of this approaches, a 

classical technique called weight method is used. Results simulation are obtained from the 

application of all methods cited on test system 20-bus-6-units using matlab Simulink. 

 

Keywords: Evolutionary Algorithms, reactive dispatching problem RDP, NPGA, NSGA-II, power 

losses, voltage deviation, cost function for compensation device. 
 

Introduction 

In the last decade, the control of active distribution problems to improve the economy and 

operational safety of the power system has received a lot of attention. As a general rule, the 

load bus voltages can be kept within their allowable limits by reallocating the reactive power 

generations in the system. This can be accomplished by adjusting the processing taps, 

sources of switchable VAR and generator voltages. Indeed, reactive power compensation can 

participate on the one hand in minimizing active losses in transmission lines and on the other 

hand in reducing voltage deviations for consuming nodes. Several research works in the 

literature have focused on solving this type of optimization problem.  

In general, three techniques to solving this complex optimization problem. The first method 

uses the nonlinear programming algorithm [1]. But, nonlinear programming-based 

techniques have many disadvantages, such as unsafe convergence properties, execution time, 

and algorithmic complexity. The second optimization technique analyze, we use the 

sensitivity and gradient-based technique to linearize the objective function and the 

constraints of the system around an operating point [2]. But, methods based on gradients are 

likely to be trapped in local minima and the resulting solution will not be the optimal 

solution. 

The third approach utilizes the heuristic methods to search for the optimal solution in the 

problem space [3]. These heuristic techniques have been used to solving this complex 

optimal dispatch problem with success. The multiobjective problem was transformed to 

mono objective problem by technique called a weighted sum [4]. 

 Unfortunately, in problems with a non-convex Pareto-optimal front, the best compromise 

solutions cannot be guaranteed and also the execution time will be quite long. In order to 

accomplish these drawbacks, Reference [5] presents the e-constraint technique for solving 

multi-objective problems.  
 

Problem formulation 

Solving the problem of optimal reactive power dispatching consists in optimizing three 

objective functions, which represent the function cost of reactive energy compensation 

devices, transmission losses and voltage deviation, under certain constraints.
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Objectives functions 

Solving the problem of optimal reactive power dispatching 

consists in optimizing three objective functions, which 

represent the function cost of reactive energy compensation 

devices, transmission losses and voltage deviation, under 

certain constraints. 

 

A. Cost of compensation devices: 

The cost function of the compensation reactive power 

devices is formed by the cost of installation and the cost per 

MVAR. This function can be considered to a linear 

function [6, 7, 8]: 

 

    (1) 

 

With: 

Cfi: fixed cost of installing reactive power sources at node i 

in ($). 

Cgi: cost per MVAR of the compensation reactive power 

devices at node i in ($ / MVAR). 

Qgi: compensation at node i (MVAR). 

Nc: number of possible nodes for installing the 

compensation devices. 

 

B. Total active transmission losses: 

The total active losses in the transmission lines are given by 

the following equation [9]: 

 

(2) 

 

With: 

YNij, Nij: respectively modulus and argument of element ij 

of the nodal matrix. 

Vi: voltage at nodes i. 

Vj: voltage at node j. 

N: number of nodes in the network. 

 

C. Voltage deviation: 

The deviation of the voltage in a bus i is represented by the 

following expression [1]: 

 

   (3) 

 
ref

iV
represents the desired voltage at bus i 

 

Problem constraints 

The constraints of reactive dispatching are of four types: 

A. Constraints linked to the voltages of the consuming 

buses: 

The voltages of the consuming nodes are limited by an 

upper limit and a lower limit: 

 
max

ii

min

i V  V  V 
 

(4) 

 

B. Constraints linked to the reactive production of the 

banks located at the consumer buses: 

The reactive production Qgi of the banks of capacitors 

located at the consumer bus i is bounded by an upper limit 

and a lower limit  

. 

 
min max
gi gi giQ   Q   Q 

 

(5) 

C. Constraint related to the cost of compensation 

systems: 

 The cost for compensation reactive power devices is 

limited by the maximum cost available for the investment: 

 

      (6) 

 

D. Constraints linked to active losses of transmission 

and transmission lines: 

The active losses in the transmission and transmission lines 

of energy is positive: 

 

       (7) 

 

Multi-objective function 

The weight method 

The original multi objective problem POM is converted to 

mono objective problem POU using a linear combination of 

the objectives: 

 
( ) ( ) ( ) ( )

f

obj
N

obj
N2211
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 xfω  ...  xfω  xfω  xf y Minimiser 



+++==

 

(8) 

The iω  are called weights, they are chosen as
1  ω i = . 

 

NPGA method (Niched Pareto Genetic Algorithm) 

It is a multi-objective optimization method proposed by 

Horn and Napfliotis in 1994, which uses a tournament 

based on Pareto-solution dominance [10, 11] It compares 

two individuals taken at random with a small subpopulation 

also chosen from the hazard. If only one of these two 

individuals dominates the subpopulation, it is then 

positioned in the next population. In other cases, a sharing 

function is applied to select the individual. 

 

Selection procedure: 

Entrance : 

Pt (Population). 

(Niche radius). 

A (Comparison set). 

Ncompare (Size of the comparison set). 

Exit : 

P ’(Breeding population) 

Step1: Set i = 1 and P ’= {}. 

Step2: Randomly choose two candidates t21 P   x,  x 
for 

selection. 

Step3: Randomly choose a comparison set A formed by 

Ncompare individuals of the population Pt. 

Step4: Compare each of the candidates x1 and x2 with the 

set A using the dominance conditions defined in II.2 

(definition 4). 

Step5: If candidate x1 dominates set A and x2 does not 

dominate by this set, then P '= P' + {x1} and go to step 7. If 

candidate x2 dominates set A and x1 does not dominate by 

this set, then P '= P' + {x2} and go to step 7. In the other 

cases, that is to say, x1 and x2 dominate Pcompare or both 

do not dominate A, we go to step 6. 

Step6: Use the sharing method for the selection. 

Step7: If i = N, stop the procedure. Otherwise i = i + 1 and 

go to step 2. 
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Sharing procedure: 

Step1: Set j = 1. 

Step2: Determine the distance between individuals i and 

j of the current population. 

 

 

(9) 

 

 

With are the minimum and maximum values of 

the objective function . 

Step3: Compare  with the radius . The share 

function has the following form: 

 

 

(10) 

 

Step4: j = j + 1; if  return to step 2, otherwise 

calculate the niche count corresponding to candidate 

i using the following procedure: 

 

 (11) 

 

  

Step5: Repeat the previous steps for the second candidate. 

Step6: Compare m1 and m2 corresponding respectively to 

the first and second candidate. If , choose the first 

candidate, if not, choose the second. 

 

NSGA-II 

Multiobjective evolutionary algorithms that use non-

dominated sorting and sharing, such as NSGA and NPGA 

(NPGA-Niched Pareto Genetic Algorithm) [12, 13, 14], 

have been criticized for their complexity, high 

computation, lack of elitism, and the need for specifying 

the sharing parameter. For this reason, the second version 

of NSGAII is considered among the most efficient 

algorithms for solving several optimization problems 

related to power grids. In this technique, the sharing 

parameter is replaced by the crowding distance. At an 

iteration t, a child population Qt with a number of Npop 

individuals is created from the parent population Pt of the 

same number of Npop individuals. These two child and 

parent populations will be combined to form a new Rt 

population. 

      (12) 

The population Rt of size 2Npop is then sorted according to 

a criterion of non-dominance in r fronts Fj, as indicated by 

equation (13). 

     (13) 

 

The selection of the Pt + 1 population will be based on the 

degree of non-dominance and the distance from the 

crowding. 

Two individuals having the same degree of non-dominance, 

that is to say being in the same front Fj, will be sorted 

according to their crowding distances. The first Npop 

individuals of the population Rt + 1 will be the individuals 

of the population Pt + 1. An iteration t of the NSGAII 

algorithm is shown in Figure 1 [15, 16]. 
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Fig 1: An iteration of the NSGAII 

 

The crowding distance of an individual (i) is calculated 

according to the perimeter formed by the points closest to 

him for each objective. The process of selection by 

crowding distance within the same front favors the 

individuals furthest from each other. For a front Fi, the 

procedure for calculating the crowding distance of a 

solution Xi of the front Fj is detailed in [17, 18]. 

 

Simulation results 

The network studied in this part is the Tunisian network 

version 1981 contains 20 bus, 6 thermal generators and 26 

lines [9]. The structure of this network is represented by 

figure 2, the data of the buses and the lines are given by 

Tables 1 and 2 in appendices. While the cost coefficients of 

the device and the desired voltage values are given by table 

3. 

 

 
 

Fig 2: Tunisian network test system. 

 

Bi-Objectves optimization 

Figure 3 represents the optimal Pareto fronts for a bi-

objective optimization of the loss / deviation functions by 

the three approaches NPGA, NSGAII and the weight 

method. 
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Fig 3: Front Pareto deviation / losses. 

 

From Figure 2, we can derive the limit values for each 

approach with minimum active losses and minimum 

deviation. These values are summarized in Tables 4 and 5. 
 

Table 4: Limit values with minimum active losses. 
 

 NPGA NSGAII 
weight 

method 

Qg1[pu] 
-

0.0600 
-0.1309 -0.0607 

Qg2[pu] 0.1080 0.2913 0.1288 

Qg3[pu] 
-

0.2189 
-0.1621 -0.0705 

Qg4[pu] 0.4743 0.2680 0.2722 

Qg5[pu] 
-

0.0334 
-0.0130 -0.0073 

Qg6[pu] 0.1261 0.1857 0.1134 

Qg7[pu] 
-

0.0820 
-0.0946 -0.0510 

Qg8[pu] 0.1144 0.0189 0.0190 

Qg9[pu] 
-

0.0182 
0.0676 -0.0205 

Qg10[pu] 
-

0.2676 
-0.2881 -0.2297 

Qg11[pu] 
-

0.1081 
-0.0709 0.0621 

Qg12[pu] 0.1787 0.1652 0.1273 

Qg13[pu] 
-

0.0470 
-0.0388 -0.0103 

Qg14[pu] 0.3557 0.3302 0.3695 

Minimum active losses 

[pu] 
0.0631 0.0631 0.0640 

Corresponding Deviation 

[pu] 
0.3767 0.4166 0.4224 

 

From Tables 4 and 5, we can see that the reactive 

production is important for a minimum deviation, it is low 

when the losses are minimal. We can also notice that the 

methods based on evolutionary algorithms (NPGA and 

NSGAII) give the best solutions than the classical methods 

(weight method) and we admit that the NSGAII method 

offers the best results despite its calculation time which is a 

little slow compared to the others. 
 

Table 5: Limit values with minimum deviation. 
 

 NPGA NSGAII 
weight 

method 

Qg1[pu] 0.2768 0.3105 0.1828 

Qg2[pu] 0.3056 0.1168 0.1366 

Qg3[pu] 0.7257 0.0003 0.4377 

Qg4[pu] 0.1811 0.4494 0.4730 

Qg5[pu] 0.0613 0.1927 0.1545 

Qg6[pu] 0.1954 0.1215 0.1614 

Qg7[pu] 0.3523 0.3661 0.3139 

Qg8[pu] 0.1409 -0.0832 0.0418 

Qg9[pu] 
-

0.2560 
0.0016 -0.1890 

Qg10[pu] 
-

0.3035 
-0.2872 0.0181 

Qg11[pu] 0.2653 0.2363 0.1173 

Qg12[pu] 0.1155 0.2108 0.1991 

Qg13[pu] 0.0849 0.0410 -0.0051 

Qg14[pu] 0.4309 0.4179 0.4174 

Minimum deviation [pu] 0.0618 0.0621 0.0834 

Corresponding active 

losses [pu] 
0.0876 0.0818 0.0845 

 

The voltage profile at the load buses corresponding to the 

minimum active losses determined by the three approaches 

is shown in figure 4. 

Similarly, the voltage level at the load buses corresponding 

to a minimum deviation is shown in figure 5. 
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Fig 4: Voltage profile with minimum active losses. 

 

 
 

Fig 5: Voltage profile with minimum deviation. 

Figure 5 shows that at minimum deviation the voltage 

values at the consuming buses are too close to the desired 

value (1 pu). 

 

Tri-Objectves optimization 

Figures 6 illustrate the Pareto surfaces Voltage deviation / 

Cost of compensation devices / Active losses in 

transmission and power transmission lines in four different 

views. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Fig. 6: Deviation / Cost / Loss Pareto Surface. 
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Table 6 gives the limit values of the Pareto surface of 

figure. 6. 
 

Table 6: Limit values of the Pareto surface Deviation / Cost / 

Losses. 
 

 
Minimum 

cost 

Minimum 

losses 

Minmum 

deviation 

Cost ($) 9.0939 103 1.3435 104 1.3013 104 

Losses (pu) 0.1296 0.1247 0.1259 

Deviation 

(pu) 
32 10-4 5.7883 10-4 32.65 10-4 

 

Conclusion 

In this paper, the problem reactive Dispatch problem of the 

Electric Power Network has been defined and resolved. 

The methods proposed for the resolution are mainly based 

on Evolutionary Algorithms. First, we defined the 

Dispatching (DR) problem and then we applied three 

methods for its resolution. These are the NPGA, NSGAII 

and the weights method. The simulations are made on a test 

network, the Tunisian network version 1981 contains 20 

nodes, 6 thermal generators and 26 lines. A comparative 

study on the Pareto fronts of these methods is carried out. 

The NSGAII method offers the best results. This is the 

reason why we chose this method for solving the problems 

of tri-objective optimization of the DR. Then we were 

interested in the determination of the pareto surface of the 

problem with three objectives (cost of the device of 

compensation / deviation / total active losses). The methods 

proposed for the resolution of Dispatching problems show 

that the solutions provided are encouraging in the case of 

complex nonlinear problems, having a large number of 

variables and under several constraints. 

 

Appendices 
 

Table 1: Buses data. 
 

Buses data 

Buse

s 

Nomin

al 

voltage 

(KV) 

Operab

le 

voltage 

(KV) 

Pg 

(MW

) 

Qg 

(MVA

R) 

Pc 

(M

W) 

Qc 

(MVA

R) 

1 90.00 0.00 0.00 0.00 
50.0

0 
11.00 

2 225.00 0.00 0.00 0.00 0.00 0.00 

3 90.00 0.00 0.00 0.00 
70.0

0 
30.00 

4 225.00 0.00 0.00 0.00 0.00 0.00 

5 90.00 0.00 0.00 0.00 0.00 0.00 

6 150.00 0.00 0.00 0.00 0.00 0.00 

7 90.00 0.00 0.00 0.00 
20.0

0 
12.00 

8 150.00 0.00 0.00 0.00 0.00 0.00 

9 225.00 0.00 0.00 0.00 0.00 0.00 

10 225.00 0.00 0.00 0.00 5.00 1.00 

11 150.00 0.00 0.00 0.00 
50.0

0 
20.50 

12 150.00 0.00 0.00 0.00 
42.0

0 
15.00 

13 150.00 0.00 0.00 0.00 3.00 1.00 

14 90.00 0.00 0.00 0.00 
50.0

0 
20.00 

15 90.00 81.90 10.00 0.00 
15.0

0 
5.00 

16 225.00 229.50 25.00 0.00 0.00 0.00 

17 150.00 149.25 40.00 0.00 20.0 10.00 

0 

18 150.00 147.90 35.00 0.00 
25.0

0 
15.00 

19 225.00 224.10 
200.0

0 
0.00 0.00 0.00 

20 90.00 86.04 0.00 0.00 
20.0

0 
10.00 

 

Table 2: Line’s data 
 

Line’s data 

Connect

ion 

Resista

nce (Ω) 

Reacta

nce (Ω) 

Connect

ion 

Resista

nce (Ω) 

Reacta

nce (Ω) 

1→2 0.00 70.88 9→10 9.00 42.50 

1→20 3.30 9.70 10→16 17.00 98.50 

2→4 3.50 16.70 10→19 9.20 43.80 

3→4 0.00 35.44 11→18 15.00 42.00 

3→20 1.50 5.00 11→19 0.00 17.72 

4→10 9.80 46.70 13→12 16.90 47.60 

4→19 9.90 46.70 13→17 14.60 41.00 

5→3 6.70 19.30 14→1 9.60 21.20 

6→11 29.80 83.20 14→5 7.70 16.00 

6→20 0.00 45.75 15→5 21.90 60.70 

7→8 0.00 68.63 15→7 8.70 24.20 

8→9 0.00 73.91 16→17 0.00 70.88 

8→12 27.70 77.70 18→13 15.20 42.60 

 

Table 3: Cost coefficients of the compensation device and desired 

voltage values. 
 

Bus N° Cfi ($) Cgi ($/MVAR) Vdesired (pu) 

1 1771.59 5314.8 1 

2 1771.59 5314.8 1 

3 1771.59 5314.8 1 

4 1771.59 5314.8 1 

5 1771.59 5314.8 1 

6 1771.59 5314.8 1 

7 1771.59 5314.8 1 

8 1771.59 5314.8 1 

9 1771.59 5314.8 1 

10 1771.59 5314.8 1 

11 1771.59 5314.8 1 

12 1771.59 5314.8 1 

13 1771.59 5314.8 1 

14 1771.59 5314.8 1 
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