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Abstract 
This paper deals with the prediction of Young modulus of concrete obtained with partial substitution 

of ordinary portland cement with metakaolin. A multiple time scale approach is then applied on two 

models based on micromechanics with the aim to homogenise the obtained Young modulus. The 

homogenisation schemes involved here are the self-consistency and Mori-Tanka ones. According to 

the Mori-Tanaka scheme, various shapes of inclusion are considered in the model, and the products 

of the pozzolanic reaction are taken into account at the appropriate scale. In order to justify the 

robustness of our analytical findings, the predicted results is compared to experimental observations 

on ordinary concrete with metakaolin as partial substitute of CEM I, cement. Moreover, we found 

experimentally that there is an optimal rate of substitution above which further substitution has an 

adverse effect. As results, the model involving the self-consistency scheme predicts values closed to 

that found experimentally, while for the scheme of Mori-Tanaka, the values predicted are closed to 

that found experimentally if both the shape of all the inclusions phases are considered spherical, or 

the void inclusion phases are considered ellipsoidal. 
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1. Introduction 

About a decade ago, remarkable advances have taken place in the research on supplementary 

materials that can be used as partial substitution of Portland cement, the well-known cement 

substitutes [1, 2]. Cement substitutes are materials that may be substituted, to some degree, in 

order to improve different properties, such as strength and durability [1]. The use of cement 

substitutes is generally encouraged because of the environmental advantages gained from 

their diversion from the waste stream, the reduction of the energy required in their re-

purposing as compared to the manufacture of cement. However, much greenhouse gas is 

created during the production of cement among which Carbon dioxide (CO2). It has been 

proven that cement industry produces about 7% of global CO2 emission [3]. This is why over 

the past few years the interest in reducing the CO2 footprint of the material has increased, 

primarily by lowering the amount of cement via use of supplementary cementious materials. 

Supplementary cementious materials are used to reduce the clinker factor of cements. It has 

been proven that some of these materials over a particular value of rate, namely the 

threshold, can reduce the mechanical properties of concretes, particularly at early age[4], 

which is not suitable. Recent studies have been conducted on the use of metakaolin in 

concrete as supplementary cementious material, particularly due to the fact that it 

demonstrated excellent pozzolanic properties (See [4] and references therein). To name just a 

few, Deteuf [2] proposed that metakaolin reacts with the CH available from the hydration 

reaction of cement to form more CSH gel and a crystallised product (C2ASH8).  In the same 

light, Wild [3] showed that for the same reaction, two additional crystallized products are 

formed (C4AH13 and C3AH6). It has been proven that factors like types of cement, AS2/CH  
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ratio and temperature affect the reaction between 

metakaolin and CH [5]. Let us mention that distinct 

crystallised products are formed with the CSH gel when the 

AS2/CH ratio reaches a specific value. 

Numerous experimental studies have been carried out on 

concrete with partial substitution of ordinary Portland 

cement with supplementary cementious materials [6,7,8]. 

Concomitantly, models for predictions of their elastic 

properties have been proposed [9,10]. While the approach 

used there were similar to that proposed by Zadeh and 

Bobko [11]. A multi-scale approach was used to predict 

elastic properties of concrete with metakaolin by applying 

the self-consistency and Mori-Tanaka scheme at four 

scales[12], and by taking into account the products of the 

pozzolanic reaction, agreeing then with the works of Wild 

[3] and Amer et al [9] in order to account for the change in 

elastic properties. Nazargah et al [13] showed that, for 

single scale predictions, the shape of the inclusion phase 

influences the quality of the predictions obtained. One may 

wonder whether the taking into account non-spherical 

shapes for inclusion phases can permit to have some 

mechanical properties of concrete such as Young modulus 

obtained by progressively substitute ordinary Portland 

cement with metakaolin. It has been proven that mechanical 

and physical performances of concretes are affected by 

geological nature of sand, the place and temperature of the 

locality where experiments are performed [14]. At this 

stage, the query is to know at what percentage the 

metakaolin could ameliorate the mechanical properties of 

concretes in general and particularly in Cameroon? 

Limiting our scope to the metakaolin used in this work. The 

main objective of this work is to propose a model that can 

predict the young modulus of concrete with partial 

substitution of cement with locally available metakaolin, 

considering pozzolanic reaction and the non-spherical 

shapes of inclusion phases of the concrete. 

 

2. Multiscale material model for Young’s modulus 

2.1. Observation scales and modelling of microstructure 

Four scales of studies are used here, while the 

homogenisation schemes are applied at each scale to obtain 

the effective elastic properties of the resulting concrete. 

These scales used include: 

- Scale 1(from 10-8 to 10-6m) for which two types of 

CSH gel can be observed namely; LD CSH and HD 

CSH[15]. These phases are considered as spherical 

inclusion [16]. 

- At scale 2 (going from 10-6 to 10-4m), the products of 

the hydration and pozzolanic reactions can be 

observed, leading to the inclusion phases: The 

unreacted clinker, metakaolin, CH, pores and the 

crystallised phases (C4AH13, C3AH6 and C2ASH8) [16]. 

The CSH gel is matrix phase.  

- At scale 3(from 10-4 to 10-2m), the inclusion phases are 

sand and void phases and the matrix phase is the 

cement paste. 

- Finally at scale 4(As from 10-2m), the inclusion phases 

are small and coarse gravel. The matrix phase is the 

mortar. In this stage, the ITZ is not considered 

according to works of Zadeh and Bobko [11] proving 

that for models predicting elastic properties, it can be 

ignored. 

2.2. Homogenisation scheme 

To obtain the effective elastic properties of heterogeneous 

materials, we propose an equivalent homogenous material 

with a constant Young modulus. This is done in three steps 

namely: the representation, the localisation and the 

homogenisation. 

➢ Representation: Here, the representative volumetric 

element is mathematically defined and some 

assumptions made: 

- The representative volumetric element represents 

globally all elementary volumes; 

- Let us consider that the region studied is statistically 

homogenous [17], meaning the n- point correlation 

function of its characteristic function, 𝑓𝑖(𝑥, 𝛼) is such 

as 

𝑃𝑟1,…,𝑟𝑛(𝑥, 𝑥
′, . . . , 𝑥′

𝑛−1
) =< 𝑓𝑟1(𝑥, 𝛼) >< 𝑓𝑟2(𝑥

′, 𝛼) >

⋯ < 𝑓𝑟𝑛(𝑥
′𝑛−1, 𝛼) >=

∫ 𝑓𝑟1(𝑥, 𝛼)𝑓𝑟2(𝑥
′, 𝛼)…

𝑣
𝑓𝑟𝑛(𝑥

′𝑛−1, 𝛼)𝑝(𝛼)𝑑𝑚         (1) 

is insensitive to translation. 

-The ergodic hypothesis next is assumed, meaning that the 

ensemble average is closed to that of the volume average. 

The mean of a physical property 〈𝛷〉 of the microstructure 

in a small volume 𝑉 is defined as: 

〈𝛷〉 = �̅� = lim
𝑥→∞

1

𝑉
∫ 𝛷(𝑥) 𝑑𝑣
.

𝑣
                                    (2) 

➢ Localisation: the dependency between the physical 

quantities at both microscopic and macroscopic scales 

is established. Additionally, the boundary conditions 

on the representative volumetric element are proposed 

as: 

(𝜎𝑖𝑗 − 𝜎𝑖𝑗
0)𝑛𝑗 = 0,                           (3) 

for homogenous stress. Where 𝜎𝑖𝑗
0  is the overall stress 

tensor causing strain, while the global stress is  

〈𝜎𝑖𝑗(𝑥)〉 = 𝜎𝑖𝑗̅̅̅̅ =
1

𝑉
∫𝜎𝑖𝑗(𝑥) 𝑑𝑣 =∑ 𝑐𝑟𝜎𝑖𝑗 

𝑟 .            𝑛
𝑟=1    (4) 

𝜎𝑖𝑗
𝑟  being the mean stress of a phase in the total volume 𝑣𝑟 , 

while 𝑐𝑟 is the volume fraction of a phase. Using the 

constitutive laws on the mean stress in each phase, one has 

𝜎𝑖𝑗
𝑟 (𝑥) = 𝐶𝑖𝑗𝑘𝑙

𝑟 𝜀𝑘𝑙
𝑟  leading to 

 𝜎𝑖𝑗̅̅̅̅ = ∑ 𝑐𝑟𝜎𝑖𝑗
𝑟𝑛

𝑟=1 = ∑ 𝑐𝑟𝐶𝑖𝑗𝑘𝑙
𝑟𝑛

𝑟=1 𝜀𝑘𝑙
𝑟 .      (5) 

The relationship between the mean strain field in a sub-

volume and the strain field causing it is defined as 

𝜀𝑖𝑗
𝑟 = 𝐴𝑖𝑗𝑘𝑙

𝑟 (𝑥)𝜀𝑘𝑙
𝑜 ,         (6) 

where the tensor 𝐴𝑖𝑗𝑘𝑙
𝑟  is the mechanical strain 

concentration factor tensor [17]. 

➢ Homogenisation: The effective constitutive laws are 

determined from the local constitutive laws. The mean 

global stress here is expressed as: 

𝜎𝑖𝑗̅̅̅̅ =  ∑ 𝑐𝑟𝐶𝑖𝑗𝑘𝑙
𝑟 𝜀�̅�𝑙

𝑟𝑛
𝑟=1 =  ∑ 𝑐𝑟𝐶𝑖𝑗𝑘𝑙

𝑟 𝐴𝑘𝑙𝑚𝑛
𝑟 𝜀�̅�𝑛

𝑜𝑛
𝑟=1 .                                                                    

(7) 

By setting 𝜎𝑖𝑗̅̅̅̅ = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙
𝑜  , one has the following definition: 

𝐶𝑖𝑗𝑘𝑙 = ∑ 𝑐𝑟𝐶𝑖𝑗𝑚𝑛
𝑟 𝐴𝑚𝑛𝑘𝑙

𝑟𝑛
𝑟=1 .         (8) 

The relationship between local stress, 𝜀𝑖𝑗
𝑟 , in a sub-volume 

and the eigenstrain, 𝜇𝑖𝑗
𝑟 , in the sub-volume, which is the 

strain field not resulting from mechanical loading applied 

(see [17]), is 

𝜀𝑖𝑗
𝑟 = 𝑆𝑖𝑗𝑘𝑙𝜇𝑘𝑙

𝑟 (𝑥).        (9) 

𝑆𝑖𝑗𝑘𝑙  being the Eshelby tensor, which describes the effect of 

an inclusion on the local strain field. To account for the 

change in properties when considering the inclusion, the 

stress is considered as  

𝜎𝑖𝑗
𝑟 (𝑥) = 𝜎𝑖𝑗

0 + 𝜎𝑖𝑗
𝑝𝑡(𝑥)             (10) 

where  
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𝜎𝑖𝑗
𝑟 (𝑥) = {

𝐶𝑖𝑗𝑘𝑙
𝑟 [𝜀𝑘𝑙

0 + 𝜀𝑘𝑙
𝑝𝑡(𝑥)]    𝑥 ∈ Ω

𝐶𝑖𝑗𝑘𝑙[𝜀𝑘𝑙
0 + 𝜀𝑘𝑙

𝑝𝑡(𝑥)]  𝑥 ∈ 𝑉 − Ω
    (11) 

is the perturbation stress field with respect to the 

macroscopic stress, Ω and V the volumes of both the 

inclusions and the composite studied.  This problem will be 

solved by considering both the superposition of the 

situation with the uniform inclusion without eigenstrain 

under 𝜀𝑖𝑗
0  strain field and that when the uniform inclusion 

under eigenstrain 𝜇𝑖𝑗
𝑟  is without overall loading [17], 

leading Eq.(10) to 

𝜎𝑖𝑗
𝑟 (𝑥) = {

𝐶𝑖𝑗𝑘𝑙
𝑟 [𝜀𝑘𝑙

0 + 𝜀𝑘𝑙
𝑟 (𝑥) − 𝜇𝑘𝑙

𝑟 (𝑥)]    𝑥 ∈ Ω

𝐶𝑖𝑗𝑘𝑙[𝜀𝑘𝑙
0 + 𝜀𝑘𝑙

𝑝𝑡(𝑥)]  𝑥 ∈ 𝑉 − Ω
     (12) 

 

By combining Eqs.(8), and (11), it is obvious that 

𝜇𝑖𝑗
𝑟 = [(𝐶𝑖𝑗𝑘𝑙 − 𝐶𝑖𝑗𝑘𝑙

𝑟 )𝑆𝑘𝑙𝑚𝑛 + 𝐶𝑖𝑗𝑚𝑛]
−1
(𝐶𝑚𝑛𝑜𝑝

𝑟 −𝐶𝑚𝑛𝑜𝑝)𝜀𝑜𝑝
0                   (13) 

 

❖ Self-consistency scheme 

This scheme is considered in each sub-volume that solitary 

inclusions are embedded in the homogenised composite 

[17]. The local strain is given by 𝜀𝑖𝑗
𝑟 = 𝜀𝑖𝑗

0 + 𝑆𝑖𝑗𝑘𝑙𝜇𝑘𝑙
𝑟  , 

leading from Eq.(12) to 

 

𝜀𝑖𝑗
𝑟 = 𝜀𝑖𝑗

0 + 𝑆𝑖𝑗𝑘𝑙[(𝐶𝑘𝑙𝑚𝑛 − 𝐶𝑘𝑙𝑚𝑛
𝑟 )𝑆𝑚𝑛𝑜𝑝 + 𝐶𝑚𝑛𝑜𝑝]

−1
(𝐶𝑜𝑝𝑞𝑟

𝑟 − 𝐶𝑜𝑝𝑞𝑟)𝜀𝑞𝑟
0                            (14) 

Since 𝜀𝑖𝑗
𝑟 = 𝐴𝑖𝑗𝑘𝑙

𝑟 𝜀𝑘𝑙
0 , one has 

𝐴𝑖𝑗𝑘𝑙
𝑟 = [𝐼𝑖𝑗𝑘𝑙 + 𝑆𝑖𝑗𝑚𝑛𝐶𝑚𝑛𝑜𝑝

−1 (𝐶𝑜𝑝𝑘𝑙
𝑟 − 𝐶𝑜𝑝𝑘𝑙)]

−1
 ,         (15) 

from where the effective stiffness tensor is 𝐶𝑖𝑗𝑘𝑙 = ∑ 𝑐𝑟𝐶𝑖𝑗𝑚𝑛
𝑟 𝐴𝑚𝑛𝑘𝑙

𝑟𝑛
𝑟=1 , and can be rewritten as: 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙
0 + ∑ 𝑐𝑟(𝐶𝑖𝑗𝑚𝑛

𝑟 −𝐶𝑖𝑗𝑚𝑛
0 )𝐴𝑚𝑛𝑘𝑙

𝑟    𝑛
𝑟=1                      (16) 

 

❖ Mori-Tanaka scheme 

This scheme is considered in each sub-volume that 

inhomogeneities are embedded in the matrix phase [17]. 

The global strain then can be written as 

𝜀𝑖𝑗
𝑜 = ∑ 𝑐𝑟𝜀𝑖𝑗

𝑟̅̅ ̅ =  (∑ 𝑐𝑟𝑇𝑖𝑗𝑘𝑙
𝑟𝑛

𝑟=1 )𝑛
𝑟=1 𝜀𝑘𝑙

1 ,     (17) 

where the tensor 𝑇𝑖𝑗𝑘𝑙
𝑟   is the partial mechanical strain 

concentration factor of the inhomogeneity. Let us set 

𝑇𝑖𝑗𝑘𝑙
𝑟 = [𝐼𝑖𝑗𝑘𝑙 + 𝑃𝑖𝑗𝑚𝑛(𝐶𝑚𝑛𝑘𝑙

𝑟 − 𝐶𝑚𝑘𝑙
𝑜 )]

−1
,                    (18) 

then the concentration tensor is written as: 

𝜀𝑖𝑗
1 = [∑ 𝑐𝑟𝑇𝑖𝑗𝑘𝑙

𝑟𝑛
𝑟=1 ]

−1
𝜀𝑘𝑙
𝑜  .      (19) 

However 

𝑇𝑖𝑗𝑘𝑙
1 𝜀𝑘𝑙

1 = 𝜀𝑖𝑗
1 .       (20) 

 

The combination of the above equations can lead to the 

following equation 

𝜀𝑖𝑗
𝑟 = 𝑇𝑖𝑗𝑚𝑛

𝑟 [∑ 𝑐𝑠𝑇𝑚𝑛𝑘𝑙
𝑠𝑛

𝑠=1 ]−1𝜀𝑘𝑙
𝑜 .       (21) 

From where it is obvious that: 

𝐴𝑖𝑗𝑘𝑙
𝑟 = 𝑇𝑖𝑗𝑚𝑛

𝑟 [∑ 𝑐𝑠𝑇𝑚𝑛𝑘𝑙
𝑠𝑛

𝑠=1 ]−1 ,         (21) 

leading to the effective stiffness tensor  

𝐶𝑖𝑗𝑘𝑙 = [∑ 𝑐𝑟( 𝐶𝑖𝑗𝑚𝑛
𝑟 )𝑇𝑚𝑛𝑜𝑝

𝑟𝑛
𝑟=1 ][∑ 𝑐𝑠𝑇𝑜𝑝𝑘𝑙

𝑠𝑛
𝑠=1 ]

−1
.        (22) 

 

The homogenisation schemes are used in their tensor form 

since some inclusion’s phases will be considered ellipsoidal 

in shape. Additionally, the proposed generalised Mori-

Tanaka scheme (see [18]) is not used due to the fact that the 

inclusions phases are not considered concentric. Instead, 

they are considered as distinct in space at each scale as 

shown in fig. 1. Some inclusion phases are supposed to be 

spherical and ellipsoidal with various eccentricities. The 

Eshelby tensor components for spherical and ellipsoidal 

shapes are given as follows: 

➢ For spherical inclusions (see  [18]), the 

components of tensor 𝑆𝑖𝑗𝑘𝑙  are defined as 

𝑆𝑖𝑗𝑘𝑙 =
(5𝜗−1)𝛿𝑖𝑗𝛿𝑘𝑙

15(1−𝜗)
 +

(4−5𝜗)(𝛿𝑖𝑘𝛿𝑗𝑙+𝛿𝑖𝑙𝛿𝑗𝑘)

15(1−𝜗)
,    (23) 

which can be given in extended form as: 

𝑆1111 = 𝑆2222 = 𝑆3333 =
(7−5𝜗)

15(1−𝜗)
,     (24) 

𝑆1122 = 𝑆1133 = 𝑆2233 =
(5𝜗−1)

15(1−𝜗)
,       (25) 

𝑆1212 = 𝑆2323 = 𝑆3131 =
(4−5𝜗)

15(1−𝜗)
.       (26) 

For ellipsoidal inclusion with the constraints on x, y and z 

coordinates, respectively such as 𝑎1 > 𝑎2 > 𝑎3[18], one 

can have the permutations as defined in Table 1, in which 

𝐼2 = 4𝜋 − 𝐼1 − 𝐼3, while  𝐼1 and 𝐼3 are defined as: 

𝐼1 =
4𝜋𝑎1𝑎2𝑎3

(𝑎1
2−𝑎2

2)(𝑎1
2−𝑎3

2)
1/2

)
[𝐹(𝜃, 𝐾) − 𝐸(𝜃, 𝐾)],      (27) 

𝐼3 =
4𝜋𝑎1𝑎2𝑎3

(𝑎2
2−𝑎3

2)(𝑎1
2−𝑎3

2)
1/2

)
[
𝑎2(𝑎1

2−𝑎3
2)1/2

𝑎1𝑎3
− 𝐸(𝜃, 𝐾)].           (28) 

where 𝐹(𝜃, 𝐾) and 𝐸(𝜃, 𝐾) are elliptic integral of the first 

and second kinds [19], respectively, with  

𝜃 = sin−1√
𝑎1
2−𝑎3

2

𝑎1
2 , 𝐾 = √

𝑎1
2−𝑎2

2

𝑎1
2−𝑎3

2.                                 (29) 

The other components being obtained from the following 

set of equations:  

 

Table 1: Components of the Eshelby tensor. 
 

Type of permutation applied Coefficient of S Values 

 𝑆1111 = 
3𝑎1

2

8𝜋(1 − 𝜗)
𝐼11  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
𝐼1 

1 → 2 𝑆2222 = 
3𝑎2

2

8𝜋(1 − 𝜗)
𝐼22  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
𝐼2 

2 → 3 𝑆3333 = 
3𝑎3

2

8𝜋(1 − 𝜗)
𝐼33  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
𝐼3 

 𝑆1122 = 
𝑎2
2

8𝜋(1 − 𝜗)
𝐼12  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
𝐼1 
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1 → 2,  2 → 3  
𝑎3
2

8𝜋(1 − 𝜗)
𝐼23  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
𝐼2 

2 → 1,  3 → 1 𝑆3311 = 
𝑎3
2

8𝜋(1 − 𝜗)
𝐼31  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
𝐼3 

 𝑆1133 = 
𝑎3
2

8𝜋(1 − 𝜗)
𝐼13  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
𝐼1 

1 → 2,  3 → 1 𝑆2211 = 
𝑎1
2

8𝜋(1 − 𝜗)
𝐼21  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
𝐼2 

2 → 3,  1 → 2 𝑆3322 = 
𝑎2
2

8𝜋(1 − 𝜗)
𝐼32  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
𝐼3 

 𝑆1212 = 
(𝑎1

2 + 𝑎2
2)

16𝜋(1 − 𝜗)
𝐼12  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
(𝐼1 + 𝐼2) 

1 → 2,  2 → 3 𝑆2323 = 
(𝑎2

2 + 𝑎3
2)

16𝜋(1 − 𝜗)
𝐼12  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
(𝐼2 + 𝐼3) 

2 → 3,  3 → 1 𝑆3131 = 
(𝑎3

2 + 𝑎1
2)

16𝜋(1 − 𝜗)
𝐼31  +

(1 − 2𝜗)

8𝜋(1 − 𝜗)
(𝐼3 + 𝐼1) 

 

{
 
 

 
 3𝐼12 =

(𝐼2−𝐼1)

(𝑎1
2−𝑎2

2)
,

3𝐼11 + 𝐼12 + 𝐼13 =
4𝜋

𝑎1
2 ,

3𝑎1
2𝐼11 + 𝑎2

2𝐼12 + 𝑎3
2𝐼13 = 3𝐼1,

              (30) 

{
 
 

 
 3𝐼23 =

(𝐼3−𝐼2)

(𝑎2
2−𝑎3

2)

3𝐼22 + 𝐼23 + 𝐼21 =
4𝜋

𝑎2
2

3𝑎2
2𝐼22 + 𝑎3

2𝐼23 + 𝑎1
2𝐼21 = 3𝐼2

         (31) 

{
 
 

 
 3𝐼31 =

(𝐼1−𝐼3)

(𝑎3
2−𝑎1

2)
,

3𝐼33 + 𝐼31 + 𝐼32 =
4𝜋

𝑎3
2 ,

3𝑎3
2𝐼33 + 𝑎1

2𝐼31 + 𝑎2
2𝐼32 = 3𝐼3.

                          (32) 

 

The homogenisation schemes are then applied on each 

scale of consideration to homogenise the phases observed. 

This approach results in the effective elastic properties of 

concrete with metakaolin. 

 

3. Method 

We applied homogenization schemes at each given scale 

under consideration to obtain the elastic properties of the 

matrix phase in the next scale of consideration: 

3.1 Scale 1: 

The self-consistency scheme is applied for model 1 and 2 to 

obtain the elastic properties of the CSH gel which is the 

matrix phase in scale 2.. The elastic properties and volume 

fraction used for the two inclusion phases ( LD CSH and 

HD CSH) are obtained from previous experimental studies 

[15, 16]. The inclusion phases are considered spherical 

[16]. 

 

 
 

Fig. 1: Illustration of the four scales model 



 

~ 43 ~ 

World Wide Journal of Multidisciplinary Research and Development 
 

3.2 Scale 2 

The Self-consistency scheme is applied for model 1 and the 

Mori-Tanaka is the applied scheme for model 2 to contain 

the elastic properties of the cement paste which is the 

matrix phase in scale 3.. The elastic properties of the 

product of hydration and pozzolanic reactions were 

obtained from previous experimental studies [11, 16, 20, 

21]. The inclusion phases considered spherical in shape are 

the unreacted clinker, crystallized products (C4AH13, 

C3AH6 and C2ASH8) and metakaolin [16,22]. Meanwhile, 

the inclusion phases considered spherical and ellipsoidal 

with different eccentricity were the CH and pore phases. 

The matrix phase is the CSH gel. For the hydration 

reaction, the volume fraction considered is obtained from 

an existing study [23]. For the pozzolanic reaction, the 

volume fractions are modeled based on the stoichiometric 

study of the said reaction. The reaction considered is the 

sum of the three equations proposed by Rojas and 

Cabrera[24].    

3AS2  +  14CH   + 18H                 5CSH  + C4AH13 + 

C3AH6   +C2ASH8                                  (33) 

Table 2 shows the volume fractions of the products of the 

hydration reaction. It is worth noting that, only the 

hydration reactions of C2S and C3S are considered. 
 

Table 2: Volume fractions of the products of the hydration reaction, where a, b, c, d, e and f are  volume fractions of CSH gel, CH, pores, 

unreacted clinker, e the shrinkage, cement and g water, respectively. 
 

 Reagents Products 

Elements Cement Water CSH CH Pore Clinker 

Volume fractions F G 
𝑎

1 − 𝑒
 

𝑏

1 − 𝑒
 

𝑐

1 − 𝑒
 

𝑑

1 − 𝑒
 

 

Table 3 shows the stoichiometric volume fraction of the 

products of the pozzolanic reaction, in which 𝑎1 is the 

volume fraction of CH reacting with the available 

metakaolin added, 𝑏1 the volume fraction of metakaolin 

added, 𝑐1 volume fraction of water from pore used in the 

pozzolanic reaction, 𝑎2 the volume fraction of CSH gel,  𝑏2 

volume fraction of C2ASH8, 𝑐2 the volume fraction of 

C3AH6 and 𝑑2 the volume fraction of C4AH13, with 

 𝜇 =
1

1−𝑒+𝑐𝑚𝑘𝑓
,  𝛽 =

1

𝑎2+𝑏2+𝑐2+𝑑2
(1 +

𝑎1

𝑏1
+

𝑐1

𝑏1
).   (34) 

Given that we used weight fraction of metakaolin, 𝑛𝑚𝑘, 

with respect to the mixture of cement and metakaolin in our 

experimental measurements, we will need to express this 

weight fraction as a volume fraction, 𝑐𝑚𝑘, 

 𝑐𝑚𝑘 =
𝜌𝑐𝑒𝑚𝑒𝑛𝑡

𝜌𝑚𝑘(
1

𝑛𝑚𝑘
−1)+𝜌𝑐𝑒𝑚𝑒𝑛𝑡

       (35) 

 

Table 3: Volume fraction of the product of the pozzolanic reaction with respect to the total volume of concrete. 
 

 Reagents Products 

Elements CH : MK : water: CSH C2ASH8 : C3AH6 : C4AH13 : 

Volume fractions 
𝑎1
𝑏1
𝑐𝑚𝑘𝑓𝜇 𝑐𝑚𝑘𝑓𝜇 

𝑐1
𝑏1
𝑐𝑚𝑘𝑓𝜇 𝑐𝑚𝑘𝑓𝜇𝑎2 𝑐𝑚𝑘𝑓𝜇𝑏2 𝑐𝑚𝑘𝑓𝜇𝑐2 𝑐𝑚𝑘𝑓𝜇𝑑2 

 

It is assumed that there is no change in volume during the 

pozzolanic reaction. The quantity of metakaolin necessary 

to react with all the experimentally known quantity of CH 

available, 𝑏𝜇, is given by 
𝑏1

𝑎1
𝑏𝜇. Expressing this quantity in 

terms volume fraction with respect to the volume of cement 

leads by accounting to the second box of Fig.3 to:  

𝑐𝑚𝑘 =
𝑏1

𝑎1

𝑏

𝑓
 .                                     (36) 

Two possible situations arise: 

• For 𝑐𝑚𝑘 ≤
𝑏1

𝑎1

𝑏

𝑓
, the quantity of metakaolin added 

is less than or equal to the quantity needed to react 

with all available CH. The inclusion phases are the 

C4AH13, C3AH6, C2ASH8, pore, clinker and 

surplus CH. The matrix phase is the CSH gel. The 

volume fractions are:  

𝑐𝐶𝑆𝐻 = 𝑎𝜇 + 𝑐𝑚𝑘𝑓𝜇𝑎2𝛽,                                               (37) 

𝑐𝐶𝐻 = 𝜇 (𝑏𝜇 − 𝑐𝑚𝑘𝑓
𝑎1

𝑏1
),       (38) 

𝑐𝑝𝑜𝑟𝑒 = 𝜇 (𝑐𝜇 − 𝑐𝑚𝑘𝑓
𝑎1

𝑏1
).     (39) 

Let us assume that the quantity of water needed in the 

pozzolanic reaction comes from the pores. Therefore, the 

additional volume of product obtained will occupy the 

pores volume previously occupied by water, leading to 

𝑐𝑐𝑙𝑖𝑛𝑘𝑒𝑟 = 𝑑𝜇,                               (40) 

and then  

𝑐𝐶2AS𝐻8 = 𝑐𝑚𝑘𝑓𝑏2𝜇𝛽, 𝑐𝐶3A𝐻6 =
𝑐2

𝑏2
𝑐𝐶2AS𝐻8 , 𝑐𝐶4A𝐻13 =

𝑑2

𝑏2
𝑐𝐶2AS𝐻8 .                                   (41) 

• When 𝑐𝑚𝑘 >
𝑏1

𝑎1

𝑏

𝑓
,  the quantity of metakaolin 

added is more than the quantity needed  

to react with all the CH available. The inclusion phases are 

the C4AH13, C3AH6, C2ASH8, pore, clinker and surplus 

metakaolin. The matrix phase is the CSH gel. The volume 

fractions are then 

𝑐A𝑆2 = (𝑐𝑚𝑘𝑓 − 𝑏
𝑏1

𝑎1
) 𝜇 , 𝑐𝑝𝑜𝑟𝑒 = 𝜇 (𝑐 −

𝑐1

𝑎1
𝑏) ,             (42) 

𝑐𝑐𝑙𝑖𝑛𝑘𝑒𝑟 =
𝑑

1−𝑒+𝑐𝑚𝑘𝑓
,         (43) 

𝑐𝐶2AS𝐻8 = 𝑏𝜇𝑏2𝛽, 𝑐𝐶3A𝐻6 =
𝑐2

𝑏2
𝑐𝐶2AS𝐻8 , 𝑐𝐶4A𝐻13 =

𝑑2

𝑏2
𝑐𝐶2AS𝐻8 .                 (44) 

3.3 Scale 3:  

The self-consistency scheme was applied for model 1 and 

the Mori-Tanaka scheme is applied for model 2 to obtain 

the elastic properties of mortar which is the matrix phase in 

scale 4. The matrix phase is cement paste. The inclusion 

phases are sand and void. The sand inclusion is considered 

spherical while the void phase is considered spherical and 

ellipsoidal with different eccentricity. The elastic properties 

of sand are obtained from a previous study [15]. The 

volume fractions of sand and cement phases are obtained 

from the concrete formulation [6] as done in previous 

studies [11]. The volume fraction of void is obtained from 

an existing experimental study [25] 

3.4 Scale 4: 

The Self-consistency scheme was applied for model 1 and 

the Mori-Tanaka scheme is applied for model 2 to obtain 
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the elastic properties of concrete. The matrix phase is 

mortar. The inclusion phases are the small and coarse 

gravel.  The small and coarse gravel inclusions are 

considered spherical and ellipsoidal with various 

eccentricities. The elastic properties of small and coarse 

gravel are obtained from an existing study [9]. The volume 

fractions of the phases are obtained from the formulation of 

concrete. The two models are simulated in MATLAB and 

Young’s modulus obtained from the effective stiffness 

tensor calculated. Finally, graphs of Young’s modulus for 

various percentage of substitution of metakaolin are 

plotted. 

3.5. Experimental measurement 

Twelve samples were studied such that two samples were 

used for each rate of substitution of cement with 

metakaolin. The mixture properties, the sample designation 

and the average Young modulus measured are outlined in 

Table 4. Cylindrical specimens of radius 10cm and height 

20cm were used for each sample. The three-point bending 

experiment was conducted on each sample and the Young 

modulus deduced. BK 0, BK7.5, BK10, BK12.5, BK15 and 

BK17.5 have 0%, 7.5%, 10%, 12.5%, 15% and 17.5% of 

substituted cement with metakaolin respectively. The 

kaolin used has the chemical composition as given in Table 

5. 

 

Table 4: Mix ratios and experimental measurements. 
 

Sample 

designation 

Sample 

number 

Tensile 

strength (kN) 

Young modulus 

(MPa) 

Mass per unit volume in kg/𝑚3 

Cement Metakaolin 
Coarse 

gravel, 15/25 

Fine 

gravel, 

5/15 

sand 
Slump 

(mm) 

BK 0 
Sample 1 201.7 27654.29424 

 

350 

 

0 

 

481 

 

699 

 

647 

 

120 

 Sample 2 206.3 

BK 7.5 

Sample 3 
245.7 

 30155.31613 

 

323.75 

 

26.25 

 

481 

 

699 

 

647 

 

95 

 
Sample 4 

241.3 

 

BK 10 

Sample 5 
264.4 

 30901.87498 

 

315 

 

35 

 

481 

 

699 

 

647 

 

83 

 
Sample 6 

269.2 

 

BK 12.5 

Sample 7 
254.4 

 30533.22816 

 

306.25 

 

43.75 

 

481 

 

699 

 

647 

 
71 

Sample 8 
249.2 

 

BK 15 

Sample 9 
238.3 

 29767.53574 

 

297.5 

 

52.5 

 

481 

 

699 

 

647 

 
68 

Sample 10 
238.3 

 

BK 17.5 

Sample 11 
232.8 

 29369.21852 

 

288.75 

 

61.25 

 

481 

 

699 

 

647 

 
46 

Sample 12 
232.4 

 

 

Table 5: Chemical composition of kaolin clay (L.F. = loss on fire). 
 

Oxides SiO2 Al2O3 Fe2O3 TiO2 K2O Na2O SO3 V2O5 Cl L.F. Total 

percentage 43,45 37,60 1,98 0,93 0,70 0,51 0,06 0,04 0,01 13,8 99,17 

 

 

The kaolin clay was dried in an oven at 105 °C for 24 hours 

then crushed and dry sieved at 100 µm. It was later heated 

at   700 0C for 5 hours to obtain the metakaolin. Since, the 

main factor used to distinguish different metakaolins as 

supplementary cementious material is the S/A ratio [26], 

the chemical composition the metakaolin was sought by the 

X-ray fluorescence method using a Panalytical type 

spectrometer.  The results found are presented in the Table 

6.  

 

Table 6: Chemical composition of metakalin (L.F. = loss on fire). 
 

Oxides SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 MnO P2O2 L.F. 

percentage 56,58 21,81 9,26 0,03 0,03 0,10 0,74 1,95 0,01 0,15 3,11 

 

Setting that the S/A ratio is 2.6 and since S/A ratio higher 

than 1.5 have been proven to have enhanced pozzolanic 

activity[27], it can concluded that the metakaolin used 

conforms to existing norms of pozzolanic activity. We can 

then conclude that the observation made in this work are 

valid for metakaolin with high pozzolanic activity.  

 

4. Results 

This section presents results about values of the Young 

modulus (YM) of concrete as elastic property for various 

shapes of inclusions involved in function of the rate of 

metakaolin added.  Numerous arrangements of shapes are 

then taken into account. Figures 2 and 3 depict the 

predicted YM (In blue line) obtained by solving 

numerically the set of Equations 3, respectively for model 1 

(spherical in shape) and model 2 (ellipsoidal and spherical 

in shape), while in the same figures (black line), one has 

the YM obtained experimentally. The curves obtained by 
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taking into account the errors ±10% of experimental YM 

are shown in red dashed line. As one can see, for model 1 

(see Fig. 2) the curves of experimental and predicted YM 

are close to one another, far below the allowable error. It is 

worth noting that in the band [0; 4]∪[10; 18[ the predicted 

YM are lower than the experimental one, and in the interval 

[4; 9] the predicted YM are higher than that found 

experimentally. At about 4% and 18% the predicted YM is 

almost equal to the experimental one. Otherwise, the 

predicted YM and experimental one is nearly equal for the 

rate of metakaolin added belonging to [0;  8.5] ∪ [12;  18]. 
Then, model 1 involving the self-consistency scheme 

predicts values closed to experimental observations. But, 

the prediction of the peak values is different from the 

experimentally observed ones and always at lower rate of 

substitution.  

For the second model as shown in Fig.3, the experimental 

and predicted YM have nearly the same shape for the rate 

of metakaolin ≤ 9%. The predicted values are almost 

identical to the experimental one in the interval [6; 9]. For 

all other rate of substitution, the predicted values are 

always lower than the experimental ones. While that 

predicted is nearly identical to that found experimentally, 

since (1 − 10%) × (Experimental YM) ≤
Predicted YM ≤  (1 + 10%) × (Experimental YM), 

which is in agreement with the results found by Zadeh and 

Bobko[11] for model 2 involving the Mori-Tanaka 

predicted. In some cases, values are closed to the 

experimental observations. In this shape arrangement, the 

elastic property predicted is closed to experimental values. 

These cases are found whether all the inclusion phases are 

considered spherical, that is when the void inclusion phase 

is considered ellipsoidal with ratio 9:3:1 and 4:2:1 in the x, 

y and z directions respectively. It should be noted that their 

predictions are very similar with the main difference of the 

increase in predicted values of Young modulus when the 

inclusion are ellipsoidal in shape. Moreover, both model 1 

and 2 predictions of YM belonging in the interval [10; 18[ 

are lower than the experimental one, showing that other 

factors may also contribute to the increasing of the YM 

above the optimal rate of substitution of metakaolin.  But, 

the prediction of the peak values is different from the 

experimentally observed ones and always at lower rate of 

substitution. This difference is probably due to the 

difference between the optimal rate used in the model and 

the observed one since; it is assumed that all the metakaolin 

added chemically reacts. Another factor may be the fact 

that the hydration of C3A and C4AF are not taken into 

consideration. 

 

 
 

Fig. 2: Young modulus obtained for arrangement when all inclusion phases are spherical in shape for the first Model. 

 

 
 

Fig. 3: Young modulus obtained for arrangement when all inclusion phases are ellipsoidal in shape for the second model 
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5. Conclusion 

In this paper, four scales were used to predict the elastic 

properties of concrete with partial substitution of ordinary 

Portland cement with metakaolin, while two models were 

used involving both the self-consistency and Mori-Tanaka 

homogenisation schemes. The products of the pozzolanic 

reaction were taken into account, including the spherical 

and ellipsoidal shapes for some inclusions phases. The 

predictions were compared with experimental observations 

on ordinary concrete with metakaolin as partial substitute 

of CEM I, cement. Four of the considered possibilities had 

predictions, consistent with the experimental observations 

with the error of   ±10% . However, the prediction of the 

peak values was different from the experimentally observed 

ones and always at lower substitution rate, which is 

probably due to the difference between the optimal rate 

used in the model and the observed one, since it was 

assumed that all the metakaolin added chemically reacted, 

and some important factors such as the hydration of C3A 

and C4AF were not taken into consideration. In addition, 

there seem to be a factor that contributes to the increase of 

the YM above the optimal rate of substitution other than the 

pozzolanic reaction. It is important to mention that the 

results proposed in the present work could help engineers 

to predict numerically the young modulus of concrete 

whether they intent to partially substitute cements with 

locally available metakaolins.  
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