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Abstract 
Some aspects of the use and justification of the finite element method, which is most widely used at 

present for the machine solution of many of the most important problems of mathematical physics, 

are considered. The method will be formulated in its simplest version using the example of a one-

dimensional problem; here, the connection with the classical Rayleigh-Ritz method will be shown. 

Next, some existing generalizations of the method to the case of boundary value problems in more 

complex domains will be shown. 

 

Keywords: occupied by a perfectly elastic homogeneous and isotropic medium, points of the rod, 

longitudinal deformation, normal stress in sections 

 

Introduction 

Let there be an area  , limited to some surface of revolution S  and two flat sections 
0S  

and 1S , perpendicular to the axis of rotation (Fig. 1), occupied by a perfectly elastic 

homogeneous and isotropic medium (elastic rod of variable cross section). Assume that the 

section 
0S  tightly pinched, 1S  free of effort. Axis of rotation compatible with axis OX  

Cartesian system with a beginning in the left section. We also assume that mass forces with 

density  xFF  , parallel to the axis of rotation. It is required to determine the 

displacements of all points of the considered region. 

We will assume that this problem can be solved as one-dimensional, i.e. that all 

characteristics of the stress and strain state depend only on the coordinate X . Denote by 

 xUU   moving points of the bar, 
dx

dU
  longitudinal strain,  x   normal 

stress in sections perpendicular to the axis OX ,  xS  areas of these sections, where E  – 

Young's modulus. 

 The total gain P in any cross section is 

       1
dx

dU
xSExSxPP    

The differential equilibrium equation has the form 
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The nature of the fixing of the edges of the rod allows you to determine the type of boundary 

conditions 
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Thus, the stated mechanical problem was reduced to a 

boundary value problem. For an approximate solution of 

the original problem, we apply the following technique. 

Mentally cut the rod into sections 
 

nkk
n

L
xconstxx kk ,.....,2,1,;   and suppose that within each section (element) 

,0,,....,2,1, 01  xnkxxx kk moving  xUU   with sufficient accuracy can be 

approximated by a linear function 
    kk

kkk xxxxaaxU  110 ;  

Instead of the odds 
kk aa 10 ,  introduce displacement values  kk xUU   ends of the plots, which will be the main unknowns. Obviously 

k

kk

kk

kk

k xaaUxaaU   101101 ;  

Where from 
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Thus, within 
k  plot (element) 

        4)(
1

11   kkkkk

k

k xxUxxU
h

xU  
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Travel Continuity Conditions 
 kU  when passing from site 

to site, it leads to the following approximate representation 

of the function  xU  on the whole segment lx 0  
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Substituting (4) into (1), finding the surface forces at the 

ends of the sections, distributing the mass forces 

appropriately between the two ends (for example, consider 

that to each end of the section  kk xx ,1  a force equal to 

half the resultant mass forces is applied) and making up the 

equilibrium conditions for all the forces applied to the 

cross-section constxk  , let's get to the system n  

equations for n  unknown 
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This is the idea of the finite element method in its original 

formulation; sections into which the rod is divided in 

combination with the law of distribution of the desired 

displacement field in these sections are called finite 

elements. Similarly, finite elements were constructed [1] 

for two-dimensional and three-dimensional problems; in 

contrast to the case considered, the one-dimensional region 

consists in the fact that instead of dividing the one-

dimensional region into segments, we used the division of 

flat regions into triangles or quadrangles, spatial regions 

into tetrahedral or parallelepipeds, and instead of 

approximations (5), the functions of one variable were used 

piecewise linear approximations of functions of several 

variables [1]. 

It is not difficult to show that the system of the Ritz method 

using coordinate functions of the form (5) coincides with 

the system (6) in this problem. In fact, problem (2) and (3) 

is equivalent to the problem of minimum functional 
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Too many functions  LOH ,1
; satisfying the condition 

  00 U  and quadratic ally summable together with their 

first-order derivatives. 

Considering functional (7) as a function in infinite-

dimensional space  LOH ,1
, we write the necessary 

condition for the minimum of this function in the form of 

its differential being equal to zero 
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Decision U  equation (8) is sought in the form (5). 

Substituting in (8) alternately k   we arrive at the 

following linear algebraic system with respect to kU  

 

         90

4

0

1

4

0

1

1

 


dxxxFxSdx
dx

d

dx

d
xESU k

n

k

k 


 

I.e. 01   only on the segment  kk xx ,1  and k  on the segment  kk xx ,1  it can be rewritten as 
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Using the simplest quadrature formulas to calculate the 

integrals (10), we arrive at equation (6), which proves the 

statement that the finite element method in its simplest 

formulation coincides with the well-known Ritz method. In 

what follows, by the finite element method we mean the 

method of constructing coordinate functions of type (5) in 

the implementation of the Ritz method. 

So, let there be an operator equation 

 

 11fAU 
 

 

Where A  – positive definite self-adjoint operator acting on 

many functions AД  given in the two-dimensional region 

  with border   Euclidean space 
2R  for example 

 

    120,, 2

2
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








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U
UД
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A A  

As is known, the problem of solving equation (11) is 

equivalent to the problem of finding the minimum 

functional  

         fUUUafUUAUUJ ,2,,2,   

The solution to the last problem exists and is unique if it is 

sought in space  1

0H  functions quadratic ally 

summable together with their first derivatives and vanish 

on the boundary. 

Functional minimum conditions  UJ  we write in the 

form of equality to zero of the Freshet differential 

        0,,  fAUUJd    

Thus, the problem of solving equation (11) is reduced to 

finding the element VU   such that a 

    VfU   ,,,  

For example, (12), equation (13) has the form  

  
 

 1

0HdfdgradgradU 

 
Instead of an exact solution U  we will look for a solution 

hU
 in some finite-dimensional subspace VVh  . An 

approximate problem is formulated as follows: find 

hh VU   such that  

     13,, hhh fUa     

According to the finite element method, space hV  is 

constructed as follows. Let be h - numerical parameter, 

which we will tend to zero. We call triangulation h  areas 

of   its division into triangular subdomains. 

hiii KKU  ,  
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We assume that the diameter of any iK  does not exceed 

,h  two different triangles either do not have common 

points at all, or have one common vertex, or have one 

common side. 

Space hV  for example (12) we define as the space of 

functions having the following properties: 

A) narrowing of any function hh V  to any triangle iK  

is a polynomial not higher than the first; 

B) h  непрерывна на ;  

V) 0h  на . 

Consider a triangle iK , the radius vectors of the vertices of 

which are 321 ,, aaa


 

If the values of some continuous in   the functions U  at 

the tops are the essence 321 ,, UUU  then its interpolation 

by a first order polynomial in iK  has the form: 

Where the functions are  xi


  called the barycentric 

coordinates in the triangle iK  and are determined from the 

equations 

 

     

     xxx

axaxaxx




321

332211

1 






 

 

Combining the interpolations (14) of the function over all 

triangles, we obtain a piecewise linear  xU


 in the whole 

area . So any function hh VU   is determined uniquely 

by its value at the nodes-vertices of triangles and, therefore, 

hV  has finite dimension.  hN  Total number of nodal 

unknowns. The basis in this space is constructed as follows. 

Let be    hN

iia
1


 the set of all internal nodes (i.e., nodes not 

lying on the boundary), and let hiW ,  a function that is a 

polynomial not higher than the first in each of iK  besides 

 









ji

ji
aW jijijhi

,0

,1
, ,,, 


 

Thus, in each triangle three basic functions will be nonzero, 

the values of which at each point x


 the triangle iK  will 

coincide with the barycentric coordinates of the point x


 in 

this triangle. 

Every function hh V  can be represented as  

   
 





hN

i

hiihh xWa
1

,


  

And this view is unique. 
 

 

Fig.1
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