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Abstract 
Interval type-2 fuzzy sets can articulate the indistinctness and vagueness more competently and have 

more powerful processing capabilities. They are characterized by the footprint of uncertainty and are 

incredibly helpful to portray the decision information in the course of decision-making. In this piece 

of writing, we study the group decision-making problems with partially known information about 

attribute weights presented by the decision-makers as interval type-2 fuzzy decision matrices. 

Initially, we employ the interval type-2 fuzzy weighted arithmetic averaging operator to aggregate all 

individual interval type-2 fuzzy decision matrices into the collective one and then we utilize the 

ranking value measure to compute the ranking value of each attribute and build the ranking value 

matrix of the collective interval type-2 fuzzy decision matrix. Afterward, we set up some 

optimization models to determine the attribute weights. Moreover, we develop a procedure to spot the 

best alternative. Finally, we provide an illustrative Example to ensure the feasibility of proposed 

method. 

 

Keywords: Fuzzy set, interval type-2 fuzzy set, ranking values, ranking value matrix, collective 

normalized fuzzy decision matrix, weighted arithmetic average operator. 

 

1. Introduction 

Problems related to our daily life can be solved by using mathematical expression such as 

precise reasoning. Weaver [1] classified problems relevant to life into "organized simplicity" 

and "disorganized complexity". Organized simplicity related problems can be solved by 

using simple calculations and analytical approach while problems of disorganized 

complexity need a more precise and critical approach like statistics for dealing with physical 

problems which involves multiple variables and randomness at molecular level. Under some 

situations these problems are complementary to each other for example if one works the 

other fails. Most of the problems lies in the category of organized complexity as defined by 

Weaver. During World War II the development of computers help mankind to solve the 

problems related to organized complexity to a great extent but still there are some limitations 

that can’t help to solve all of the problems related to organized complexity by either 

computers or human reasoning. Usually, we develop a model of artificial objects or reality 

aspects. Credibility, complexity and uncertainty are some factors that affect the usefulness of 

the model. Increasing the uncertainty helps to overcome the complexity of the model and 

increases its credibility. Therefore, the challenge was to develop techniques which can be 

used to estimate allowable uncertainty for such type of resulting models. The idea of FS by 

Zadeh [2] in 1965 is considered as an evolution for dealing with uncertainty as his concept of 

fuzzy sets are the sets which do not have price boundaries like the typical sets have.Though 

fuzzy set theory has served as the best tool for dealing with uncertainties but scarcity of 

criterion for modeling different linguistic uncertainties limits its use as is pointed out by 

Molodtsov [3]. To provide a rich platform for parameterizations by overcoming the 

deficiencies in thefuzzy set theory, The idea that the soft sets are the generalization of FS is 

given by Molodtsov. Fuzzy set theory in connection with soft sets have proved to be one of 

the most effective tools for dealing with uncertain situations some of which are discussed h  
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here. Maji et al. [4] propounded the perception of fuzzy soft 

sets and its applications in a decision-making problem. 

The main prospect of decision making is selecting to the 

best object/alternative among the different 

objects/alternatives. For this purpose, decision makers 

analyze different techniques to evaluate the alternatives by 

setting up different criteria that gives the best choice. 

Multi-criteria decision making (MCDM) techniques are 

good for decision making problems now a days. In MCDM 

[16] we observe that mostly one object/alternative is the 

best choice under all the the criteria but sometime it doesn’t 

happen. So, to sort out that kind of situation we use 

different techniques that assist MCDM. Mathematician 

proposed different techniques to overcome the increasingly 

complexity. Zadeh [2, 6] developed some methods to assist 

MCDM problems related to type-1 fuzzy sets (T1FSs). 

T1FSs has such type of elements whose membership 

degree is a crisp number (in the interval [0, 1]). After that 

various extensions are made to extend the criteria of T1FSs 

to dealt with vague/uncertain problems more precisely. 

These extensions include different techniques i.e. interval 

type-2 fuzzy sets (IT2FSs) [5, 7], Interval-valued fuzzy sets 

(IVFSs) [8], Intuitionistic fuzzy sets (IFSs)[9], and interval-

valued intuitionistic fuzzy sets (IVIFSs) [10]. All these 

techniques are different from each other according to 

membership degree/nonmembership degree. Mendel et.al 

[11] gave some operations of T2FSs. To simplify the 

computational work Linda et al. [12] used IT2FSSs (a type 

T1FSSs) is used. Interval type-2 trapezoidal fuzzy number 

(IT2TFNs) presented by Wang et al. [13] are mostly used 

for MCDM. 

In this work we presented MCDM for completely known 

information about attributes weight. Further we discussed 

MAGDM for completely known information using ranking 

vlues and attributes weight with partial known information. 

 

2 Preliminary 

Defination 2.1. [2] For a non-empty universal set 𝑋 we 

consider Λ ⊆ 𝑋. Then, we define a fuzzy set Λ through 

membership function (MF) denoted by 𝜇Λ i.e, 𝜇Λ, 𝑋 →
[0,1] where 𝜇Λ(𝑥) denotes the degree of membership of the 

element 𝑥 to the set Λ. 

Here, we can see that Λ is fuzzy subset of 𝑋. 𝔽ℙ(𝑋) 
represents the set of all fuzzy subsets of a set 𝑋.  

 

Defination 2.2. [14, 15] For a universal set 𝑋, we consider 

a fuzzy set Λ contained in 𝑋. If 𝑥 ∈ 𝑋 and 𝜇Λ(𝑥) is the 

respective MF. The highest membership degree of MF is 

known as height of FS. In Example 3, height of FS Λ is 

represented by ℎ(Λ) and is equal to 1.  

 

Defination 2.3. [15, 7] Let Λ be a FS contained in 𝑋. If 𝑥 ∈
𝑋 and 𝜇Λ(𝑥) are its MF. Then, the set Λ is known as 

normalized FS if ℎ(Λ) = 1. 

 

Defination 2.4. [7] A T1FS Λ in 𝑋 is a normal T1FS iff 

∃ 𝑥 ∈ 𝑋, such that 𝜇Λ(𝑥) = 1, where 𝜇Λ is the MF of the 

T1FS Λ. [15] A T1FS Λ in 𝑋 is said to be a subnormal 

T1FS if Λ is not a normal T1FS. [15, 7] A T1FS Λ in 𝑋 is 

known as a convex T1FS iff for all 𝑥1, 𝑥2 ∈ 𝑋,  

 𝜇Λ(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥
𝑚𝑖𝑛(𝜇Λ(𝑥1), 𝜇Λ(𝑥2)), 𝜆 ∈ [0,1] 
 

 

Defination 2.5. [15] A type-1 fuzzy set (T1FS) Λ in 𝑋 is 

said to be non-convex T1FS if Λ is not convex T1FS.  

 

Defination 2.6. [5, 16] A type-2 fuzzy set (T2FS) Λ̃ over a 

𝑋 expressed by its MF 𝜇Λ̃(𝑥), presented as  

 Λ̃ = {((𝑥, 𝜇), 𝜇Λ̃(𝑥, 𝜇))|∀𝑥 ∈ 𝑋, ∀𝜇 ∈ 𝐽𝑥 ⊆ [0,1]} 
where 0 ≤ 𝜇Λ̃(𝑥, 𝜇) ≤ 1, in the interval [0, 1] the 

subinterval 𝐽𝑥 is considered as primary membership of 𝑥, 

𝜇Λ̃(𝑥, 𝜇) is considered as secondary membership degree.  

 

3 Fuzzy Numbers (FNs) 

Defination 3.1. [5] A fuzzy number (FN) is a particular 

type of FS. A FN is a FS that is normal and convex. And 

ℝ(a set of real numbers) is its universe of discourse, i.e.,  

Λ,ℝ → [0,1]  
Λ is normal, i.e., ∃𝑥 ∈ ℝ, 𝜇Λ(𝑥) = 1.  

Λ is convex, i.e., ∀𝑥1, 𝑥2 ∈ ℝ, 𝜇Λ(𝑡𝑥1 + (1 − 𝑡)𝑥2) ≥
min{𝜇Λ(𝑥1), 𝜇Λ(𝑥2)},0 ≤ 𝑡 ≤ 1. Defination 3.2. [5] The 

set of all FNs is known as fuzzy number space and denoted 

by 𝔼 and defined as 𝔼 = {Λ|Λ, ℝ → [0,1]}. 
 

Defination 3.3. [10] A closed subinterval 𝜇Λ = [𝜇Λ
−, 𝜇Λ

+] 
of F where F=[0,1] is called an interval number (IN, where 

0 ≤ 𝜇Λ
− ≤ 𝜇Λ

+ ≤ 1. The set of all INs is represented by 

[F]. Suppose 𝑋 is non-empty set. A mapping 𝜆, 𝑋 → [𝐹] is 

known as IVFS in 𝑋. Suppose set of all 𝐼𝑉𝐹𝑆𝑠 in 𝑋 is 

represented by [𝐹]𝑋 for each 𝜇Λ ∈ [𝐹]
𝑋 and 𝑥 ∈ 𝑋, 𝜇Λ =

[𝜇Λ
−, 𝜇Λ

+] is read as the membership degree of a member 𝑥 

to 𝜇Λ, where 𝜇Λ
+, 𝑋 → 𝐹 and 𝜇Λ

−, 𝑋 → 𝐹 are FSs in 𝑋, 

which are defined as upper FS and lower FS in 𝑋, 

respectively.  

 

Defination 3.4. [5, 16] A FN Λ̃ = [𝑎1, 𝑎2, 𝑎3, 𝑎4, ℎ(Λ)] is a 

type-1 trapezoidal fuzzy number (T1TZFN) if its MF is 

defined by  

 𝜇Λ̃(𝑥) =

{
 
 

 
 
ℎ(Λ)

𝑥−𝑎1

𝑎2−𝑎1
, 𝑎1 ≤ 𝑥 < 𝑎2

ℎ(Λ), 𝑎2 ≤ 𝑥 ≤ 𝑎3

ℎ(Λ)
𝑎4−𝑥

𝑎4−𝑎3
, 𝑎3 < 𝑥 ≤ 𝑎4

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 0 < ℎ(Λ) < 1 is the height of the T1TZFN. 

Λ̃ is said to be a normal FN if ℎ(Λ) = 1. And Λ̃ is said to be 

a non-normal if ℎ(Λ) < 1 . 

Λ̃ can be reducible to TFN by the condition 𝑎2 = 𝑎3.  

Λ̃ can be reducible to an interval number by the condition 

𝑎1 = 𝑎2 and 𝑎3 = 𝑎4.  

Λ̃ can be reducible to crisp number by the condition 𝑎1 =
𝑎2 = 𝑎3 = 𝑎4. 

 

Defination 3.5. [5, 16] An interval type-2 fuzzy number 

(IT2FN) is an (IT2FS) on ℝ with MF 𝜇 is defined by 

𝜇(𝑧1) = [𝑎1(𝑧1), 𝑎2(𝑧1)], where the function 𝑎1, 𝑎2, ℝ →

[0,1] are T1FN. The function 𝑎1 is lower MF and the 

function 𝑎2 is upper MF.  

 

Defination 3.6. [5] Λ̃ = (Λ𝕌; Λ𝕃) =
(𝑎1

𝕌, 𝑎2
𝕌, 𝑎3

𝕌, 𝑎4
𝕌, ℎ(Λ𝕌); 𝑎1

𝕃, 𝑎2
𝕃, 𝑎3

𝕃, 𝑎4
𝕃, ℎ(Λ𝕃)) is an IT2FS on 

ℝ. Λ̃ is a IT2TFN if it can be defined by its MF 𝜇Λ𝕌(𝑥) and 

𝜇Λ𝕃(𝑥). Where 𝜇Λ𝕌(𝑥) is a UMF and 𝜇Λ𝕃(𝑥) is a LMF. i.e  
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 𝜇Λ𝕌(𝑥) =

{
 
 

 
 ℎ(Λ

𝕌)
𝑥−𝑎1

𝕌

𝑎2
𝕌−𝑎1

𝕌 , 𝑎1
𝕌 ≤ 𝑥 < 𝑎2

𝕌

ℎ(Λ𝕌), 𝑎2
𝕌 ≤ 𝑥 ≤ 𝑎3

𝕌

ℎ(Λ𝕌)
𝑎4
𝕌−𝑥

𝑎4
𝕌−𝑎3

𝕌 , 𝑎3
𝕌 < 𝑥 ≤ 𝑎4

𝕌

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and  

 𝜇Λ𝕃(𝑥) =

{
 
 

 
 ℎ(Λ

𝕃)
𝑥−𝑎1

𝕃

𝑎2
𝕃−𝑎1

𝕃 , 𝑎1
𝕃 ≤ 𝑥 < 𝑎2

𝕃

ℎ(Λ𝕃), 𝑎2
𝕃 ≤ 𝑥 ≤ 𝑎3

𝕃

ℎ(Λ𝕃)
𝑎4
𝕃−𝑥𝕃

𝑎4
𝕃−𝑎3

𝕃 , 𝑎3
𝕃 < 𝑥 ≤ Λ4

𝕃

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  

3.1 Operations for IT2TFNs 

Defination 3.7. Let Λ̃ = (Λ1
𝕌; Λ1

𝕃) =
(𝑎11

𝕌 , 𝑎12
𝕌 , 𝑎13

𝕌 , 𝑎14
𝕌 , ℎ(Λ𝕌); 𝑎11

𝕃 , 𝑎12
𝕃 , 𝑎13

𝕃 , 𝑎14
𝕃 , ℎ(Λ𝕃)) and 

Λ̃2 = (Λ2
𝕌; Λ1

𝕃) =
(𝑎21

𝕌 , 𝑎22
𝕌 , 𝑎23

𝕌 , 𝑎24
𝕌 , ℎ(Λ2

𝕌); 𝑎21
𝕃 , 𝑎22

𝕃 , 𝑎23
𝕃 , 𝑎24

𝕃 , ℎ(Λ2
𝕃)) be two 

IT2TzFNs. Then, addition, scalar multiplication and 

multiplication are defined by  

1. Λ̃1 + Λ̃2 = (𝑎11
𝕌 + 𝑎21

𝕌 , 𝑎12
𝕌 + 𝑎22

𝕌 , 𝑎13
𝕌 + 𝑎23

𝕌 , 𝑎14
𝕌 +

𝑎24
𝕌 , min(ℎ(Λ1

𝕌), ℎ(Λ2
𝕌)); 𝑎11

𝕃 +  𝑎21
𝕃 , 𝑎12

𝕃 + 𝑎22
𝕃 , 𝑎13

𝕃 +
𝑎23
𝕃 , 𝑎14

𝕃 + 𝑎24
𝕃 , min(ℎ(Λ1

𝐿), ℎ(Λ2
𝕃)))  

2. 𝜆Λ̃ = (𝜆Λ𝕌; 𝜆Λ𝕃) =
(𝜆𝑎11

𝕌 , 𝜆𝑎12
𝕌 , 𝜆𝑎13

𝕌 , 𝜆𝑎14
𝕌 , ℎ(Λ𝕌); 𝜆𝑎11

𝕃 , 𝜆𝑎12
𝕃 , 𝜆𝑎13

𝕃 , 𝜆𝑎14
𝕃 , ℎ(Λ𝕃))  

3. Λ̃1 × Λ̃2 = (𝑎11
𝕌 ⋅ 𝑎21

𝕌 , 𝑎12
𝕌 ⋅ 𝑎22

𝕌 , 𝑎13
𝕌 ⋅ 𝑎23

𝕌 , 𝑎14
𝕌 ⋅

𝑎24
𝕌 , min(ℎ(Λ1

𝕌), ℎ(Λ2
𝕌)); 𝑎11

𝕃 ⋅   𝑎21
𝕃 , 𝑎12

𝕃 ⋅ 𝑎22
𝕃 , 𝑎13

𝕃 ⋅
𝑎23
𝕃 , 𝑎14

𝕃 ⋅ 𝑎24
𝕃 , min(ℎ(Λ1

𝕃), ℎ(Λ2
𝕃)))  

 

Defination 3.8. [5] Let Λ̃ and Λ̃2 are two IT2TFNs and 𝜆 ≥
0. Then, the addition, scalar multiplication and 

exponentiation of IT2TzFNs presented as follows;  

(1) Addition: 

Λ̃1 + Λ̃2 = (Λ1
𝕌 + Λ2

𝕌, Λ1
𝕃 + Λ2

𝕃) = (𝑎11
𝕌 + 𝑎21

𝕌 , 𝑎12
𝕌 +

𝑎22
𝕌 , 𝑎13

𝕌 + 𝑎23
𝕌 , 𝑎14

𝕌 + 𝑎24
𝕌 ,

ℎ(Λ1
𝕌)⋅∥Λ1

𝕌∥+ℎ(Λ2
𝕌)⋅∥Λ2

𝕌∥

∥Λ1
𝕌∥+∥Λ2

𝕌∥
; 𝑎11

𝕃 +

𝑎21
𝕃 , 𝑎12

𝕃 + 𝑎22
𝕃 , 𝑎13

𝕃 + 𝑎23
𝕃 , 𝑎14

𝕃 + 𝑎24
𝕃 ,

ℎ(Λ1
𝕃)⋅∥Λ1

𝕃∥+,ℎ(Λ2
𝕃)⋅∥Λ2

𝕃∥

∥Λ1
𝕃∥+∥Λ2

𝕃∥
)  

where ∥ Λ𝑗
𝕌 ∥=

𝑎𝑗1
𝕌 +𝑎𝑗2

𝕌 +𝑎𝑗3
𝕌 +𝑎𝑗4

𝕌

4
 and ∥ Λ𝑗

𝕃 ∥=
𝑎𝑗1
𝕃 +𝑎𝑗2

𝕃 +𝑎𝑗3
𝕃 +𝑎𝑗4

𝕃

4
  

(2) Scalar Multiplication: 

 𝜆Λ̃ = (𝜆Λ𝕌; 𝜆Λ𝕃) =
(𝜆𝑎11

𝕌 , 𝜆𝑎12
𝕌 , 𝜆𝑎13

𝕌 , 𝜆𝑎14
𝕌 , ℎ(Λ𝕌); 𝜆𝑎11

𝕃 , 𝜆𝑎12
𝕃 , 𝜆𝑎13

𝕃 , 𝜆𝑎14
𝕃 , ℎ(Λ𝕃))  

(3) Multiplication: 

Λ̃1 × Λ̃2 = (Λ1
𝕌 ⋅ Λ2

𝕌; Λ1
𝕃 ⋅ Λ2

𝕃) = (𝑎11
𝕌 ⋅ 𝑎21

𝕌 , 𝑎12
𝕌 ⋅ 𝑎22

𝕌 , 𝑎13
𝕌 ⋅

𝑎23
𝕌 , 𝑎14

𝕌 ⋅ 𝑎24
𝕌 , ℎ(Λ1

𝕌) ⋅ ℎ(Λ2
𝕌); 𝑎11

𝕃 ⋅ 𝑎21
𝕃 , 𝑎12

𝕃 ⋅ 𝑎22
𝕃 , 𝑎13

𝕃 ⋅
𝑎23
𝕃 , 𝑎14

𝕃 ⋅ 𝑎24
𝕃 , ℎ(Λ1

𝕃) ⋅ ℎ(Λ2
𝕃))  

(4) Exponentiation: 

Λ̃𝜆 = ((Λ𝕌)𝜆; (Λ𝕃)𝜆) =
((𝑎11

𝕌 )𝜆 , (𝑎12
𝕌 )𝜆 , (𝑎13

𝕌 )𝜆, (𝑎14
𝕌 )𝜆, (ℎ(Λ𝕌))𝜆; (𝑎11

𝕃 )𝜆 , (𝑎12
𝕃 )𝜆 , (𝑎13

𝕃 )𝜆, (𝑎14
𝕃 )𝜆(ℎ(Λ𝕃))𝜆)  

Defination 3.9. [5, 16] Consider three non-negative 

interval type-2 trapezoidal fuzzy numbers (IT2TFNS) Λ̃𝑖 
(i=1,2,3), then the arithmetic operations in above definition 

satisfy the followings, 

(1) Λ̃1 + Λ̃2 = Λ̃2 + Λ̃1  

(2) (Λ̃1 + Λ̃2) + Λ̃3 = Λ̃1 + (Λ̃2 + Λ̃3)  
(3) Λ̃1 × Λ̃2 = Λ̃2 × Λ̃1  

(4) (Λ̃1 × Λ̃2) × Λ̃3 = Λ̃1 × (Λ̃2 × Λ̃3)  
(5) 𝜆1Λ̃ + 𝜆2Λ̃ = (𝜆1 + 𝜆2)Λ̃, 𝜆1, 𝜆2 ≥ 0  

(6) 𝜆Λ̃1 + 𝜆Λ̃2 = 𝜆(Λ̃1 + Λ̃2), 𝜆 ≥ 0  

(7) (Λ̃)𝜆1 × (Λ̃)𝜆2 = (Λ̃)𝜆1+𝜆2 , 𝜆1, 𝜆2 ≥ 0  

(8) (Λ̃1)
𝜆 × (Λ̃2)

𝜆 = (Λ̃1 + Λ̃2)
𝜆, 𝜆 ≥ 0  

4 Ranking value formula for IT2TFSs 

 Let Λ̃𝑖 =
[(𝑎𝑖1

𝑢 , 𝑎𝑖2
𝑢 , 𝑎𝑖3

𝑢 , 𝑎𝑖4
𝑢 , ℎ1(Λ𝑖

𝑢), ℎ2(Λ̃𝑖
𝑢)); (𝑎𝑖1

𝑙 , 𝑎𝑖2
𝑙 , 𝑎𝑖3

𝑙 , 𝑎𝑖4
𝑙 , ℎ1(Λ𝑖

𝑙 ), ℎ2(Λ𝑖
𝑙 ))] 

be a IT2TFN. Then, the rank of Λ̃𝑖 is represented by 

𝑅𝑎𝑛𝑘(Λ̃𝑖) and defined as  

 

𝑅𝑎𝑛𝑘(Λ̃𝑖) = 𝑀1(Λ̃𝑖
𝑢) + 𝑀1(Λ̃𝑖

𝑙 ) + 𝑀2(Λ̃𝑖
𝑢) + 𝑀2(Λ̃𝑖

𝑙 ) + 𝑀3(Λ̃𝑖
𝑢) + 𝑀3(Λ̃𝑖

𝑙 )

−
1

4
[𝒮𝒹1(Λ̃𝑖

𝑢) + 𝒮𝒹1(Λ̃𝑖
𝑙 ) + 𝒮𝒹2(Λ̃𝑖

𝑢) + 𝒮𝒹2(Λ̃𝑖
𝑙 ) + 𝒮𝒹3(Λ̃𝑖

𝑢) + 𝒮𝒹3(Λ̃𝑖
𝑙 ) + 𝒮𝒹4(Λ̃𝑖

𝑢) + 𝒮𝒹4(Λ̃𝑖
𝑙 )]

+ℎ1(Λ̃𝑖
𝑢) + ℎ2(Λ̃𝑖

𝑢) + ℎ1(Λ̃𝑖
𝑙 ) + ℎ2(Λ̃𝑖

𝑙 )

 

Here, for 1 ≤ 𝑝 ≤ 3, 1 ≤ 𝑞 ≤ 2, and 𝑗 ∈ {𝑢, 𝑙}, 

𝑀𝑝(Λ̃𝑖
𝑗
) shows average of 𝑎𝑖𝑝

𝑗
 and 𝑎𝑖(𝑝+1)

𝑗
, i.e., 𝑀𝑝(Λ̃𝑖

𝑗
) =

𝑎𝑖𝑝
𝑗
+𝑎𝑖(𝑝+1)

𝑗

2
, 

𝒮𝒹𝑝(Λ̃𝑖
𝑗
) shows the standard deviation (SD) of 𝑎𝑖𝑝

𝑗
 and 

𝑎𝑖(𝑝+1)
𝑗

,  

𝑆𝑝(Λ̃𝑖
𝑗
) = √

1

2
∑

𝑝+1

𝑘=𝑝
(𝑎𝑖𝑘

𝑗
−𝑀𝑝(Λ̃𝑖

𝑗
))2, 

𝒮𝒹4(Λ̃𝑖
𝑗
) = √

1

4
∑4𝑘=1 (𝑎𝑖𝑘

𝑗
−

1

4
∑4𝑘=1 𝑎𝑖𝑘

𝑗
)2 shows the SD of 

the elements 𝑎𝑖1
𝑗
, 𝑎𝑖2

𝑗
, 𝑎𝑖3

𝑗
 and 𝑎𝑖4

𝑗
,  

and ℎ(Λ̃𝑖
𝑗
) represents the value of membership of the 

member 𝑎𝑖(𝑞+1)
𝑗

 in trapezoidal MF Λ̃𝑖
𝑗
. 

 

5 Decision making with completely known information 

about attributes weight 

 Consider a set of objects/alternatives 𝒪 = {𝑜1, 𝑜2, . . . , 𝑜𝑙} 
for a MAGDM problem. Also consider 𝐷𝑚 = {𝐷𝑚1, 
𝐷𝑚2, . . . , 𝐷𝑚𝑛} and 𝜆 = (Λ, 𝜆2, . . . , 𝜆𝑙)

𝑡 are the sets of DMs 

and weight vectors of those DMs respectively. And a set 

𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑚} shows attributes. Let us consider DMs 

give the complete information about attribute weights. The 

information set about attributes weight given by DMs 

presented by 𝐻. Let us consider a IT2F decision matrix 

�̃�(𝑘) = (Λ̃𝑖𝑗
(𝑘)
)𝑛×𝑚, where Λ𝑖𝑗

(𝑘)
 is an IT2FS given by the 

DMs 𝑑𝑚𝑘 ∈ 𝐷𝑚 for the alternatives 𝑜𝑖 ∈ 𝒪 concerning the 

attribute 𝑢𝑗 ∈ 𝑈. Generally, attributes can be divided in to 

benefit type and cost type. 

Here, the attributes set 𝑈 classified in to 2 subsets, 𝑈1 (the 

subset of benefit type) and 𝑈2 (the subset of cost type). 

Also 𝑈1 ∪ 𝑈2 = 𝑈 and 𝑈1 ∩ 𝑈2 = 𝜙, where 𝜙 is a void set. 

DMts ℛ̃(𝑘) need to be normalized unless all the 

attributes/parametrs are of the same type. Here we write 

normalization formula to modify the DMts ℛ̃(𝑘).  

 Λ̃𝑖𝑗
(𝑘)
= {

Λ𝑖𝑗
(𝑘)
, 𝑗 ∈ 𝑈1

(Λ𝑖𝑗
(𝑘)
)𝑐, 𝑗 ∈ 𝑈2

 

 

 where (Λ𝑖𝑗
(𝑘)
)𝑐 shows complement of Λ𝑖𝑗

(𝑘)
. So, we get 

normalized DMts ℛ̃(𝑘) = (Λ̃𝑖𝑗
(𝑘)
)𝑛×𝑚. 

First of all we will convert the decision opinion of 

individuals into group opinion to make a final decision. 

Here IT2 fuzzy (WAAO) are used to sum up all the 

individual normalized DMts ℛ̃(𝑘) = (Λ̃𝑖𝑗
(𝑘)
)𝑛×𝑚, 𝑘 =

1,2, . . . , 𝑙 into the CNFDMt ℛ̃ = (Λ̃𝑖𝑗)𝑛×𝑚, where  

 Λ̃𝑖𝑗 =⊕𝑘=1
𝑙 𝜆𝑘Λ̃𝑖𝑗

(𝑘)
  

Here we know the complete information about attributes 

weight i.e the weight vector 
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𝒲𝑡 = (𝑤1, 𝑤1, . . . , 𝑤𝑚)
𝑡 of the attributes 𝑢𝑗, (𝑗 =

1,2, . . . , 𝑚). Then, based on ℛ̃ = (Λ̃𝑖𝑗)𝑛×𝑚 by utilizing 

fuzzy ranking matrix and arithmetic operation between 

IT2FSs we get the value Λ̃𝑖  of the alternative 𝑜𝑖 , (𝑖 =
1,2, . . . , 𝑙);  

 Λ̃𝑖 =⊕𝑗=1
𝑚 (𝑤𝑗Λ̃𝑖𝑗), 𝑖 = 1,2, . . . , 𝑛 

Higher value of 𝑅𝑎𝑛𝑘(Λ̃𝑖), means the best alternative is 𝑜𝑖 . 
The information about attributes weight given by DMs is 

normally incomplete because of increasing complexity of 

the socio-economic environment make it very difficult for 

DMs to consider all relevant conditions of the problem. To 

find the best alternative by utilizing IT2F decision matrix 

and known weights information is a very interesting issue. 

For this purpose,we establish an approach to determine the 

attributes weight.  

 

6 Decision making through ranking value with 

completely Known weights 

For interval type-2 fuzzy decision matrix (IT2F DMt) �̃� =

(Λ̃𝑖𝑗)𝑛×𝑚, we consider RVMt ℛ = (𝑟𝑖𝑗)𝑛×𝑚 of ℛ̃ =

(Λ̃𝑖𝑗)𝑛×𝑚, where 𝑟𝑖𝑗 = 𝑅𝑎𝑛𝑘(Λ̃𝑖𝑗) is the RV of Λ̃𝑖𝑗 , 1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 𝑚. On the basis o normalized RVMt, we 

express the RV of each alternative as;  

 𝑟𝑖(𝑤) = ∑
𝑚
𝑗=1 𝑤𝑗𝑟𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑛.  

Certainly, the bigger value 𝑟𝑖(𝑤) is the best alternative 𝑜𝑖 . 
When we consider only the alternative 𝑜𝑖 , then a suitable 

vector of attributes weight 𝒲𝑡 = (𝑤1, 𝑤2, . . . , 𝑤𝑚)
𝑡 should 

be determined to maximize 𝑟𝑖(𝑤) using following 

optimization model; 

Model-1  

Maximize 𝑟𝑖(𝑤) such that 𝒲 = (𝑤1, 𝑤2, . . . , 𝑤𝑚)
𝑡 ∈ 𝐻, 

𝑤𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑚, and ∑𝑚𝑗=1 𝑤𝑗 = 1  

 From model-1, we obtained the best choice 𝜔(𝑖) =

(𝑤1
(𝑖)
, 𝑤2

(𝑖)
, . . . , 𝑤𝑚

(𝑖)
)𝑡 correspond to alternative 𝑜𝑖 , 1 ≤ 𝑖 ≤

𝑛. Generally, the process of determining the weight vector 

𝒲𝑡 = (𝑤1, 𝑤2, . . . , 𝑤𝑚)
𝑡, consider all alternatives 𝑜𝑖 , (𝑖 =

1,2, . . . , 𝑛) . So, construct a combined weight vector as 

follows;  

 𝒲𝑡 = 𝒲1 𝑤
(1) +𝒲2 𝑤

(2) +⋯𝒲𝑛 

 

 𝑤(𝑛) =

(

 
 
𝑤1
(1)

𝑤1
(2)

. . . 𝑤1
(𝑛)

𝑤2
(1)

𝑤2
(2) . . . 𝑤2

(𝑛)

. . . . . . . . . . . .

𝑤𝑚
(1)

𝑤𝑚
(2)

. . . 𝑤𝑚
(𝑛)
)

 
 

(

 
 

𝒲1

𝒲2

. . .
𝒲𝑚

)

 
 
= Ω𝑊 

where  

 Ω =

(

  
 

𝑤1
(1)

𝑤1
(2)

. . . 𝑤1
(𝑛)

𝑤2
(1)

𝑤2
(2)

. . . 𝑤2
(𝑛)

. . . . . . . . . . . .

𝑤𝑚
(1)

𝑤𝑚
(2)

. . . 𝑤𝑚
(𝑛)

)

  
 

 

and 𝒲 = (𝒲1,𝒲2, . . . ,𝒲𝑛)
𝑡 is undetermined non-negative 

vector satisfies the condition; 𝒲 𝒲𝑡 = 1 

Let �̅�𝑖 = (𝑟𝑖1 , 𝑟𝑖2, . . . , 𝑟𝑖𝑚), (𝑖 = 1,2, . . . , 𝑛), then the RVMt 

R can be represented as ℛ = (�̅�1, �̅�2, . . . , �̅�𝑛)
𝑡. Since 

𝑟𝑖(𝑤) = ∑
𝑚
𝑗=1 𝑤𝑗𝑟𝑖𝑗 = �̅�𝑖  𝜔 = �̅�𝑖Ω𝒲, 𝑖 = 1,2, . . . , 𝑛 

To find the combined weight vector 𝒲𝑡 =
(𝑤1, 𝑤2, . . . , 𝑤𝑚)

𝑡, we should make overall RVs 𝑟𝑖(𝑤), (𝑖 =
1,2, . . . , 𝑛) greater as possible, to maximize the following 

vector 𝑟(𝑤) = (𝑟1(𝑤), 𝑟2(𝑤), . . . , 𝑟𝑛(𝑤)) under the 

condition 𝒲 𝒲𝑡 = 1. To compute we construct a model; 

Model-2  

 Max 𝑟(𝑤) = (𝑟1(𝑤), 𝑟2(𝑤), . . . , 𝑟𝑛(𝑤)) 
Subject to 𝒲 𝒲𝑡 = 1  

By equal weighted summation method, model-2 can be 

changed into a single objective optimization model;  

 Max 𝑟(𝑤) 𝑟(𝑤)𝑡 
Subject to 𝒲 𝒲𝑡 = 1  

 Let 𝑔(𝑤) = 𝑟(𝑤) 𝑟(𝑤)𝑡, then we have  

 𝑔(𝑤) = 𝑟(𝑤) 𝑟(𝑤)𝑡 = 𝒲𝑡(𝑅 Ω)𝑡  (𝑅 Ω) 𝒲)  
 Let 𝑆𝑚 = (ℛ Ω)𝑡  (ℛ Ω), then 𝑆𝑚𝑡 = (ℛ Ω)𝑡  (ℛ Ω) = 𝒮, 

i.e Sm is RSM. Moreover, ℛ ≥ 0 and Sm is non-negative 

definite matrix. 

Theorem-1 

Consider 𝐂 = (𝑐𝑖𝑗)𝑛×𝑛 be a RSM, i.e 𝐂𝑡 = 𝐂, then 

𝑚𝑎𝑥
𝑥𝑡𝐶𝑥

𝑥𝑡𝑥
= 𝜆𝑚𝑎𝑥  where 𝜆𝑚𝑎𝑥  is the biggest eigenvalue of 

𝐂 and 𝑥 is a nonzero vector. 

Theorem-2 

Let 𝐂 = (𝑐𝑖𝑗)𝑛×𝑛 be a real irreducible non-negative matrix, 

then 

(1) 𝐂 has a biggest eigenvalue 𝜆𝑚𝑎𝑥 , which is also a unique 

eigenvalue of C. 

(2) Let 𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛)
𝑡 be the eigenvectors of 𝜆𝑚𝑎𝑥, 

then all 𝑣𝑗 ≥ 0, (𝑗 = 1,2, . . . , 𝑛), i.e 𝑉 is a positive 

eigenvector. 

By Theorem 1 and 2, knowing that that g(w) has a biggest 

value, i.e, max𝑓(𝑤), also the greatest eigenvalue 𝜆̅𝑚𝑎𝑥  of 

Sm. 𝑉𝑒 = (𝑣1, 𝑣2, . . . , 𝑣𝑛)
𝑡 is the eigenvector of 𝜆̅𝑚𝑎𝑥, 

where 𝜆̅𝑚𝑎𝑥 is unique, and all 𝑤𝑖 , (𝑖 = 1,2, . . . , 𝑛). We can 

utilize Ω 𝒲 to find weight vector 𝒲𝑡 after normalizing 𝑉𝑒.  

 

7 MAGDM approach based on IT2 fuzzy environment 

 Multi attribute group decision making (MAGDM) 

approach based on IT2 fuzzy environment for incomplete 

attributes weight information is follows. 

Step 1, In first step we normalize IT2 DMts ℛ̅𝑘 =
(Λ̅𝑖𝑗

𝑘 )𝑛×𝑚, where 𝑖 = 1,2, . . . , 𝑙 given by DMs, 𝐷𝑚𝑘, where 

𝑘 = 1,2, . . . , 𝑙 utilizing IT2 fuzzy WAAO i.e Λ̃𝑖𝑗 =

⊕𝑘=1
𝑙 𝜆𝑘Λ̃𝑖𝑗

(𝑘)
. Its particulars are to sum up all individual 

ℛ̅𝑘 = (Λ̅𝑖𝑗
𝑘 )𝑛×𝑚 (𝑖 = 1,2, . . . , 𝑙) into a CNIT2FDMt ℛ̅ =

(Λ̅𝑖𝑗)𝑛×𝑚. 

Step 2, On the basis of defined rank of IT2FN we find the 

RVMt ℛ = (𝑟𝑖𝑗)𝑛×𝑚 of ℛ̅ = (Λ̅𝑖𝑗)𝑛×𝑚. 

Step 3, To get best weight vectors 𝜔(𝑖) =

(𝑤1
(𝑖)
, 𝑤2

(𝑖)
, . . . , 𝑤𝑚

(𝑖)
)𝑡, where 𝑖 = 1,2, . . . , 𝑛 corresponding 

to the alternatives 𝑜𝑖 , where 𝑖 = 1,2, . . . , 𝑛 by utilizing 

model-1 to construct the weight matrix Ω. 

Step 4, Compute normalized eigenvector 𝒲 =
(𝑤1, 𝑤2, . . . , 𝑤𝑛)

𝑡 for the matrix (𝑅 Ω)𝑡  (ℛ Ω). 
Step 5, Utilize Ω 𝒲 to drive the weight vectors 𝒲𝑡 =
(𝑤1, 𝑤2, . . . , 𝑤𝑚)

𝑡. 

Step 6, On the basis of ℛ̅ = (Λ̃𝑖𝑗)𝑛×𝑚, use the WAAO i.e 

Λ̃𝑖 =⊕𝑗=1
𝑚 (𝑤𝑗Λ̃𝑖𝑗), where 𝑖 = 1,2, . . . , 𝑛 to obtain the 

overall value Λ̃𝑖 of the alternative 𝑜𝑖 , 𝑖 = 1,2, . . . , 𝑛. 

Step 7, Compute the RV 𝑅𝑎𝑛𝑘(Λ̃𝑖) of the overall value Λ̃𝑖, 
1 ≤ 𝑖 ≤ 𝑛. 

Step 8, Find the rank of each 𝑜𝑖 , where (𝑖 = 1,2, . . . , 𝑛) on 

the basis of RV 𝑅𝑎𝑛𝑘(Λ̃𝑖), 1 ≤ 𝑖 ≤ 𝑛. Maximum value of 

𝑅𝑎𝑛𝑘(Λ̃𝑖) shows best alternative 𝑜𝑖 . 
 We elaborate the model with the help of an Example. In 

Table 1, we define the linguistic terms Very Bad (VB), Bad 



 

~ 100 ~ 

World Wide Journal of Multidisciplinary Research and Development 
 

(B), Unsatisfactory (US), Satisfactory (S), Good (G), Very 

Good (VG), Excellent (E), and their corresponding IT2FSs. 

Moreover, we present the complementary relations of 

linguistic terms (or IT2FSs) in Table 2. 
 

Table 1: Linguistic terms and their corresponding IT2FSs 
 

Linguistic Term IT2FSs 

Very Bad (VB) (0.05,0.05,0.05,0.15,1; 0.05,0.05,0.05,0.1, 0.9) 

Bad (B) (0.05,0.15,0.15,0.35,1; 0.1,0.15,0.15,0.25, 0.9) 

Unsatisfactory 

(US) 

(0.15,0.35,0.35,0.55,1; 0.25,0.35,0.35,0.45, 

0.9) 

Satisfactory (S) 
(0.35,0.55,0.55,0.75,1; 0.45,0.55,0.55,0.65, 

0.9) 

Good (G) 
(0.55,0.65,0.65,0.85,1; 0.65,0.65,0.65,0.75, 

0.9) 

Very Good (VG) (0.75,0.85,0.85,0.95,1; 0.85,0.85,0.85,0.9, 0.9) 

Excellent (E) (0.85,0.95,0.95,1,1; 0.95,0.95,0.95,0.95, 0.9) 

 

Table 2: Complementary Relations 
 

Λ̃ VB B US S G VG E 

Λ̃𝑐 E VG G S US B VB 

 

Suppose a business organization wants to promote their 

employee. Organization have a panel having three experts 

𝐷𝑚𝑘, (𝑘 = 1,2,3). They evaluate the employee according 

to the desired criteria of promotion. They evaluate three 

alternatives 𝐴𝑙𝑡𝑖, where 𝑖 = 1,2,3 according to the four 

parameters i.e 𝑝1, academics, 𝑝2, performance, 𝑝3, 

experience, 𝑝4, discipline with weight vector 𝜆 =
(0.25,0.4,0.2). 𝜆 is the weight of each alternative. And 

𝒲𝑡 = (0.35,0.2,0.25,0.4) is weight vector of each 

parameter. 

Step 1, We consider all parameter of benefit type. So three 

normalized DMt given by the DMs 𝐷𝑚𝑘, (𝑘 = 1,2,3) are 

are provided in Tables 3, 4, and 5.  
 

Table 3: Normalized DMt ℛ̃(1) 
 

𝐴𝑙𝑡1 G B E E 

𝐴𝑙𝑡2 VG US VG VG 

𝐴𝑙𝑡3 E VB S VG 

 

Table 4: Normalized decision matrix ℛ̃(2) 
 

𝐴𝑙𝑡1 VG VB VG VG 

𝐴𝑙𝑡2 G B E E 

𝐴𝑙𝑡3 VG VB G E 

 

Table 5: Normalized decision matrix ℛ̃(3) 
 

𝐴𝑙𝑡1 G B VG VG 

𝐴𝑙𝑡2 VG VB E VG 

𝐴𝑙𝑡3 G B G E 

 

Aggregate of all the normalized fuzzy DMts to find 

collective IT2F DMt ℛ̃ = (Λ̃𝑖𝑗)3×4  

�̃� =

(

 
 
Λ̃11 Λ̃12 Λ̃13 Λ̃14
Λ̃21 Λ̃22 Λ̃23 Λ̃24
Λ̃31 Λ̃32 Λ̃33 Λ̃34

)

 
 

 

By using the formula Λ̃𝑖𝑗 =⊕𝑘=1
𝑙 𝜆𝑘Λ̃𝑖𝑗

(𝑘)
, we have  

 

Λ̃11 = ((0.5475,0.6325,0.6325,0.7625,1; 0.6325,0.6325,0.6975,0.7650,0.9) 
 

Λ̃12 = (0.0425,0.0875,0.0875,0.2175,1; 0.0875,0.0875,0.1525,0.7650,0.9) 
 

Λ̃13 = (0.6625,0.7475,0.7475,0.8200,1; 0.7475,0.7475,0.7775,0.7650,0.9) 
 

Λ̃14 = (0.6625,0.7475,0.7475,0.8200,1; 0.7475,0.7475,0.7775,0.7650,0.9) 
 

Λ̃14 = Λ̃13 

 

Λ̃21 = (0.5575,0.6425,0.6425,0.7675,1; 0.6425,0.6425,0.7050,0.7650,0.9) 
 

Λ̃22 = (0.0675,0.1575,0.1575,0.3075,1; 0.1575,0.1575,0.2325,0.7650,0.9) 
 

Λ̃23 = (0.6975,0.7825,0.7825,0.8375,1; 0.7825,0.7825,0.7950,0.7650,0.9) 
 

Λ̃24 = (0.6775,0.7625,0.7625,0.8275,1; 0.7625,0.7625,0.7850,0.7650,0.9) 
 

Λ̃31 = (0.6225,0.7075,0.7075,0.8000,1; 0.7075,0.7075,0.7475,0.7650,0.9) 
 

Λ̃32 = (0.0425,0.0625,0.0625,0.1675,1; 0.0625,0.0625,0.1150,0.7650,0.9) 
 

Λ̃33 = (0.4175,0.5275,0.5275,0.6975,1; 0.5275,0.5275,0.6125,0.7650,0.9) 
 

Λ̃34 = (0.6975,0.7825,0.7825,0.8375,1; 0.7825,0.7825,0.7950,0.7650,0.9) 
 

Λ̃34 = Λ̃23 

 

Step 2, On the basis of �̃� we use the weighted averaging 

operator �̃�𝑚𝑖 =⊕𝑗=1
𝑚 (𝜔𝑗Λ̃𝑖𝑗) to find the value of each 

𝐷𝑚𝑖 of the alternative 𝐴𝑙𝑡𝑖, (𝑖 = 1,2,3), i.e,  

 𝐷𝑚1 =
(0.6308,0.7248,0.7248,0.8434,1; 0.7248,0.7248,0.7800,0.9180,0.9) 
 

 𝐷𝑚2 =

(0.6540,0.7570,0.7570,0.8705,1; 0.7570,0.7570,0.8060,0.9180,0.9) 
 

 𝐷𝑚3 =
(0.6098,0.7050,0.7050,0.8229,1; 0.7050,0.7050,0.7558,0.9180,0.9) 
 

Step 3, Now, we find 𝑅𝑎𝑛𝑘(𝐷𝑚𝑖) of values 𝐷𝑚𝑖, where 

𝑖 = 1,2,3.  
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 𝑅𝑎𝑛𝑘(𝐷𝑚1) = 6.3233, 𝑅𝑎𝑛𝑘(𝐷𝑚2) =
6.4940, and𝑅𝑎𝑛𝑘(𝐷𝑚3) = 6.2046 

Step 4, Here, we can see that 𝑅𝑎𝑛𝑘(𝐷𝑚2) >
𝑅𝑎𝑛𝑘(𝐷𝑚1) > 𝑅𝑎𝑛𝑘(𝐷𝑚3). Thus, order of the 

alternatives 𝐴𝑙𝑡1, 𝐴𝑙𝑡2, 𝐴𝑙𝑡3 is ,  

 𝐴𝑙𝑡2 > 𝐴𝑙𝑡1 > 𝐴𝑙𝑡2 

Hence, the most favorite employee for promotion is 𝐴𝑙𝑡2.  

 

8 An example of MCDM through ranking value with 

completely known weights 

Now we deal this Example by ranking value discuss in the 

first section of this chapter. 

Step 1, Similarly to the first algorithm we calculate ℛ̃ =
(Λ̃𝑖𝑗)3×4  

 ℛ̃ =

(

 
 
Λ̃11 Λ̃12 Λ̃13 Λ̃14
Λ̃21 Λ̃22 Λ̃23 Λ̃24
Λ̃31 Λ̃32 Λ̃33 Λ̃34

)

 
 

 

By using the formula Λ̃𝑖𝑗 =⊕𝑘=1
𝑙 𝜆𝑘Λ̃𝑖𝑗

(𝑘)
 we have 

 

 

Λ̃11 = (0.5475,0.6325,0.6325,0.7625,1; 0.6325,0.6325,0.6975,0.7650,0.9) 
 

Λ̃12 = (0.0425,0.0875,0.0875,0.2175,1; 0.0875,0.0875,0.1525,0.7650,0.9) 
 

Λ̃13 = (0.6625,0.7475,0.7475,0.8200,1; 0.7475,0.7475,0.7775,0.7650,0.9) 
 

Λ̃14 = (0.6625,0.7475,0.7475,0.8200,1; 0.7475,0.7475,0.7775,0.7650,0.9) 
 

Λ̃14 = Λ̃13 

 

Λ̃21 = (0.5575,0.6425,0.6425,0.7675,1; 0.6425,0.6425,0.7050,0.7650,0.9) 
 

Λ̃22 = (0.0675,0.1575,0.1575,0.3075,1; 0.1575,0.1575,0.2325,0.7650,0.9) 
 

Λ̃23 = (0.6975,0.7825,0.7825,0.8375,1; 0.7825,0.7825,0.7950,0.7650,0.9) 
 

Λ̃24 = (0.6775,0.7625,0.7625,0.8275,1; 0.7625,0.7625,0.7850,0.7650,0.9) 
 

Λ̃31 = (0.6225,0.7075,0.7075,0.8000,1; 0.7075,0.7075,0.7475,0.7650,0.9) 
 

Λ̃32 = (0.0425,0.0625,0.0625,0.1675,1; 0.0625,0.0625,0.1150,0.7650,0.9) 
 

Λ̃33 = (0.4175,0.5275,0.5275,0.6975,1; 0.5275,0.5275,0.6125,0.7650,0.9) 
 

Λ̃34 = (0.6975,0.7825,0.7825,0.8375,1; 0.7825,0.7825,0.7950,0.7650,0.9) 
 

Λ̃34 = Λ̃23 

 

Step 2, In this step, we compute ℛ = (𝑟𝑖𝑗)3×4 of ℛ̃ =

(Λ̃𝑖𝑗)3×4 given as,  

 ℛ = (

5.7724 2.6770 6.3754 6.3754
5.8257 3.0628 6.5458 6.4490
6.1661 2.5312 5.1848 6.5458

) 

Step 3, We use weight vector 𝒲𝑡 = (0.35,0.2,0.25,0.4) 
and the ith row value 𝑟𝑖𝑗 , (𝑖 = 1,2,3) of ℛ to compute the 

RV 𝑟𝑖 of the alternative 𝑜𝑖 , (𝑖 = 1,2,3).  
 𝑟1 = ∑

4
𝑗=1 (𝜔𝑗𝑟1𝑗) = 8.6469, 𝑟2 =

∑4𝑗=1 (𝜔𝑗𝑟2𝑗) = 8.8278, and𝑟3 = ∑4𝑗=1 (𝜔𝑗𝑟3𝑗) = 8.5234 

Step 4, The rank of the alternatives 𝐴𝑙𝑡𝑖 based on ranking 

values 𝑟𝑖(𝑖 = 1,2,3) is 𝐴𝑙𝑡2 > 𝐴𝑙𝑡1 > 𝐴𝑙𝑡3. Hence, the 

most favorite employee for promotion is 𝐴𝑙𝑡2. 

The comparison of above discussed methods show that the 

second approach is more effective, then former approach 

for IT2 fuzzy GDM problems, but in aggregation process it 

doesn’t give the complete decision information.  

 

9 MCDM based on partial known information about 

parameters 

 Suppose the partial information about parameters is given 

by DMs as follows,  

 𝐷𝑚1, 0.15 ≤ 𝑤1 ≤ 0.45 

 𝐷𝑚2, 𝑤3 −𝑤2 ≥ 𝑤4 − 𝑤1 

 

 𝐷𝑚3, 𝑤3 −𝑤1 ≥ 0.05 

 

 𝑤4 ≥ 𝑤1 

Then, 0.05, 𝑤4 ≥ 𝑤1. Now we choose the best employee 

for the promotion with partial known information about 

parameter weights to adopt the method i.e. 

Step 1, In first step we normalize IT2 DMts ℛ̅𝑘 =
(Λ̅𝑖𝑗

𝑘 )𝑛×𝑚, where 𝑖 = 1,2, . . . , 𝑙 given by DMs 𝐷𝑚𝑘, where 

(𝑘 = 1,2, . . . , 𝑙) utilizing IT2 fuzzy WAAO i.e Λ̃𝑖𝑗 =

⊕𝑘=1
𝑙 𝜆𝑘Λ̃𝑖𝑗

(𝑘)
. Its particulars are to sum up all individual 

ℛ̅𝑘 = (Λ̅𝑖𝑗
𝑘 )𝑛×𝑚 (𝑖 = 1,2, . . . , 𝑙) into a CNIT2DMt ℛ̅ =

(Λ̅𝑖𝑗)𝑛×𝑚. 

Step 2, On the basis of defined rank of IT2FN we find the 

RVMt ℛ = (𝑟𝑖𝑗)𝑛×𝑚 of the CNIT2DMt ℛ̅ = (Λ̅𝑖𝑗)𝑛×𝑚. 

Step 3, To get best weight vectors 𝜔(𝑖) =

(𝑤1
(𝑖)
, 𝑤2

(𝑖)
, . . . , 𝑤𝑚

(𝑖)
)𝑡, where (𝑖 = 1,2, . . . , 𝑛) corresponding 

to the alternatives 𝑜𝑖 , where 𝑖 = 1,2, . . . , 𝑛 by utilizing 

model-1 to construct the weight matrix Ω. 

Step 4, Construct the matrix (ℛ Ω)𝑡  (ℛ Ω) and compute 

the normalized eigenvector 

𝑉𝑁 = (𝑉𝑁1, 𝑉𝑁2, 𝑉𝑁3)
𝑡 for the matrix (ℛ Ω)𝑡  (ℛ Ω). 
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Step 5, Compute the weight vector 𝒲𝑡 = Ω 𝒱𝑁. 

Step 6, On the basis of ℛ̃ = (Λ̃𝑖𝑗)3×4, we use the WAO 

Λ̃𝑖 =⊕𝑗=1
𝑚 (𝜔𝑗Λ̃𝑖𝑗) to get �̃�𝑚𝑖 =⊕𝑗=1

𝑚 (𝜔𝑗Λ̃𝑖𝑗) of the 

alternative 𝐴𝑙𝑡𝑖, (𝑖 = 1,2,3). 
Step 7, Compute RV 𝑅𝑎𝑛𝑘(�̃�𝑚𝑖) of 𝐷𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

After Step 7 we shall be able to choose the best alternative 

and shall be able to make a decision. 

Related Example Consider the above problem to find the 

best choice. so we can 

Step 1, Similarly, we use the above ℛ̃𝑘 = (Λ̃𝑖𝑗
𝑘 )𝑛×𝑚 and 

aggregate all individuals normalized IT2F DMts ℛ̃𝑘 =
(Λ̃𝑖𝑗

𝑘 )3×4, 𝑘 = 1,2,3 into ℛ̃ = (Λ̃𝑖𝑗)3×4.i.e  

 

 ℛ̃ =

(

 
 
Λ̃11 Λ̃12 Λ̃13 Λ̃14
Λ̃21 Λ̃22 Λ̃23 Λ̃24
Λ̃31 Λ̃32 Λ̃33 Λ̃34

)

 
 

 

By using the formula Λ̃𝑖𝑗 =⊕𝑘=1
𝑙 𝜆𝑘Λ̃𝑖𝑗

(𝑘)
, we have 

 

Λ̃11 = (0.5475,0.6325,0.6325,0.7625,1; 0.6325,0.6325,0.6975,0.7650,0.9) 
 

Λ̃12 = (0.0425,0.0875,0.0875,0.2175,1; 0.0875,0.0875,0.1525,0.7650,0.9) 
 

Λ̃13 = (0.6625,0.7475,0.7475,0.8200,1; 0.7475,0.7475,0.7775,0.7650,0.9) 
 

Λ̃14 = (0.6625,0.7475,0.7475,0.8200,1; 0.7475,0.7475,0.7775,0.7650,0.9) 
 

Λ̃14 = Λ̃13 

 

Λ̃21 = (0.5575,0.6425,0.6425,0.7675,1; 0.6425,0.6425,0.7050,0.7650,0.9) 
 

Λ̃22 = (0.0675,0.1575,0.1575,0.3075,1; 0.1575,0.1575,0.2325,0.7650,0.9) 
 

Λ̃23 = (0.6975,0.7825,0.7825,0.8375,1; 0.7825,0.7825,0.7950,0.7650,0.9) 
 

Λ̃24 = (0.6775,0.7625,0.7625,0.8275,1; 0.7625,0.7625,0.7850,0.7650,0.9) 
 

Λ̃31 = (0.6225,0.7075,0.7075,0.8000,1; 0.7075,0.7075,0.7475,0.7650,0.9) 
 

Λ̃32 = (0.0425,0.0625,0.0625,0.1675,1; 0.0625,0.0625,0.1150,0.7650,0.9) 
 

Λ̃33 = (0.4175,0.5275,0.5275,0.6975,1; 0.5275,0.5275,0.6125,0.7650,0.9) 
 

Λ̃34 = (0.6975,0.7825,0.7825,0.8375,1; 0.7825,0.7825,0.7950,0.7650,0.9) 
 

Λ̃34 = Λ̃23 

 

Step 2, To find 𝑅 = (𝑟𝑖𝑗)3×4 we use the ranking formula 

define in start of this chapter. Therefore, we get  

 ℛ = (
5.7724 2.6770 6.3754 6.3754
5.8257 3.0628 6.5458 6.4490
6.1661 2.5312 5.1848 6.5458

) 

Step 3, Given that the information about weights of 

parameter is given by DMs 𝐷𝑚𝑖 , 𝑖 = 1,2,3 as follows, 

respectively,  

 𝐷𝑚1, 0.15 ≤ 𝑤1 ≤ 0.45 

 

 𝐷𝑚2, 𝑤3 −𝑤2 ≥ 𝑤4 − 𝑤1 

 

 𝐷𝑚3, 𝑤3 −𝑤1 ≥ 0.05 

 

 𝑤4 ≥ 𝑤1 

Then, 𝐻 = {0.15 ≤ 𝑤1 ≤ 0.45, 𝑤3 − 𝑤2 ≥ 𝑤4 − 𝑤1, 𝑤3 −
𝑤1 ≥ 0.05, 𝑤4 ≥ 𝑤1} 
Now by using the model-1 we find the weight vector of 

each alternative corresponding to each DM. For finding 

these weight vectors we adopt two techniques of 

optimization that are Big M-method and Two phase-

method. After solving this optimization problem, we get  

 𝜔(1) = (𝜔1
(1)
, 𝜔2

(1)
, 𝜔3

(1)
, 𝜔4

(1)
)𝑡 =

(0.05,0,0.45,0.5)𝑡 
 

 𝜔(2) = (𝜔1
(2)
, 𝜔2

(2)
, 𝜔3

(2)
, 𝜔4

(2)
)𝑡 =

(0.05,0,0.45,0.5)𝑡 
 

 𝜔(3) = (𝜔1
(3)
, 𝜔2

(3)
, 𝜔3

(3)
, 𝜔4

(3)
)𝑡 =

(0.225,0,0.275,0.5)𝑡 
Moreover, we can verify this result by Tora software.  

 Ω =

(

 
 

0.05 0.05 0.225
0 0 0
0.45 0.45 0.275
0.5 0.5 0.5

)

 
 

 

Step 4, Compute the matrix (ℛ Ω)𝑡  (ℛ Ω), i.e,  

 (ℛ Ω)𝑡  (ℛ Ω) =

(

116.9909 116.9909 116.5229
116.9909 116.9909 116.5229
116.5229 116.5229 116.1113

) 

find the eigenvalues of the matrix (ℛ Ω)𝑡  (ℛ Ω) that are 

𝐸 = (350.057,0.036,1.31 × 10−14) Maximum eigenvalue 

of the matrix (ℛ Ω)𝑡  (ℛ Ω) is 350.057. Therefore, we find 

the eigenvector 𝑉 corresponding to 350.057 that is  

 𝑉 = (−0.57809,−0.57809,−0.575867)𝑡 
Now, we normalize this eigenvector 𝑉 and we get  

 𝑉𝑁 =∥ 𝑉 ∥= (
−0.57809

−1.732047
,
−0.57809

−1.732047
,
−0.575867

−1.732047
) 

 𝑉𝑁 = (0.3338,0.3338,0.3325) 
Step 5, Weight vector  

 𝜔 = Ω 𝑉𝑁 =
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(

 
 

0.05 0.05 0.225
0 0 0
0.45 0.45 0.275
0.5 0.5 0.5

)

 
 
(

0.3338
0.3338
0.3325

) =

(0.108,0,0.392,0.500) 
Step 6, Use �̃�𝑚𝑖 =⊕𝑗=1

𝑚 (𝜔𝑗Λ̃𝑖𝑗) to get 𝐷𝑚𝑖, (𝑖 = 1,2,3)  

 𝐷𝑚1 = 𝜔1Λ̃11 + 𝜔2�̃�12 + 𝜔3Λ̃13 + 𝜔4Λ̃14 

 

 𝐷𝑚1 = 𝜔1Λ̃21 + 𝜔2Λ̃22 + 𝜔3Λ̃23 + 𝜔4Λ̃24 

 

 𝐷𝑚1 = 𝜔1Λ̃31 + 𝜔2Λ̃32 + 𝜔3Λ̃33 + 𝜔4Λ̃34 

 

𝐷𝑚1 = (0.6501,0.7351,0.7351,0.8139,1; 0.7351,0.7351,0.7689,0.7651,0.9) 
 

𝐷𝑚2 = (0.6724,0.7574,0.7574,0.8250,1; 0.7574,0.7574,0.7803,0.7651,0.9) 
 

𝐷𝑚3 = (0.5797,0.6746,0.7787,0.7786,1; 0.6745,0.6745,0.7184,0.7651,0.9) 
 

Step 7, Now we Compute 𝑅𝑎𝑛𝑘(�̃�𝑚𝑖) of 𝐷𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

By using the ranking value formula that we already define 

in start of the chapter, we get  

 𝑅𝑎𝑛𝑘(𝐷𝑚1) = 6.3128, 𝑅𝑎𝑛𝑘(𝐷𝑚2) =
6.4229, and𝑅𝑎𝑛𝑘(𝐷𝑚3) = 5.9779 

Step 8, Here, we can see that 𝑅𝑎𝑛𝑘(𝐷𝑚2) >
𝑅𝑎𝑛𝑘(𝐷𝑚1) > 𝑅𝑎𝑛𝑘(𝐷𝑚3). The preference order of the 

alternatives 𝐴𝑙𝑡1, 𝐴𝑙𝑡2, 𝐴𝑙𝑡3 is  

 𝐴𝑙𝑡2 > 𝐴𝑙𝑡1 > 𝐴𝑙𝑡3 

Thus, we can say that the best choice is the alternative 𝐴𝑙𝑡2. 

In this Example we see that the procedure adopt here we 

determine the weights of parameters from the CIT2FDMt 

with the partial known information and also in the process 

of aggregation it avoid losing and distorting the original 

decision information.  

 

Conclusion 

We examine MAGDM problems in IT2 FS, and proposed a 

method to deal with the situations where values of 

attributes are considered as IT2 FSs. Information related to 

weight of attributes is incomplete. In this method first 

convert all individual "normalized interval type-2 fuzzy 

decision matrix (NIT2FDMts)" into the "collective interval 

type-2 fuzzy decision matrix (CIT2FDMt)" by using the 

"interval type-2 fuzzy weighted arithmetic average operator 

(IT2 fuzzy WAAO)". In the form where we have 

information related to weight of attributes is partial known, 

we construct the RVMt of the "collective normalized 

interval type-2 fuzzy decision matrix (CNIT2FDMt)", and 

establish some optimization models to find weight of 

attributes. Then, we utilize obtained weight of attributes 

and the IT2 fuzzy WAAO to obtain ranking of the 

objects/alternatives and then choose the best choice. All 

this process illustrated by Example concerning with a 

business organization, searching for the best employee for 

the promotion on the behalf of desired criteria.  
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Institutional security for special education as 

conceived in this discourse broadly means protection, 

safe guard, regulatory policy, directives and care 

initiated, pursued to develop, improve special needs 

education and prevent persons with disabilities from 


