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Abstract 
If the expression   √    has a solution that is not a real number, what might be that? So the 

question is a philosophical and foundational one, simply to wonder about what we are dealing with. 

Concern about the foundations of mathematics therefore means that the problem of imaginary 

numbers is in fact a problem and cannot be dismissed as superfluous or trivial. What is the essence of 

 √   ? We discover the very nature of   √    to be   √     . From Euler 

formula         , we deduce the imaginary phase of the zero, that is      . Thus we tame the 

zero. We develop new axioms to tame infinity, zero and the imaginary number. Hence we develop a 

new arithmetic, solves the problem of indeterminants.  Eventually, many paradoxes were resolved if 

infinity had taken to be both even and odd simultaneously. 

 
Keywords: Philosophy of mathematics, Foundation s of Mathematics, Logic, Infinity, Imaginary 

numbers, Zero, Paradoxes, Indeterminants. 

 

Introduction 

Abstract simply means outside space and time, not physical. In this sense all mathematical 

objects are abstract, there are infinitely many numbers. So, the reasonable conclusion is that 

all numbers and indeed all mathematical objects are abstract. Mathematical entities can be 

‘seen’ with ‘the mind’s eye [1]. The historical struggles with infinity were perhaps more 

strident and fear laden than those for zero. Again, the reasons were religious. For people felt 

that thinking about infinity was tantamount to thinking about the Creator - If one actually 

endeavored to manipulate infinity as a mathematical object just as we routinely manipulate 

numbers and variables and other constructs in mathematics—then one was showing the 

utmost disrespect, and exhibiting a cavalier attitude towards the Deity. One feared being 

guilty of heresy or sacrilege. Many prominent nineteenth-century mathematicians strictly 

forbade any discussion of infinity. Of course discussions of infinity were fraught with 

paradoxes and apparent contradictions. These suggested deep flaws in the foundations of 

mathematics. They only exacerbated people’s fears and uncertainties. Certainly infinity was 

the source of much misunderstanding and confusion. It was subject best avoided. Fear of 

religious fallout gave a convenient rationale for pursuing such a course [2]. The distinction 

between potential and actual infinities was perhaps created by Aristotle in his attempt to 

overcome Zeno’s paradoxes. Suppose I draw a line. How many points are there on it? You’re 

likely to say, an infinite number of points. But Aristotle would say, none. However, Aristotle 

maintained, if I make a cut mark in the line, I create a point. Now it has one point. I can do 

this over and over again, creating many points. But, two things must be noted: first, at any 

stage in this process I have created only a finite number of points on the line, and second, no 

matter how many points I have created, I can always create more. Thus, says Aristotle, the 

points on the line are a potential infinity, not an actual infinity [1]. The conception of the 

theological infinite is not a conception of an infinite collection, but rather of the unbounded 

or unlimited, God's infinity, the absolute infinite. The idea of the theological infinite is, for 

Descartes, a proof for the existence of God: since the idea of God is the idea of an actually 
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infinite being, and I am at most potentially infinite, I could 

not be responsible for this idea myself. Thus, the infinite 

can never be part of our perceptual experience, infinity is a 

revelation from God and serve as an evidence of his 

existence [10].  Infinity, itself is a subject of philosophy. It 

is a mysterious and unfathomable object that we wish to 

discover and to identify. "The main story is about the 

human mind's inability to contemplate infinity. There are 

warnings in the Kabbalah, the Jewish book of mysticism, 

about peering into this aspect of mathematics. The famous 

mathematician Georg Cantor is credited with discovering 

and pioneering this area of mathematics. Mysteriously 

every time Cantor attempted to seriously delve into infinity 

theory he experienced a mental breakdown. Kurt Gödel 

another famous mathematician was also mentally affected 

by working in this area"[3].  It was the late nineteenth-

century mathematician Georg Cantor (1845-1918) who 

finally determined the way to tame the infinity concept. He 

actually showed that there are many different levels or 

magnitudes of infinity. It is safe to say that Cantor’s 

notions about infinity—his concept of cardinality, and his 

means of stratifying infinite sets of different orders or 

magnitudes have been among the most profound and 

original ideas ever to be created in mathematics. People 

capitalized on the perception that Cantor was a Jew, and 

many of their attacks were shamelessly antisemitic—even 

though Cantor was in fact not a Jew. It is easy to see how 

Cantor might have become depressed, discouraged, and 

unwilling to go on. Cantor spent considerable time in 

asylums in an effort to cope with this calumny, and to deal 

with his subsequent depression. Near the end of his life, 

Cantor became disillusioned with mathematics [4].  

 

The Identity  1i       

If the expression 1i   has a solution that is not a 

real number, what might be that? So the question is a 

philosophical and foundational one, simply to wonder 

about what we are dealing with. If numbers are in origin 

artifacts of counting and measuring, what kind of objects or 

quantities can we count or measure with imaginary 

numbers?  As noted below, what we often get in physics 

and engineering is that imaginary solutions 

signify impossibility. Concern about the foundations of 

mathematics therefore means that the problem of imaginary 

numbers is in fact a problem and cannot be dismissed as 

superfluous or trivial. A Kantian philosophy of 

mathematics is going to be realistic in relation to empirical 

and phenomenal reality; imaginaries can realistically exist 

in our mathematical representation. Leonhard Euler said: 

"All such expressions as 1 , 2 , etc., are 

consequently impossible or imaginary numbers, since they 

represent roots of negative quantities; and of such numbers 

we may truly assert that they are neither nothing, nor 

greater than nothing, nor less than nothing, which.   

First, we have Taylor Expansion of the function   

1x 
about ( )f x x  

  2 3
1

2 3

1.3... 2 3 1( 1) 1.3( 1) 1.3.5( 1)
1 ....( 1) .....

2 .1! 2 .2! 2 .3! 2 . !

n

n

n

n xx x x
x

n


   

     

Put 1x   , the series diverges 

 

 

 

2 3
1

2 3

1.3... 2 3 .22 1.3.2 1.3.5.2
1 1 ....( 1) .....

2 .1! 2 .2! 2 .3! 2 . !

1.3... 2 31 1.3 1.3.5
1 1 ... .....

1! 2! 3! !

1.3... 2 31.3 1.3.5
1 ... .....

2! 3! !

n

n

n

n

n

n

n

n

n




      


      


     

2

1.3.5...(2 3)
1

!n

n
i

n


     

 
Second, we have Euler formula  
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We have Taylor expansion of the function 
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Since any number less than 


 indeed is a real number 

that 1i   can never takes, and since

 , R   
, one could reasonably 

deduces:   

 1 1i    
 

 

This is a very logical statement. We shall adopt it as an 

axiom. 

Logically, 1i     as follows  

1) It is illogical that the zero has two different reciprocals 
1 1

,
0 0

and   
  

that is  , a ridiculous result. 

2) It is logically that the reciprocal of the largest number 

equals the smallest number and vice versa.  

3) The largest number indeed is   (infinity), while the 

smallest number is not zero, since ... 0 ...   

.Thus the smallest number indeed is . 

4) So, logically  

  

  

1 1
, .

1

1

1

and Hence   
 

  

    

     
 

Representation of complex roots 

As we know, the roots of a function ( ) 0f x  are those 

values of x where the curve intercepts the horizontal axes. 

This is well done for the case of real roots, why it shouldn't 

be true for imaginary roots?  
2( ) 1f x x  Let us plot the curve of   
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Fig. 1: the graph of 
2( ) 1f x x   

 

The curve does not intercepts the horizontal axes, while it 

intercepts the vertical axes at y=1.   
It is clear that in flat (Euclidean) space, the curve will 

eternally never intercept the horizontal x-axis. However, in 

non-Euclidean geometry the situation is different. In 

Riemann elliptical geometry, that every pair of lines will 

meet each other at some finitely distant point. In the 

hyperbolic geometry, the straight line is just drawn locally 

and no longer has indefinitely continued straight. The 

curvature of the hyperbolic line increases as distant as it is 

extended. At infinitely where i    the curve meets 

the infinitely extended horizontal real line where the roots 

located at, 

2 1 0x x i     
  

Exactly, at i   , the end point of the infinity real 

hyperbolic line is projected to the point z i on the 

vertical imaginary axis in the complex plane. Note that, the 

statements "infinity" and "imaginary" now are equivalent.  

Hence the real hyperbola is an imaginary (infinite) ellipse, 

and the real ellipse is an imaginary (infinite) hyperbola. 

Napier calls the square roots of negative numbers "the 

ghosts of real numbers" [5], following this concept the real 

line can be interpreted as a ground state,  

while  z i  represents a first state and so on: 

0 0mod( ) 0( )

1 1mod( ) 1( )

i i first state

i i first state

  

     
This concept will help us to resolve many paradoxes 

reported by Euler and Penrose in the next section. Math and 

physics collapse at infinity where no well Known 

mathematical tools and algebraic operations exist. Since 

math is well done for imaginary numbers, one can convert 

infinity into its imaginary form, where mathematics is well 

defined. 

 

Imaginary ellipse and imaginary hyperbola. 

According to our previous discussion, at infinity the 

hyperbola will turn to be a huge ellipse (imaginary 

ellipse). While the imaginary hyperbola turns to be real 

ellipse 

 
 

Fig. 2: the graph of the equation in blue, which is the 

corresponding simple equation for a hyperbola that has its center 

at the origin of the coordinates [5]. 

 

 
 

Fig. 3: The graph of the equation in blue, which is a simple 

equation for an ellipse that has its center at the origin of a set of 

rectangular coordinates [6]. 

 

Resolve the paradoxes 
Historically, paradoxes and conceptual problems of 

mathematics have usually stemmed from the infinite. This 

includes, for example, Zeno’s paradoxes in Greek times, 

infinitesimals in the seventeenth century, and the paradoxes 

of set theory in the late nineteenth and early twentieth 

centuries. In every case the problem stemmed from trying 

to reason with infinite quantities [1].  

 

(a) The first paradox 

Consider the following expansion  

2 31
1 ...

1
x x x

x
    

  
 

Put x=2, we get the paradox 
2 31 1 2 2 2 ...        

It is obvious that 1    in the usual sense. Let us treat 

this paradox from a different point of view, namely our 

new interpretation that discussed in the previous section. 

That is, -1 here is not in the ground state (level), rather it is 

located in the first state  
2 3

2 3

2 3

1 2 2 2 ... 1 0( )

1 2 2 2 ... 1

1 2 2 2 ... 1mod( )

first state      

      

      
 

 

(b) The second paradox 

2 31
1 ...

1

, 1

1
1 1 1 ...

0

1 1 1 ...

x x x
x

put x

accepted

    


 

   

    

 



 

~ 79 ~ 

World Wide Journal of Multidisciplinary Research and Development 
 

     

, 1

1
1 1 1 1...

2

1
1 1 1 1 1 1 ...

2

1
0 0 0 ...

2

1
0

2

put x

rejected



   

      

   



 
 

By our usual sense it is obvious to accept the first result 
1

0
 

, and to reject the other one

1
0

2


. But math is math! 

Why we do so? What is wrong? Is there any something 

conceptual that is missing? Again, let us treat this paradox 

from a different point of view. One can easily recognized 

that we had collected each pair together,  

     
1

1 1 1 1 1 1 ...
2

1
0

2

      


 

As if we have had already assumed that, the number of 

terms in the infinite series is even, is infinity even? Let us 

try the other alternative that infinity is odd  

     
1

1 1 1 1 1 1 1 ...
2

1
1

2

       


 

We have no reason to accept either alternative and reject 

the other. In order to resolve the paradox, it is reasonable to 

assume infinity is both even and odd. We should take into 

account the both alternatives simultaneously, yields  

21
1 ...

1

1

1
1 1 1 ... 0, ( )

2

1
1 1 1 ... 1, ( )

2

x x
x

x

even

odd
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

 

      

      
 

 

Add (i) and (ii), we get  

1 1
0 1

2 2

1 1

  

   
 

Eventually, the paradox is resolved if infinity is taken to be 

both even and odd simultaneously. 

(ii) We could apply the previous method twice to resolve 

the paradox 

 

 

2 3

2

2

1
1 2 3 4 ...

1

1
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1 2 3 4 5 ...

41

x x x
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oddx

    
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    
 

We have no reason to accept either alternative and reject 

the other. In order to resolve the paradox it is reasonable to 

assume infinity is both even and odd. We should take into 

account the both alternatives simultaneously, add them 

together yields.  

1 1 1
1 1 1 1 ...

4 4 2
      

 
By the previous paradox  

1 1
0 1

2 2

1 1

  

   
 

The third paradox 
In his book: The Road to Reality - A Complete Guide to the 

Laws of the Universe, Penrose, Roger state the following 

paradox [7] 

 
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Or simply: 
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All previous steps satisfied a well known mathematical 

reasoning. How one can resolve the paradox, while still 

respects the previous mathematical reasoning. 

 New approach is needed to solve the paradox. 
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Note: The important point in solving the last paradox, we 

aware that 
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This is a very logical statement. We shall adopt it as an 

axiom. 

 

Taming the Zero and Infinity 

of course the problem which arises when one tries to 

consider zero and negatives as numbers is how they interact 

in regard to the operations of arithmetic, addition, 

subtraction, multiplication and division. The Indian 

mathematician Brahmagupta [8] tried to answer these 

questions. Brahmagupta attempted to give the rules for 

arithmetic involving zero and negative numbers in the 

seventh century. He explained that given a number then if 

you subtract it from itself you obtain zero. He gave the 

following rules for addition which involve zero:-The sum of 

zero and a negative number is negative, the sum of a 

positive number and zero is positive; the sum of zero and 

zero is zero. A negative number subtracted from zero is 

positive, a positive number subtracted from zero is 

negative, zero subtracted from a negative number is 

negative, zero subtracted from a positive number is 

positive, zero subtracted from zero is zero. Brahmagupta 

then says that any number when multiplied by zero is zero 

but struggles when it comes to division:-A positive or 

negative number when divided by zero is a fraction with the 

zero as denominator. Zero divided by a negative or positive 

number is either zero or is expressed as a fraction with 

zero as numerator and the finite quantity as denominator. 

Zero divided by zero is zero. Bhaskara wrote over 500 

years after Brahmagupta. Despite the passage of time he is 

still struggling to explain division by zero. Bhaskara tried 

to solve the problem by writing n/0 = ∞. At first sight we 

might be tempted to believe that Bhaskara has it correct, 

but of course he does not. If this were true then 0 times ∞ 

must be equal to every number n, so all numbers are equal. 

The Indian mathematicians could not bring themselves to 

the point of admitting that one could not divide by zero. 

There is no single number that solves the expression "0/0,". 

Zero is a rich source of paradoxes. The equation 5/x=y, 

where x=0, means that y is going to be either infinite, or 

"undefined. Now, this has been criticized on the basis that 

x/0 is "undefined." "Undefined" can literally mean that it 

does not occur as an axiom, definition, or theorem in an 

axiomatic (i.e. set theoretical) number system. However, 

"undefined" is usually used casually to mean "meaningless. 

In other words, "undefined" often really means "we don't 

want to think about it." A more relevant or honest answer 

would be, "No axiomatic number system has yet been able 

to deal with this, so I don't know what to say [9]. Instead of 

the undefined phase of the zero, we use its representative 

form 2i , while we use i to represent the mysterious 
 .  

 

New Arithmetic Solving Indeterminants.  
Consider the extended Real Numbers, 

   * , ,i i    
 

Associated with additional following two axioms, 

 

Axioms 

0 2

i

i
 

  
 

Similar to the definition of the zero: 

 

(i)0+0=0

(ii)0-0=0

(iii)0 0=0

iv 0a a



 
 

 

We state the following definition  

 

Definition  

Define  2i
to be the principle zero among all multiple of 

zero  2ni  

We formulate definition for our principle zero  2i
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(ii) 2i  - 2i  = 2i

(iii) 2i  × 2i = 2i
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  

  

  




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Note, according to the above definition 
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(3) Whenever you find 2i +2i  or 2i 2i   

just replace each of them by 2i , that is, 
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2i 2i 2i

2i 2i 2i

2i 2i

( )

2i 2i

2i 2i

by ii

  

  

 

 

 

 





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(4)  

 

 

 

2i 2i 2i

2i 2i 2i

2i 1 1 2i

2i 2i 2i

( )by iii

  

  

 

  

 

 

 



 
 

Example 

To illustrate the importance of the usage of the principle 

zero 2i to resolve the following paradox. Consider 

 2i
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i
i

i

i
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e e

e e e

e
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

















 



 
 

Now use 0 2i  

 2i
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-2 ln1

-2 0 2

-2 -2

1

1

i
i

i

i

i i i

e

e

e e

e e e

e e

true







 

 

 







 



 

Note that if we use any other  2ni
zero differs than the 

principle zero 2i , it wouldn't solve the paradox. 

For example if we use the zero 
 4i

, then 

 2i
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i
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e e
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
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 
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
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 
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Propositions  

 

  
0 2

2

2

x x
i i

i

x i i

x







   

  

   
is the unique solution. Hence, we overcome the problem of 

"undefined" when dividing by zero. 

 

     2

0 2
1

0 2

0 0 2 2 4

i
ii

i

iii i i





  

 

   
 

 

    

  

1

1

1 1
,

0 2 2

0 2 2

i i
iv

i i

i i i i
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v i i

i i

 

 

  
   

  

         

   
 

   

   
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i
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  
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 
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2 2
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0
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i
i

i

iix i e
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e
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
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



 
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 
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
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

 
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 



 
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2 2
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2 ln 1 ln 2

0 3

0

i i i

i
i

i i

i
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i i

ix i e

e e

e

x i e

e e

e

similarly

xi e
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

 


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






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 


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
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



  

 
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   

 

  

 
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       

     

 

2 2 2

2

0 0 3 4

0 0 0 0

0 2 2 02 ln1

2 2 4

:

1 1
i ii

i i
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e e e

i i

e e

e e

consistent

  

 

  

  


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
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
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   

   
 

 

       
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2 2

0 2
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0 0 1
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e
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e e
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

 


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

 




  



 

 

 
 

Results 

 
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    
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 
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 
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



 

 




 

(13). Many paradoxes are resolved if infinity had taken to 

be both even and odd simultaneously. 

 

Conclusion 
Abstract, simply means outside space and time, entities can 

be ‘seen’ with ‘the mind’s eye.  Paradoxes and conceptual 

problems of mathematics have usually stemmed from the 

infinite. In every case the problem stemmed from trying to 

reason with infinite quantities. Infinity, zero and the 

imaginary number are the most mysterious entities and 

unfathomable objects in mathematics. We've dug deeply to 

discover the essence of these mysterious mathematical 

entities. We investigate the nature of the relations govern 

them. We have made a great effort to remove the ambiguity 

of these mysterious entities. We develop new axioms to 

tame infinity zero and the imaginary number. Hence, we 

tamed them to resolve many paradoxes and to solve the 

indeterminants. 
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