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Abstract 
This paper a standard model of Notch-Delta mediated lateral inhibition was considered and 

investigated the effect that transactivation of Notch by Delta and the inhibition threshold of 

Delta by Notch signaling (i.e. the dimensionless thresholds a  and b ) would have on the 

dynamics of lateral inhibition for a system of two cells. It was observed that, provided there 

exist a degree of variability in signaling thresholds between cell pairs, the cell fates can be 

determined by Notch-Delta mediation and the dynamics is highly dependent on the 

thresholds. 
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1. Introduction 

Dynamics is the study that deals with the changes that occur with systems that evolve in 

time. A system that exhibits dynamics could be one that settles down in equilibrium, keeps 

repeating in cycles (i.e. periodic) or portrays a more complex behavior (chaotic). Such 

system is known as a dynamical system. In simpler words, a dynamical system is a system 

that exhibits certain behavior in a particular pattern. Dynamical systems in the physical world 

often evolve from dissipative systems; whereby the dissipation may come from internal 

friction, thermodynamic losses, among many other causes. Examples if dynamical systems 

include the mathematical models that describe; the swinging of a clock pendulum, the flow 

of water in a pipe, the Lorenz system etc. 

Dynamics is the study that deals with the changes that occur with systems that evolve in 

time. A system that exhibits dynamics could be one that settles down in equilibrium, keeps 

repeating in cycles (i.e. periodic) or portrays a more complex behavior (chaotic). Such 

system is known as a dynamical system. In simpler words, a dynamical system is a system 

that exhibits certain behavior in a particular pattern. Dynamical systems in the physical world 

often evolve from dissipative systems; whereby the dissipation may come from internal 

friction, thermodynamic losses, among many other causes. Examples if dynamical systems 

include the mathematical models that describe; the swinging of a clock pendulum, the flow 

of water in a pipe, the Lorenz system etc. circuits etc. Chaos is used in various fields to 

predict weather, turbulence, state of the brain, rhythm of the heart, stock market etc. through 

fractal mathematics. Chaos is commonly referred to as finding order in disorderliness.  

Chaos theory is a developing mathematical theory and a subfield of dynamics that deals with 

the behavior of certain nonlinear dynamical and deterministic systems which exhibit chaotic 

behavior under certain physical conditions. It is the study in which apparently random events 

are inherently predictable from straightforward deterministic equations. 

In chaos theory, approaches designed to control chaos are based on certain observed system 

behaviors. Any chaotic attractor contains an infinite number of unstable, periodic orbits. 

Chaotic dynamics then, consists of a motion where the system state moves in the 

neighborhood of one of these orbits for a while, then falls close to a different unstable 

periodic orbit where it remains for a limited time, and so forth. This results in a complicated 

and unpredictable wandering over long periods of time. 
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Control of chaos is the stabilization, by means of small 

system perturbations of one of these unstable periodic 

orbits. The result is to render an otherwise chaotic motion 

more stable and predictable, which is often of an 

advantage. The perturbation must be tiny compared to the 

overall size of the system to avoid significant modification 

of the system’s natural dynamics. 

The methods describing chaotic behavior occur in many 

areas of science and technology and sometimes are more 

suitable for describing oscillations and indeterminacy than 

the stochastic, probabilistic methods.  

The non-feedback control is referred to as the control of 

chaos by ‘perturbation’ or ‘program signal’. It involves 

changing the behavior of a nonlinear system by applying a 

properly chosen external excitation. The excitation can 

reflect the influence of some physical action such as an 

external force/field, or it can be some parameter 

perturbation (modulation). This approach to controlling 

chaos is attractive because of its simplicity; i.e. no 

measurements nor extra sensors are needed and it is 

generally advantageous for ultrafast processes e.g. at the 

molecular or atomic level where np possibility of 

measuring system variables exists.  

The possibility of transformation of periodic motion into 

chaotic motion and vice versa by an external harmonic 

excitation was first studied in the 1980s in Moscow State 

University by Dudnik, et al (1983) and Kuznetsov, et al 

(1985) for the Lorenz system and by Alekseev and 

Loskutov (1985, 1987) for a fourth-order system describing 

dynamics of two interacting populations; these results were 

based on computer simulations.  

Recently, investigations were aimed at better suppression 

of chaos using smaller values of excitation amplitude and 

providing convergence of the system trajectories to the 

desired periodic orbit (limit cycle). Belhaq and Houssni 

(1991) considered the case of quasi-periodic excitation by 

reducing it to the periodic case, so also did Basios, et al 

(1999) studied the case of parametric excitation by 

Melnikov analysis. Since a chaotic attractor contains 

trajectories close to periodic orbits with different periods, a 

proper choice should be made to minimize the amplitude of 

excitation. 

 

2.  Methodology 

The Notch signaling pathway is a highly conserved ell 

signaling system present in most multicellular organisms. 

Mammals for example possess four different notch 

receptors, referred to as NOTCH1, NOTCH2, NOTCH3, 

and NOTCH4. The Notch receptor is a single-pass 

transmembrane receptor protein that coordinates a signaling 

system known as the Notch pathway. It is a protein 

required for the coordination and regulation of biological 

pattern formation in all multicellular animal species- from 

worms to humans. It is also needed for the mediation and 

determination of cell fates. For instance, it is required for 

the wing outgrowth of insects. Notch, being an unusual 

transmembrane protein functions both at the cell surface to 

receive extracellular signals and in the nucleus to regulate 

gene expression in animals. 

Notch signaling was first genetically discovered in by John, 

(1914) when he noticed the appearance of a Notch in the 

wings of the fruit/mutant fly “Drosophila melanogaster”. 

Notch signaling pathway describes an evolutionary 

conserved cell-cell communication mechanism which plays 

a crucial role in mediating cell-fate differentiation during 

embryonic development and wound healing. It consists of 

the notch trans-membrane protein receptor and its protein 

ligands, Delta and Jagged. Biological pattern formation is 

enabled by molecular mechanisms of cell-cell signaling, 

which permits cells to influence each other’s fate and 

behavior. One of the most important mechanisms of cell 

signaling is mediated by Notch. 

The interaction between the Notch receptor and both 

ligands of the same cell leads to the degradation of both 

interacting proteins (i.e. receptor and ligand), as a result 

does not generate signal, and is known as cis-inhibition. 

The interaction that exists between the receptor of a cell 

and both ligands pf a neighboring cell leads to the cleavage 

of the Notch receptor which releases the Notch Intracellular 

Domain (NCID) signal into the cytoplasm in the cell 

nucleus to modify gene expression and is called trans-

activation. 

 

The following are the numerous functions of notch 

signaling in multicellular organisms: 

i. Neuronal function, development and control 

ii. Homoeostasis of the cardiac valve as well as 

implications in other human disorders involving the 

cardiovascular system (the circulatory system that 

permits the circulation of blood and transport of 

nutrients within the body) 

iii. Timely cell lineage specification of both endocrine and 

exocrine pancreas 

iv. Regulation of embryo polarity, where the absence of 

notch signaling causes abnormal anterior-posterior 

polarity in somite (a somite is a division of the body of 

an embryo) 

v. Involvement of Notch signaling in cancers has led to 

the investigation of notch inhibitors used as cancer 

treatments.  

 

Lateral Inhibition Mediated by Notch-Delta Interaction 

(The Model) is described as an emergent property of the 

Delta-Notch signaling network. For this model, we 

considered that the rate of Notch activation in a cell is an 

increasing function of Delta concentration on its neighbor 

(signaling), and that the rate if Delta expression is a 

decreasing function of the level of activated Notch in the 

same cell (inhibition). These interactions are represented by 

a means of a standard mathematical model of Notch-delta 

signaling between cell pairs, which are given by: 

12
1 )( NDf

dt

dN
N     (1) 

11
1 )( DNf

dt

dD
D     (2) 

21
2 )( NDf

dt

dN
N     (3) 

22
2 )( NNf

dt

dD
D     (4) 

 

Where 2,1N  represent the levels of Notch activity in cells 1 

and 2, and 2,1D  are the concentrations of Delta in each 

cell.  and   are the maximal production rates of Notch 
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and Delta respectively. N  and 
D  are their 

corresponding degradation rates.  

 

For ease of calculation, equations (1 - 4) are written in 

dimensionless form as: 
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Where the parameter v  is the ratio between the degradation 

rates of Delta and Notch D / N . a  and b are the 

dimensionless thresholds for Notch activation by Delta in 

the neighboring cell, and Delta inhibition by Notch in the 

same cell respectively. 



 DNk
a   and 



 NDk
b     (6) 

 

a  and b are referred to as the activation and inhibition 

thresholds respectively. Nk is the threshold of Notch 

activation by neighboring Delta, Dk  is the threshold of 

Delta inhibition by Notch in the same cell, and the 

coefficients r and h represent the cooperative character of 

the two aforementioned processes.  

We investigate the temporal evolution of the model by 

solving numerically the equations (5). 

For this purpose, we use the fourth order Runge-Kutta 

method. In our calculations, we consider 2 hr  and 

ND   , and using a time span of (0-300), we consider 

the cells initially as negative for Notch activation, with 

similar initial levels of Notch and Delta (

0,20,20,10,1 ,,, DNDN ) = ( 91.0,06.0;90.0,05.0 ) in 

dimensionless units.  

 

3.  Results And Discussion 

The sets of differential equations in equation (5) were 

solved using the fourth order Runge-Kutta scheme as 

presented in each of the plots in the figure below. In the 

calculation I used a step size of 0.001. The initial 

conditions are ( 0,20,20,10,1 ,,, DNDN ) = (

91.0,06.0;90.0,05.0 ) in dimensionless units with 

computation over the interval {0, 300}. I studied the steady 

state behavior of a standard model of lateral inhibition for 

the case of two cells namely; Notch and Delta. The steady 

states of this system are dependent on two parameters a  

and b which are the dimensionless activation and inhibition 

thresholds respectively. As seen in figures 1, 2, 3, 4 below, 

we allow the values of a  and b  to vary across the 

population of the cell pairs.  

Thus, for a population of cell pairs with variable activation 

and inhibition thresholds ( a  and b ), the possible 

signaling states were generated and presented in Figs. 1, 2, 

3, and 4 by time series depicting the dynamic behavior of 

the solved system. Put in another way, but expressing the 

same meaning, Figs. 1, 2, 3, and 4 through time series show 

the stable solutions of the system which are classified 

according to their resulting signaling states. This is done for 

varying values of a  and b  (i.e. for 1.0a  and 1.0b

, 1a  and 01.0b , 001.0a  and 1.0b , 

10a  and 1b ) as previously said in the preceding 

paragraph. 

In the figures below, Notch 1 and 2 represent the levels of 

Notch activity in cells 1 and 2. And delta 1 and 2 are the 

concentration of Delta in each cell. 

And delta 1 and 2 are the concentration of Delta in each 

cell.  

 

 
 

Fig: 1 Time Series Showing the Stable Solutionas of the System at a=0.1 and b=0.1 
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Fig: 2 Time Series Showing the Stable Solutionas of the System at a=0.1 and b=0.1 

 

 
 

Fig: 3 Time Series Showing the Stable Solutionas of the System at a=0.1 and b=0.1 
 

 
 

Fig: 4 Time Series Showing the Stable Solutionas of the System at a=0.1 and b=0.1 

 

Comparing the figures, I observed that varying the 

threshold values a  and b has effect of producing larger 

Notch with a maximum while presenting lower Delta 

values (as presented in Fig 1). In fig 2, the threshold values 

of 0.1a  and 01.0b shows larger value of Delta with 

well-defined minimum compared to the Notch values. Fig 3 

with 001.0a  and 1.0b shows higher Notch values 

and low Delta values similar to Fig 1 without any defined 

minimum or maximum. Fig 4 also produced similar Notch-

Delta relationship to Fig 2 with the exception of well-

defined stationary points. This shows a complex temporal 

dynamics of the Notch-Delta signaling to the threshold 

values as the results are highly dependent on the values. 

This population level variability of signaling thresholds can 

be associated to diversity in the contact areas between cell 
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pairs. The model reproduced the signaling outcomes 

observed in the Drosophila intestine. 

 

Conclusion 
Provided there exists a degree of variability in signaling 

thresholds between cell pairs, the cell fates can be 

determined by Notch-Delta mediation and the dynamics is 

highly dependent on the thresholds. The model reproduced 

outcomes observed in the Drosophila intestine, which 

results into cell differentiation versus self-renewal fates. 

The complex dynamics of cell-cell interactions can thus be 

explained using the temporal analysis of Notch-Delta 

signaling. 
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