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Abstract 
The transient stability of multi-machine power systems is a critical aspect in ensuring the reliable and 

secure operation of electrical grids. This paper presents an in-depth investigation and analysis of 

transient stability in multimachine systems, focusing on identifying potential stability issues and 

proposing effective solutions. The paper begins by introducing the concept of transient stability and its 

importance in maintaining system resilience during disturbances. It highlights the challenges posed by 

the increasing complexity and interconnectedness of modern power systems, emphasizing the need for 

accurate transient stability analysis techniques. Various analytical methods and tools employed for 

transient stability analysis are reviewed. The advantages and limitations of each approach are discussed, 

providing insights into their applicability in different system scenarios. The paper also addresses the 

key factors affecting transient stability, such as generator characteristics, system topology, and control 

strategies. It explores the impact of various disturbances, such as faults, load variations, and network 

configuration changes, on system stability by determining the critical clearing time (CCT). 

Furthermore, it investigates the influence of protective devices, such as circuit breakers and relays, on 

transient stability and proposes strategies to enhance their coordination. To improve transient stability, 

the paper proposes Numerical integration techniques. The effectiveness of these techniques in 

enhancing system stability is evaluated through The six-bus power system network of an electric utility 

company that used as test system. 

 

Keywords: Numerical integration techniques, Transient Stability, multimachine systems, disturbances, 

critical clearing time (CCT). 

 

1. Introduction 

The reliable and secure operation of electrical power systems is of paramount importance for 

maintaining the stability and quality of power supply to consumers. Transient stability, which 

refers to the ability of a power system to maintain synchronism and recover from disturbances, 

plays a crucial role in ensuring the resilience of the grid. With the increasing complexity and 

interconnectedness of modern power systems, the analysis and assessment of transient stability 

in multi-machine systems have become vital for power system engineers and operators [1-3]. 

Transient stability analysis involves studying the dynamic behavior of power system 

components, such as generators, transmission lines, and loads, during transient events such as 

faults, sudden changes in load, or network configuration alterations. The objective is to assess 

the system's ability to withstand these disturbances and return to a stable operating condition 

within an acceptable time frame. 

The analysis of transient stability in multi-machine systems is more challenging compared to 

single-machine systems due to the complex interaction and interdependence of multiple 

generators, interconnected transmission lines, and control devices. The dynamic response of 

each machine and the interaction among them during transient events can significantly 

influence the stability of the entire system. Therefore, a thorough understanding of these 

interactions and their impact on system stability is crucial for effective analysis and control. 

Transient stability analysis techniques have evolved over the years, driven by advancements 

in computational capabilities and the need to tackle the increasing complexity of power 

systems. Various analytical methods, numerical simulations, and time-domain simulations 
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have been developed to assess transient stability. These 

techniques consider factors such as generator characteristics, 

system topology, control strategies, and protective devices 

to evaluate stability margins and identify critical issues [4,5]. 

The importance of transient stability analysis extends 

beyond ensuring the reliable operation of power systems. It 

also helps in system planning, design, and the development 

of control strategies to maintain stability under various 

operating conditions and contingencies. Additionally, 

transient stability analysis plays a crucial role in the 

integration of renewable energy sources, grid modernization 

efforts, and the enhancement of system resilience against 

emerging challenges, such as the increasing penetration of 

electric vehicles. 

This paper aims to provide a comprehensive overview of 

transient stability analysis for multi-machine systems. It will 

explore the various analytical methods, simulation 

techniques, and control strategies employed in transient 

stability analysis. The paper will also highlight the 

challenges posed by system complexity and identify 

potential solutions to enhance transient stability. By 

consolidating existing knowledge and addressing current 

research gaps, this paper aims to contribute to the 

development of more robust and secure electrical grids 

capable of withstanding transient disturbances. 

Transient stability analysis for multi-machine systems 

involves several key steps and mathematical formulations to 

assess the system's ability to withstand transient disturbances 

and maintain stability. The following formulation highlights 

the essential concepts and vocabulary associated with 

transient stability analysis [6,7]: 

• Solve the Initial Load Flow: The first step in transient 

stability analysis is to compute the steady-state 

operating conditions of the power system by solving the 

load flow equations. This involves finding the voltage 

magnitudes, phase angles, and power flows in the 

network under normal operating conditions. 

• Kron Reduction Formula: To simplify the analysis of 

multi-machine systems, the Kron reduction formula is 

often employed. This formula allows the reduction of 

the detailed network representation into an equivalent 

system with aggregated generator and load buses. The 

reduced system retains the essential dynamic 

characteristics while reducing computational 

complexity. 

• Numerical Integration Techniques: Transient stability 

analysis involves solving the swing equation, which 

describes the dynamic behavior of synchronous 

generators during transient events. Numerical 

integration techniques, such as the Euler method, 

Runge-Kutta methods, or the trapezoidal rule, are 

applied to solve the swing equation numerically. These 

techniques approximate the system's state variables 

(rotor angles, speeds, and electrical variables) at 

successive time intervals. 

• Swing Equation: The swing equation represents the 

dynamic response of synchronous generators and is a 

key component of transient stability analysis. It is 

derived from the mechanical and electrical equations of 

the generator. The swing equation describes the 

acceleration of the rotor angle with respect to time and 

incorporates factors such as generator inertia, damping, 

electrical power input, and mechanical torque. 

• System Equations and State Variables: Transient 

stability analysis involves formulating a set of 

differential equations that describe the dynamic 

behavior of the system. These equations typically 

include the swing equation for each generator, 

differential equations for other system components 

(such as excitation systems and voltage regulators), and 

algebraic equations representing the network equations 

(Kirchhoff's laws). The state variables of the system 

include rotor angles, rotor speeds, voltages, and 

currents. 

• Stability Assessment and Critical Clearing Time: Once 

the system equations are formulated and solved using 

numerical integration techniques, stability assessment is 

performed. The critical clearing time (CCT) is a key 

metric used to evaluate transient stability. It represents 

the time duration after a disturbance until the system 

reaches its stability limit. The CCT provides an 

indication of the system's ability to withstand 

disturbances without losing stability. 

 

In transient stability analysis for multi-machine systems, 

solving the initial load flow, applying the Kron reduction 

formula, utilizing numerical integration techniques to solve 

the swing equation, and assessing stability through the 

critical clearing time are crucial steps in understanding and 

evaluating the system's transient stability characteristics. 

 

2. Numerical integration techniques of transient 

stability 

Numerical integration techniques, such as the Euler method 

and Runge-Kutta methods, offer several advantages in the 

context of transient stability analysis and solving differential 

equations [8-10]: 

• Flexibility: Numerical integration techniques provide 

flexibility in handling complex systems with 

nonlinearities and time-varying parameters. They can 

handle a wide range of system configurations and 

dynamic behaviors, making them suitable for transient 

stability analysis in multi-machine systems. 

• Accuracy: While numerical integration techniques 

introduce approximations, they can provide accurate 

solutions when appropriately applied. Higher-order 

methods, such as the Runge-Kutta methods, offer 

improved accuracy by using multiple stages and 

evaluating derivatives at intermediate points. This 

accuracy is crucial for capturing the fine details of 

transient behavior and accurately assessing stability. 

• Efficiency: Numerical integration techniques offer 

computational efficiency compared to analytical and 

symbolic methods, especially for systems with a large 

number of equations and variables. They allow for 

efficient time-stepping by updating the system's state 

variables at discrete time intervals, enabling the 

simulation of system dynamics over extended time 

periods. 

• Adaptability: Numerical integration techniques can 

adapt to different time steps based on the system's 

behavior. They allow for variable time stepping, where 

smaller time steps are used during critical transients or 

when the system dynamics change rapidly, and larger 

time steps are used during stable periods. This 

adaptability balances accuracy and computational 

efficiency. 

• Robustness: Numerical integration techniques are 
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robust and can handle a wide range of system 

conditions, including abrupt changes, discontinuities, 

and nonlinearities. They can handle events such as 

faults, load variations, and control actions with stability 

and accuracy, making them suitable for transient 

stability analysis in realistic power system scenarios. 

• Implementation Simplicity: Numerical integration 

techniques are relatively straightforward to implement 

compared to analytical methods. Once the system 

equations are formulated, numerical integration 

methods offer practical and accessible approaches for 

solving the equations and obtaining numerical 

solutions. 

• Widely Used and Tested: Numerical integration 

techniques have been extensively used and tested in 

various scientific and engineering applications, 

including power system analysis. They have well-

established theoretical foundations and are supported by 

a wealth of existing numerical methods and algorithms, 

making them reliable and trusted tools for transient 

stability analysis. 

 

While numerical integration techniques have advantages, it 

is important to select an appropriate method based on the 

specific system characteristics, accuracy requirements, and 

computational resources available. The choice between 

methods like the Euler method, Runge-Kutta methods, or 

more advanced techniques depends on the desired tradeoff 

between accuracy and computational efficiency in a given 

transient stability analysis scenario. 

The Euler method and Runge-Kutta methods are numerical 

integration techniques that can handle nonlinearities and 

time-varying parameters in differential equations, including 

those encountered in transient stability analysis. An 

explanation of how each method handles these factors as 

follow: 

Euler Method:  

The Euler method is a simple and straightforward numerical 

integration technique that approximates the solution of a 

differential equation by stepping forward in time with a fixed 

time step. Here's how it handles nonlinearities and time-

varying parameters: 

• Nonlinearities: In the Euler method, the nonlinearities 

in the system equations are considered at each time step. 

At each time increment, the derivatives of the state 

variables are evaluated based on the current values of 

the state variables. These derivatives capture the effect 

of nonlinear elements, such as power system 

components or control devices, in the system equations. 

The method then uses these derivatives to update the 

state variables for the next time step. 

• Time-Varying Parameters: The Euler method can 

handle time-varying parameters by updating the values 

of these parameters at each time step. If the system 

equations involve time-varying parameters, such as 

varying loads or control signals, the method considers 

the current values of these parameters during the 

evaluation of the derivatives. This ensures that the time-

varying nature of these parameters is properly 

accounted for in the integration process. 

 

While the Euler method is relatively simple to implement, it 

has limitations in terms of accuracy, especially for systems 

with rapid changes or highly nonlinear behaviors. To address 

these limitations, more advanced methods like the Runge-

Kutta methods are often employed. 

Runge-Kutta Methods: 

Runge-Kutta methods are a family of numerical integration 

techniques that provide higher accuracy by evaluating 

derivatives at multiple stages within each time step. These 

methods handle nonlinearities and time-varying parameters 

as follows: 

• Nonlinearities: Runge-Kutta methods employ a series of 

stages to approximate the derivatives of the state 

variables within each time step. These stages involve 

evaluating the derivatives at intermediate points using a 

weighted combination of derivative evaluations. By 

considering multiple stages, Runge-Kutta methods 

capture the effect of nonlinearities more accurately than 

the Euler method. 

• Time-Varying Parameters: Similar to the Euler method, 

Runge-Kutta methods can handle time-varying 

parameters by updating their values at each time step. 

The derivatives at each stage within the method's 

iterations are evaluated based on the current values of 

the state variables and the time-varying parameters. 

This ensures that the impact of time-varying parameters 

on the system dynamics is properly accounted for 

during the integration process. 

 

Runge-Kutta methods, particularly higher-order variants 

like the fourth-order Runge-Kutta method (RK4), provide 

improved accuracy compared to the Euler method. They 

achieve this by employing multiple derivative evaluations 

and using weighted combinations of these evaluations to 

update the state variables. The increased accuracy of Runge-

Kutta methods makes them more suitable for handling 

complex systems with nonlinearities and time-varying 

parameters encountered in transient stability analysis. 

Apart from the Euler method and Runge-Kutta methods, 

there are other numerical integration techniques commonly 

used in transient stability analysis. Some of these techniques 

include: 

• Trapezoidal Rule: The Trapezoidal Rule is a widely 

used numerical integration method that provides better 

accuracy compared to the Euler method. It 

approximates the solution by taking the average of the 

derivatives at the current and next time steps. The 

Trapezoidal Rule balances the contributions from the 

current and future states, resulting in improved accuracy 

and stability. 

• Backward Euler Method: The Backward Euler method 

is an implicit numerical integration technique that 

approximates the solution by using the derivative 

evaluated at the next time step. It provides unconditional 

stability and can handle stiff systems, where the time 

constants of the system components vary significantly. 

The Backward Euler method is particularly useful when 

dealing with systems with fast dynamics or rapidly 

changing parameters. 

• Gear's Method: Gear's method is a family of implicit 

numerical integration techniques that provide higher 

accuracy and stability compared to the Euler method. 

These methods use a combination of backward and 

forward differences to approximate the derivatives. 

Gear's methods are particularly effective for stiff 

systems and can handle systems with varying time steps. 

• Adams-Bashforth-Moulton Methods: Adams-
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Bashforth-Moulton methods are explicit numerical 

integration techniques that use a combination of 

backward and forward differences to approximate the 

derivatives. These methods estimate the derivative at 

the next time step using previous derivative values. 

Adams-Bashforth methods are useful for solving 

systems with moderate stiffness and are often combined 

with other techniques for higher accuracy. 

• Predictor-Corrector Methods: Predictor-Corrector 

methods combine the predictions made by an explicit 

method with the corrections obtained from an implicit 

method. These methods utilize both forward and 

backward differences to estimate the derivatives and 

update the state variables. The Adams-Moulton method 

combined with the Adams-Bashforth method is a 

common predictor-corrector approach used in transient 

stability analysis. 

 

The choice of numerical integration technique depends on 

several factors, including the system's characteristics, 

desired accuracy, computational efficiency, and the presence 

of stiff or rapidly changing dynamics. Different methods 

have their strengths and limitations, and selecting an 

appropriate method involves considering the specific 

requirements and constraints of the transient stability 

analysis scenario [11,12]. 
 

Table 1: Advantages and disadvantages of some commonly used numerical integration techniques in transient stability analysis. 
 

Techniques Advantages Disadvantages 

 

Euler Method 

Simplicity: The Euler method is straightforward to 

implement and understand 

- Accuracy: The Euler method has relatively low accuracy, 

especially for systems with rapid changes or highly nonlinear 

behaviors. 

 

Computational Efficiency: It requires fewer 

computations per time step compared to more 

advanced methods. 

 

- Stability: It may exhibit stability issues, particularly for stiff 

systems or when the time step is not sufficiently small. 

 

 

Runge-Kutta 

Methods 

- Accuracy: Runge-Kutta methods, especially 

higher-order variants like RK4, offer improved 

accuracy compared to the Euler method. 

 

- Computational Complexity: Runge-Kutta methods require 

more computations per time step than the Euler method, 

leading to increased computational overhead. 

 

- Flexibility: They can handle a wide range of 

nonlinearities and time-varying parameters in the 

system equations. 

 

- Stiff Systems: While Runge-Kutta methods can handle a 

range of systems, they may struggle with stiff systems 

characterized by widely varying time constants. 

 

 

Trapezoidal Rule 

- Accuracy: The Trapezoidal Rule provides better 

accuracy than the Euler method and is relatively 

simple to implement. 

 

- Computational Complexity: The Trapezoidal Rule involves 

more computations per time step compared to the Euler 

method, increasing computational requirements. 

 

- Stability: It is unconditionally stable, making it 

suitable for a wide range of systems. 

 

 

 

Backward Euler 

Method: 

 

- Stability: The Backward Euler method is 

unconditionally stable and can handle stiff systems 

effectively. 

 

- Computational Complexity: It requires solving nonlinear 

equations at each time step, making it computationally more 

demanding than explicit methods. 

 

- Accuracy: It offers improved accuracy compared 

to the Euler method. 

 

 

Gear's Method: 

 

- Stability and Accuracy: Gear's methods provide 

high stability and accuracy, especially for stiff 

systems. 

 

- Computational Complexity: They involve more 

computations and additional equation solving per time step, 

resulting in increased computational overhead. 

 

 

Adams-

Bashforth-

Moulton 

Methods: 

 

- Accuracy: Adams-Bashforth-Moulton methods 

offer higher accuracy than the Euler method and are 

suitable for systems with moderate stiffness. 

 

- Stability: These methods can be conditionally stable and 

may require smaller time steps to maintain stability. 

 

- Efficiency: They are explicit methods and require 

fewer computations per time step compared to 

implicit methods. 

 

 

 

 

Predictor-

Corrector 

Accuracy: Predictor-Corrector methods combine 

the benefits of explicit and implicit methods, 

offering improved accuracy compared to explicit 

methods alone. 

 

- Computational Complexity: Predictor-Corrector methods 

involve additional computations and equation solving 

compared to explicit methods, resulting in increased 

computational requirements. 

 

- Stability: They can handle a range of system 

dynamics, including moderately stiff systems. 

 

 

An explanation of the advantages and disadvantages of some commonly used numerical integration techniques in 
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transient stability analysis presented in table 1. It's important 

to note that the advantages and disadvantages listed above 

are generalizations, and the performance of each numerical 

integration technique can vary depending on the specific 

system characteristics, accuracy requirements, and 

computational resources available. The choice of method 

should be made considering the specific needs and 

constraints of the transient stability analysis scenario. 

 

3. Problem formulation 

The problem formulation for transient stability analysis in 

multi-machine systems involves modeling the dynamic 

behavior of the system following disturbances and 

formulating the necessary equations to analyze its transient 

stability. A general problem formulation using the swing 

equation, which is a fundamental equation in transient 

stability analysis is as follow [13-15]: 

3.1. System Modeling 

Consider a multimachine power system consisting of N 

synchronous machines connected through transmission lines 

and interconnected by a network of buses. The system is 

subjected to disturbances, such as faults, load changes, or 

generator tripping, which cause transient deviations in the 

machine rotor angles and speeds. 

3.2. Network Equations 

In addition to the swing equation, the problem formulation 

involves incorporating the network equations that describe 

the power flow and electrical behavior of the system. These 

equations include nodal power balance equations, bus 

voltage equations, and line flow equations, among others. 

The electrical power output can be given by: 

Sei
∗ = Ei

′∗. Ii          (1) 

or 

Pei = ℜ[Ei
′∗. Ii]        (2) 

Where: 

Ii = ∑ Ej
′m

j=1 . Yij       (3) 

Ei
′ = Vi + jXd

′ . Ii       (4) 

Ibus = Ybus. Vbus       (5) 

Using voltages and admittances in polar form: 

Pei = ∑ |Ei
′|m

j=1 |Ej
′||Yij|cos(θij − δi + δj)     (6) 

Prior to disturbance: 

                                    Pei = Pmi =
∑ |Ei

′|m
j=1 |Ej

′||Yij|cos(θij − δi + δj)      (7) 

Pmi: Mechanical power input to machine i. 

Pei: Electrical power output of machine i. 

 

3.3. Swing Equation 

The swing equation is a key equation used to describe the 

dynamic response of synchronous machines during transient 

events. It relates the rate of change of rotor angle (δ) to the 

mechanical power input (P_m), electrical power output 

(P_e), inertia constant (H), and damping coefficient (D). 

For each machine i in the system, the swing equation can be 

formulated as: 
d2δi

dt2
+ Di.

dδi

dt
+ wsi

2. (Pmi − Pei) = 0       (8) 

where: 

δi: Rotor angle of machine i with respect to a reference. 

Di: Damping coefficient of machine i. 

ωsi: Synchronous speed of machine i. 

Pmi: Mechanical power input to machine i. 

Pei: Electrical power output of machine i. 

The swing equation with damping neglected for machine i: 

Hid
2Si

πf0dt
2 = Pmi − ∑ |Ei

′|m
j=1 |Ej

′||Yij|cos(θij − δi + δj)    (9) 

Where: 

Hi =
SGi

SB
. HGi         (10) 

Hi: inertia constant of machine i on the MVA base SB. 

HGi: inertia constant of machine i on the MVA base SGi. 

 
dSi

dt
= ∆wi; i = 1, … . ,m       (11) 

d∆wi

dt
=

πf0

Hi
(Pm − Pe

f)          (12) 

Where:  

Pe
f: postfault power. 

3.4. Initial and Boundary Conditions 

The problem formulation requires specifying the initial 

conditions, which include the initial rotor angles, speeds, and 

voltages of the machines. Additionally, boundary 

conditions, such as fault clearing times or control actions, 

need to be defined to capture specific transient events. 

3.5. Solution Method 

To solve the transient stability problem, numerical 

integration techniques are employed to approximate the 

solution of the differential equations. The choice of the 

numerical integration method depends on factors such as 

accuracy requirements, system characteristics, stability 

considerations, and computational efficiency. 

By formulating the necessary equations, incorporating 

network equations, defining initial and boundary conditions, 

and selecting an appropriate solution method, the problem 

formulation for transient stability analysis in multi-machine 

systems provides a foundation for conducting simulations, 

analyzing system response to disturbances, and assessing the 

transient stability limits of the power system. 

 

4. Simulation results 

To study the transient stability of the 3-machine test system 

mentioned in reference [16], two cases are considered. In 

both cases, a fault occurs and is subsequently cleared, and 

the transient stability is analyzed. Here are the formulations 

for the two cases: 

• A 3-phase to ground fault occurs on the line [5, 6] near 

bus 6 in the 3-machine test system. The fault is cleared 

by opening the circuit breakers at both ends of the line 

between buses 5 and 6. The objective is to study the 

transient stability, specifically focusing on the critical 

clearing time (CCT). The CCT represents the time it 

takes to clear the fault such that the system remains 

stable. 

• A 3-phase to ground fault occurs on the line [4, 6] near 

bus 6 in the 3-machine test system. The fault is cleared 

by opening the circuit breakers at both ends of the line 

between buses 4 and 6. Similar to Case 1, the transient 

stability analysis is performed, and the focus is on 

determining the critical clearing time (CCT). 

 

In both cases, the 3-machine test system consists of three 

synchronous machines, denoted as Machine 1, Machine 2, 

and Machine 3. Machine 1 is considered the reference unit 

due to its relatively large MW capacity compared to the other 

generating machines. The system includes transmission lines 

with their respective constants, loads represented on a 100 

MVA base, and machine constants. 

The structure of the studied power system model is depicted 

in Figure 1 in the reference [16]. By performing transient 

stability analysis for these two cases, the aim is to assess the 
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system's ability to maintain stable operation after the fault is 

cleared, and specifically to determine the critical clearing 

time (CCT) for each case. The CCT represents a crucial 

parameter that helps evaluate the stability limits of the 

system and design appropriate protection schemes. 

By simulating the system dynamics and analyzing the 

responses of machines and buses during and after fault 

clearance, the transient stability analysis provides insights 

into the system's behavior, stability margins, and potential 

stability issues. These findings assist in making informed 

decisions for system planning, protection scheme design, 

and control strategies to ensure the reliable and secure 

operation of multimachine power systems. 

 

 
 

Fig 1: 3-machine test system. 

 

Case 1. Fault occurs on the line [5, 6] near bus 6 

From figure 2, After a fault occurs in the power system, the 

phase angle differences between machines are observed. In 

this case, the phase angle differences δ21 and δ31 reach 

maximum values of δ21 = 123.9 degrees and δ31 = 62.95 

degrees, respectively. However, it is observed that the phase 

angle differences start to decrease, and the machines' swings 

synchronize. This behavior indicates stability in the system. 

The fault is cleared within 0.4 seconds, and the system is 

found to be stable during the fault clearing time. 

In the figure 3, the swing curves, specifically for machine 2, 

are analyzed. It is observed that the phase angle of machine 

2 increases without limit, indicating instability in the system. 

The fault is cleared within 0.5 seconds, and the system is 

found to be unstable during the fault clearing time. 

To further analyze the system's stability, the simulation is 

repeated with a fault clearing time of 0.45 seconds. It is 

determined that the system is critically stable during this 

clearing time. 

Table 2 presents the reduced Y matrix values for different 

system conditions. The matrix values are provided for the 

prefault, during fault, and post-fault states. These values 

represent the electrical characteristics of the power system, 

including the network impedance and admittance, which are 

essential in transient stability analysis. 

 

Table 2. Reduced Y matrix. 
 

Type of network Node 1 2 3 

 

Prefault 

1 

2 

3 

0.3517 - 2.8875i 0.2542 + 1.1491i 0.1925 + 0.9856i 

0.2542 + 1.1491i 0.5435 - 2.8639i 0.1847 + 0.6904i 

0.1925 + 0.9856i 0.1847 + 0.6904i 0.2617 - 2.2835i 

 

Faulted 

1 

2 

3 

0.1913 - 3.5849i 0.0605 + 0.3644i 0.0523 + 0.4821i 

0.0605 + 0.3644i 0.3105 - 3.7467i 0.0173 + 0.1243i 

0.0523 + 0.4821i 0.0173 + 0.1243i 0.1427 - 2.6463i 

 

Fault cleared 

1 

2 

3 

0.3392 - 2.8879i 0.2622 + 1.1127i 0.1637 + 1.0251i 

0.2622 + 1.1127i 0.6020 - 2.7813i 0.1267 + 0.5401i 

0.1637 + 1.0251i 0.1267 + 0.5401i 0.2859 - 2.0544i 

 

 
 

Fig 2: Plots of angle difference for machine 2 and 3, fault cleared at 0.4s. 
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Fig 3: Plots of angle difference for machine 2 and 3, fault cleared at 0.5s. 

 

By evaluating the behavior of phase angle differences, 

machine swings, and the reduced Y matrix values, the 

transient stability analysis provides insights into the stability 

status of the power system during and after the fault. This 

information aids in understanding the system's response to 

disturbances, identifying critical clearing times, and 

designing appropriate protection and control measures to 

ensure stable and secure operation of the power system. 

Case 2. Fault occurs on the line [4, 6] near bus 6 

After a fault occurs in the power system, the phase angle 

differences between machines, namely δ21 and δ31, are 

monitored. In the figure 3, the phase angle differences reach 

maximum values of δ21 = 111.8343 degrees and δ31 = 

57.8619 degrees, respectively. However, it is observed that 

the phase angle differences start to decrease, and the 

machines' swings synchronize. This behavior indicates 

stability in the system. The fault is cleared within 0.4 

seconds, and the system is found to be stable during the fault 

clearing time. 

Figure 5 depicts the swing curves, specifically for machine 

2. It is observed that the phase angle of machine 2 increases 

without limit, which indicates instability in the system. The 

fault is cleared within 0.5 seconds, and the system is found 

to be unstable during the fault clearing time. 

To further analyze the system's stability, the simulation is 

repeated with a fault clearing time of 0.45 seconds. It is 

determined that the system is critically stable during this 

clearing time. 

Table 3 presents the reduced Y matrix values for various 

system conditions, including the prefault, during fault, and 

post-fault states. These matrix values represent the electrical 

characteristics of the power system, such as impedance and 

admittance, which are crucial in transient stability analysis. 

The table provides necessary information to understand the 

system's behavior and evaluate the impact of fault conditions 

on the system's stability. 
 

Table 3. Reduced Y matrix. 
 

Type of network Node 1 2 3 

 

Prefault 

1 

2 

3 

0.3517 - 2.8875i 0.2542 + 1.1491i 0.1925 + 0.9856i 

0.2542 + 1.1491i 0.5435 - 2.8639i 0.1847 + 0.6904i 

0.1925 + 0.9856i 0.1847 + 0.6904i 0.2617 - 2.2835i 

 

Faulted 

1 

2 

3 

0.1913 - 3.5849i 0.0605 + 0.3644i 0.0523 + 0.4821i 

0.0605 + 0.3644i 0.3105 - 3.7467i 0.0173 + 0.1243i 

0.0523 + 0.4821i 0.0173 + 0.1243i 0.1427 - 2.6463i 

 

Fault cleared 

1 

2 

3 

0.3951 - 2.8461i 0.1811 + 0.9679i 0.2417 + 1.0391i 

0.1811 + 0.9679i 0.5179 - 2.2378i 0.1103 + 0.4668i 

0.2417 + 1.0391i 0.1103 + 0.4668i 0.3171 - 2.2153i 

 

 
 

Fig 4. Plots of angle difference for machine 2 and 3, fault cleared at 0.4s 
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Fig 5. Plots of angle difference for machine 2 and 3, fault cleared at 0.5s 

 

By examining the phase angle differences, machine swings, 

and the reduced Y matrix values, the transient stability 

analysis allows for an assessment of the power system's 

stability during and after the fault event. This knowledge 

assists in identifying critical clearing times, designing 

appropriate protection schemes, and making informed 

decisions to ensure the secure and reliable operation of the 

power system. 

 

5. Conclusion 

Transient stability analysis for multi-machine systems plays 

a crucial role in ensuring the reliable and secure operation of 

power systems. This analytical work involves studying the 

dynamic response of the system following disturbances to 

assess its ability to maintain stable operation in the presence 

of transient events. Numerical integration techniques, such 

as the Euler method, Runge-Kutta methods, Trapezoidal 

Rule, Backward Euler method, Gear's method, Adams-

Bashforth-Moulton methods, and Predictor-Corrector 

methods, are commonly employed to approximate the 

solution of the differential equations that govern the system 

behavior during transient events. Each method has its 

advantages and disadvantages in terms of accuracy, stability, 

computational efficiency, and ease of implementation. The 

choice of numerical integration technique depends on factors 

such as the accuracy requirements, system characteristics, 

stability considerations, computational resources, 

implementation complexity, adaptability to time-varying 

parameters, and availability of tools and validation studies. 

By performing transient stability analysis, power system 

engineers and researchers can gain insights into the system's 

response to disturbances, identify critical stability limits, 

design effective control strategies, and enhance the overall 

system reliability. This work aids in understanding the 

transient behavior of multi-machine systems, assessing their 

stability margins, and making informed decisions to mitigate 

potential stability issues. Furthermore, transient stability 

analysis contributes to the development of advanced 

protection and control schemes, enabling utilities to 

maintain reliable and secure power supply in the face of 

various disturbances, including faults, contingencies, and 

large-scale system events. Continued research and 

development in transient stability analysis techniques, 

including the exploration of new numerical integration 

methods, the integration of advanced machine learning and 

optimization techniques, and the incorporation of real-time 

data and control strategies, will further enhance the 

accuracy, efficiency, and applicability of transient stability 

analysis for multi-machine systems. Ultimately, this work 

supports the reliable operation and planning of power 

systems, ensuring the delivery of electricity to consumers 

while maintaining system stability, security, and resilience. 
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