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Abstract 
In the present study, numerical investigations have been carried out for solving a class of third order 

Van der Pol oscillator for differential equation related to nonlinearity for both parameters based on 

stiff and non-stiff conditions. The variants of the proposed scheme have been numerically solved and 

the comparison of results are presented based on the two schemes named as Adams numerical 

scheme and implicit Runge-Kutta scheme which is used to solve the third order nonlinear Van der 

Pol oscillator. The details of the achieved numerical results in the form of tables have been 

numerically discussed. 
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1. Introduction 

The angular frequency based functions having the derivatives of first order has achieved 

diverse attention of the researchers community using the models of nonlinear oscillators [1-

4]. Recently, these schemes represent generally the nonlinear differential equations of 

second-order. A superior class of an oscillatory system is called oscillator of Van der Pol that 

is used to govern nonlinear damping and represent the second-order nonlinear ordinary 

differential model. In this study we solve the nonlinear third order Van der Pol oscillator 

which is basically a third order differential equation. The generic form of nonlinear third 

order Van der Pol equation is given as: 
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The above model is presented on the basis of second order Vander-pol oscillators which is 

extensively used in science, engineering and has the huge amplitude planner flexural free 

sensations of an inextensible slender cantilever beam component [5]. Jockon and Mickens 

[6] accessible the comprehensive fundamental study for the second order nonlinear 

oscillators and familiarized the generic properties of the oscillator. Additionally, Van der pol 

oscillator rises in many submissions of engineering and applied science. Numerous methods 

have been applied to solve these types of models. By keeping a view on it, a good variety and 

source of assessment article [7] has been obtainable in which variety of numerical techniques 

for nonlinear Van der Pol oscillators are nominated in detail. 

The goal of the present investigation is to explore and exploit a class of nonlinear third order 

Van der Pol oscillators using Adams method and Implicit Runge-Kutta method. In this 

regard, two numerical problems based on third order nonlinear Van der Pol oscillators along 

with two cases of each have been present and results are checked from two schemes that are 

found to be accurate.  
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The remaining parts of the article is organized as follows: 

Section 2 narrates the numerical technique, the numerical 

outcomes are provided in Section 3 and conclusions along 

with future research directions are listed in the final 

Section. 

 

2. Numerical methods 

In this study section, the communications based on 

deterministic and stochastic numerical solvers have been 

effected generally in extensive fields, for example linear/ 

nonlinear algebraic models [8], nanotechnology based 

equations [9], system of nonlinear doubly singular 

equations [10], model based on Thomas-Fermi equations 

[11], an extensive class of delay differential second order 

equation [12] and boundary value problems based on multi-

point equations [13]. In this study, predictor-corrector 

numerical Adams scheme and numerical Implicit Runge-

Kutta method are applied to solve the third order nonlinear 

Van der Pol oscillators. 

 

2.1. Predictor-corrector Adams numerical technique 

To find the numerical solution of nonlinear third order Van 

der Pol oscillator, the corrector- predictor numerical 

scheme is applied that takes two stages to complete further. 

The approximate outcomes of prediction is accomplished in 

the first step, while to find the numerical outcomes of 

correction is proficient with the same contributions of 

prediction. 
 

   0 0, ,
du

h x u u ux
dx

 
. 

(2) 

Two steps for the generalized Adams-Bashforth numerical technique by using the predictor-corrector scheme: 

   1 1 1

3 1
, ,

2 2
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(3) 

Adams-Moulton two-stage corrector is provided as: 
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(4) 

The 4-steps predictor corrector is as follows: 

        1 1 1 2 2 3 355 , 59 , 37 , 9 , .
24
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(5) 

The 4-step Adams-Bashforth Moulton is given as: 
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24
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2.2. Implicit Runge-Kutta numerical technique 

To solve the nonlinear Van der Pol oscillator, the Implicit 

Runge-Kutta technique is designed. The generic form of 

Implicit Runge- Kutta technique is considered as: 
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. 

In the first step, to consider the obtained initial outcomes 

and slopes are documented for all variables. Taking these 

achieved numerical outcomes for slopes (the 1sk
) at the 

central point of the interval to form the designs of the 

dependent variable. In the second step, the slopes of the 

middle-point (the 2sk
) are achieved by taking these 

attained mid-point values. The designed numerical 

outcomes for slopes are twisted back to the first point to 

variety the other set of middle point outcomes that are 

originate to the new slope of predictions at middle-point 

(the 3sk
). These numerical values are supplementary 

applied to create predictions to development slopes at the 

final point of the interval (the ssk
). Likewise, all the 

outcomes for sk
 are achieved composed to make another 

set of increase functions. Finally, take at the start point to 

make the final prediction. 
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3. Results and Discussions 

In this section, numerical experimentations are presented 

for nonlinear third order Van der Pol Oscillators with stiff 

and non-stiff parameters. Two problem along with two 

cases have been solved and their numerical results are 

tabulated in Tables 1 and 2. 
 

Problem 1 

Case 1: Consider the Van der Pol Oscillator with non-stiff conditions for 1 1 
 and 2 1 
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Case 2: Consider the Van der Pol Oscillator with non-stiff conditions for 1 5 
 and 2 10 
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To find the numerical result of the problems, we have 

applied the Adams and Implicit Runge-Kutta by using the 

Mathematica built in functions presented in Table 1 and 

Table 2. The results calculated for the both methods of the 

two problems are given in Table 1 and Table 2 for inputs 

 0,1tò
with a step size of 0.1 . It is cleared that the 

proposed solutions show same results as of Adams and 

Implicit Runge-Kutta results and proved very good 

agreements. 

 

Table 1: Comparison of Adams and Implicit Runge-Kutta for case 1 and case 2 
 

 Case 1 Case 2 

x Adams Implicit RK Adams Implicit RK 

0 2 2 3 3 

0.2 1.99772 1.99772 3.120105 3.120105 

0.4 1.984585 1.984585 3.143269 3.143269 

0.6 1.956347 1.956347 3.145955 3.145955 

0.8 1.913439 1.913439 3.144768 3.144768 

1 1.858406 1.858406 3.142849 3.142849 

1.2 1.794106 1.794106 3.140789 3.140789 

1.4 1.722751 1.722751 3.138701 3.138701 

1.6 1.645572 1.645572 3.136605 3.136605 

1.8 1.562811 1.562811 3.134505 3.134505 

2 1.473817 1.473817 3.132402 3.132402 

2.2 1.377129 1.377129 3.130296 3.130296 

2.4 1.270461 1.270461 3.128186 3.128186 

2.6 1.150547 1.150547 3.126074 3.126074 

2.8 1.012786 1.012786 3.123959 3.123959 

3 0.850614 0.850614 3.121841 3.121841 

3.2 0.654462 0.654463 3.11972 3.11972 

3.4 0.410171 0.410171 3.117596 3.117596 

3.6 0.096847 0.096847 3.115468 3.115468 

3.8 -0.31514 -0.31514 3.113338 3.113338 

4 -0.86383 -0.86383 3.111205 3.111205 

4.2 -1.59221 -1.59221 3.109068 3.109068 

4.4 -2.56449 -2.56449 3.106929 3.106929 

4.6 -3.99054 -3.99054 3.104786 3.104786 

4.8 -6.73794 -6.73794 3.102641 3.102641 

5 -17.3345 -17.3345 3.100492 3.100492 

 

 

Problem 2 

Case1: Consider the Van der Pol Oscillator with stiff conditions for 1 500 
 and 2 1 
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(10) 

Case2: Consider the Van der Pol Oscillator with stiff conditions for 1 1000 
 and 2 1 
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Table 2: Comparison of Adams and Implicit Runge-Kutta for case 1 and case 2 
 

 Case 1 Case 2 

x Adams Implicit RK Adams Implicit RK 

0 5 5 3 3 

0.2 5.199783 5.199783 3.199927 3.199927 

0.4 5.399122 5.399122 3.399702 3.399702 

0.6 5.598003 5.598003 3.599319 3.599319 

0.8 5.796412 5.796412 3.798773 3.798773 

1 5.994337 5.994337 3.998055 3.998055 

1.2 6.191762 6.191762 4.197159 4.197159 

1.4 6.388675 6.388675 4.396078 4.396078 

1.6 6.585061 6.585061 4.594806 4.594806 

1.8 6.780908 6.780908 4.793334 4.793334 

2 6.976203 6.976203 4.991657 4.991657 

2.2 7.170932 7.170932 5.189767 5.189767 

2.4 7.365083 7.365083 5.387658 5.387658 

2.6 7.558642 7.558642 5.585321 5.585321 

2.8 7.751597 7.751597 5.78275 5.78275 

3 7.943935 7.943935 5.979938 5.979938 

3.2 8.135644 8.135644 6.176878 6.176878 

3.4 8.326712 8.326712 6.373562 6.373562 

3.6 8.517127 8.517127 6.569984 6.569984 

3.8 8.706877 8.706877 6.766137 6.766137 

4 8.89595 8.89595 6.962014 6.962014 

4.2 9.084335 9.084335 7.157607 7.157607 

4.4 9.27202 9.27202 7.35291 7.35291 

4.6 9.458994 9.458994 7.547915 7.547915 

4.8 9.645247 9.645247 7.742617 7.742617 

5 9.830767 9.830767 7.937008 7.937008 

 

4. Conclusion 

In the present study, the numerical treatment based on third 

order nonlinear stiff/ non-stiff Van der Pol oscillator 

presented by manipulating the strength of the numerical 

Adams scheme and Implicit Runge-Kutta scheme. The 

numerical results are found to be accurate and consistent 

from both of the schemes. The proposed scheme is valuable 

and appropriate for solving linear/nonlinear second order 

Van der Pol oscillator for two problems each has two cases. 

The software used for solving the nonlinear second order 

Van der Pol oscillator is Mathematica 10.4. 

In future, this scheme is applied to solve nonlinear system 

of second order and third order Van der Pol oscillators. 
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