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Abstract 
The aim for this project was to create an automatic system for security baggage scanning at the 

airports by training and testing three different neural network algorithms namely FRCNN, RFFCN, 

YOLOv2 and I also wanted to make the system faster for training purpose for which I made some 

changes on FRCNN code and also on YOLOv2 and then tested these algorithms on x-ray baggage 

image dataset which would include various firearm components such as guns, knives, pliers and 

wrenches, which would be detected by the algorithms and then these algorithms would be compared 

on various parameters. I have divided the comparing parameters as primary parameters and 

secondary parameters where primary parameters would be the one which would be manually 

analyzed from the resultant output testing images and the secondary parameters would be the ones 

which would be calculated from the primary parameters. These parameters were then compared for 

each of the firearm component separately to conclude the best algorithms out of the three for x-ray 

image dataset scanning. 

 

Keywords: security, collaboration, special education, disability 

 

1. Introduction 

As everyone would have experienced on airports that there is a huge delay while security 

check due to manual checking of X-Ray baggage scans, which is time taking, as human mind 

takes more time to capture the image and analyze it thoroughly to draw conclusions. For 

some baggage they have to cross check it again and again as they are not sure of their 

decision, all this causes a lot of delays in the process. The objective is to minimize the delay 

as well as to increase the precision of the decisions by creating an optimized automated 

system for baggage scanning using neural networks which would give more efficient results, 

would be able to identify if there is any harmful or illegal object present in the baggage or 

not and would be much faster than the manual process.  

For implementation purpose I have used an x-ray baggage image dataset and implemented it 

on three neural network algorithms namely- FRCNN, YOLO v2 and R-FCN. Out of these 

three I made some changes in FRCNN code and YOLO v2 code to make them train and 

process faster without disturbing their accuracy and precision. These algorithms would detect 

various components like – guns, knife, pliers and wrenches. After testing I compared the 

algorithms using various parameters, I have divided these parameters as primary parameters 

and secondary parameters. The primary parameters (True Positive, False Positive, True 

Negative and False Negative) are the ones which were observed manually through the testing 

images and secondary parameters (Accuracy, True Positive Rate, False Positive Rate, 

Precision, F-score) are the one which are calculated using the primary parameters. Using 

these parameters, I finally concluded the best algorithm out of the three for such application.  

2. Related Work 

The aviation security systems have been researched on for decades in order to improve and 

increase the level of security using imaging technologies. Different kinds of scanning 

techniques are used in order to detect harmful substances, weapons, etc. in order to maintain 

safety of the passengers. However, it still remains a big area of concern as new and  
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developed imaging techniques are developed. Previous 

works have focused on image enhancement, classification, 

segmentation or detection. My main purpose is to address 

the object classification and detection tasks as explained 

below. 

Classification- Previous works [1], [2], [3], [4], [5] include 

the use of traditional approaches of machine learning based 

on Bag-of-Visual-Words(BoVW) scheme for 

representation of features, also using hand-crafted features 

together with Support Vector Machine(SVM) classifier. 

The work done by [1] shows the use of SVM classification 

along with feature representations (DoG, DoG+SIFT, 

DoG+Harris) in order to apply the BoVW concept. In [3], 

various feature point descriptors have been used as visual 

word variants within a BoVW model. This is done in order 

to achieve threat detection which is based on image 

classification. Descriptor combination along with FAST-

SURF feature detector is used in order to achieve maximal 

performance with an SVM classification. 

Detection-In order to identify and separate objects as a 

threat or non-threat, classification is a major step. To 

identify and detect an object, localization is done on the X-

ray image which is then denoted by a shape or bounding 

box. In [6], regions of interest (ROI) are being detected 

using a geometric model of the object. In [7], sliding 

window detection is used along with the SVM classifier as 

well as histogram of oriented gradients (HOG)[8]. As seen 

above, most research is done using BoVW techniques; 

therefore, this paper is focused on CNN classification 

architectures as the advancements in CNN literature have 

only been evaluated to a limited extent. 

BoVW techniques basically created a visual dictionary and 

were trained on the images using this visual dictionary; this 

dictionary included various features of the object to be 

detected. The major problem with this approach was that 

different objects may have some features in common or 

may have features whose properties are similar thus just by 

describing such features and forming a dictionary did not 

result in accurate results and it gave a lot of false alarms. 

Hence for this paper I have focused more on new emerging 

techniques of convolution neural networks and tried 

various algorithms on CNN for comparing and concluding I 

also made some changes and experimented with some of 

the algorithms to make them faster and to find the best 

approach for this particular application.  

 

3. System Architecture 

Figure 1 shows my system architecture and my whole 

process of implementation. 

I started by obtaining a suitable image dataset of x-ray 

baggage scans and then I trained and tested the three neural 

network models, after the testing was completed, I 

manually observed the primary parameters and using these 

primary parameters I calculated the secondary parameters 

and finally by comparing these parameters, moved towards 

the result and conclusion. 

The implementation details of all the three algorithms are 

given below -  
 

 
 

Fig. 1: System Architecture 

 

3.1 FRCNN 

Faster RCNN takes image as input and applies various 

convolution layers on it to obtain feature maps, from which 

the region proposals are obtained using RPN. These region 

proposals are then provided to the classifier after going 

through ROI pooling which is basically applying max 

pooling but only on the region of interests rather than the 

whole image.  

I implemented the FRCNN code on Google CoLab 

platform as it provided with online GPU on its servers, but 

the session time provided was of only 10 hours within these 

10 hours I was able to train on an image dataset of 500 

images for 500 epochs consisting of 50 iterations each thus 

undergoing a total of 25000 rounds of training. 

For making it faster I made some changes in the stride of 

the FRCNN algorithm. Stride is one of the parameters of 

FRCNN code, part of the convolution layer, which 

determines the movement of the convolution filters over the 

image, i.e. amount of pixels the convolution filter will 

move after every iteration. I tried the FRCNN code with 

stride value of 1 and stride value of 2. The convolution 

layer used is of 3x3 matrix hence possible values of strides 

are 1 and 2 as values above 3 would have hampered the 

accuracy and precision. Stride value one means the filter 

would move by one pixel after each iteration whereas in 

case of stride 2 the filter would move by two pixels at a 

time. 

I trained and tested on only 3 out of the 4 components and 

the plier’s component was left for this algorithm as the 

number of images for training were too less and training 

only 500 images for 4 components would have resulted in 

much more drop in accuracy for all the components. 
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Once the training was completed testing was done on 200 

images and the parameters were noted for each component 

separately. 
 

 
 

Fig. 2: Sample output of FRCNN 

 

Figure 2 shows a sample output of our FRCNN code 

implementation, here we can clearly see a gun, a knife and 

a wrench detected successfully with their labels and 

percentage of match with the class. 

 

3.2 R-FCN 

The R-FCN algorithm is similar to FRCNN code where an 

image is taken as input then CNN layers are applied to get 

feature maps. The difference is that the RPN layer is absent 

in R-FCN and in place of RPN, ROI pooling is done 

alongside with generation of score maps which would map 

the class vote to each of the features detected and thus as 

per the vote scores the objects would be classified. 

I trained the R-FCN code on Kaggle Platform similar to 

Google CoLab, it is a platform which provides with free 

online GPU for the training and testing purposes. 

Kaggle also provided 10 hours of session time for training; 

within this time period I was able to train the system for 

800 images and for all the 4 components. 

The training was completed in 4 stages –  

Stage 1 – 240 epochs 

Stage 2 – 480 epochs 

Stage 3 – 960 epochs 

Stage 4 – 1920 epochs 

And each epoch consisted of 4 iterations. 

Once the training was completed, the model was 

implemented on 200 images. 
 

 
 

Figure 3 – Sample output of R-FCN 

 

Figure 3 represents a sample output image of R-FCN 

algorithm where we can observe various components 

detected in red boxes. 

3.3 YOLO v2 

Yolo v2 algorithm takes image as the input and applies 

convolution layers followed by max pooling layers for 

feature extraction by decreasing the resolution of the image 

and increasing the depth of the image. 

The input image is divided into squares and on each of 

those square grids the algorithm predicts five bounding 

boxes each of them with different aspect ratios. After 

obtaining the bounding boxes, the algorithm predicts the 

center of the box and then calculates the confidence score 

of having any object in that square along with the 

probabilities of which class the object belongs to; in our 

case I have set the threshold of the confidence score and 

probability both at 0.3 i.e. if the algorithm detects any 

object as firearm of 30% or above or if any object gives 

30& or more match to any of the classes, the algorithm 

would form a bounding box around it and label the object 

as the class name with which it has the highest match. 

I have implemented the YOLO v2 algorithm on Google 

CoLab platform which provided 10 hours of session time 

just like the other algorithms and in these 10 hours I was 

able to train 1000 images which is the maximum among the 

three which clearly indicates YOLO v2 is the fastest among 

the three. I made some changes in the YOLO v2 code to 

make it faster in the training period so that it would be able 

to train on more number of images in the certain amount of 

time period. 

For making it faster I added a variable to store the loss 

value of the last iteration and a counter variable. After the 

first epoch the loss value would be stored in a variable and 

the counter would be set to 1. After every epoch the 

obtained loss value would be compared to the loss variable 

if it is equal or greater, then the counter would be 

incremented else the counter would be reset to one and the 

loss variable would be updated to the new loss value. Once 

the counter reaches the value of three the system would go 

under early execution and would not process further 

epochs. 

This condition shows that the loss value is not decreasing 

for the last three epochs which means that the training set is 

reaching its saturation and the system is well trained for 

this particular training set and weights file is ready and the 

system can go ahead for the testing step and training on 

further epochs is not necessary as the loss value is not 

likely to decrease much further. If we want to decrease the 

loss value further, we would need to increase the number of 

images in the training set.  

I trained for 50 epochs but the execution went under early 

execution at 36 epochs due to no decrease in the loss 

function since the last three epochs. 

The training was conducted for all the four objects and after 

the training was completed, I tested the model for 200 

images. 
 

 
 

Fig. 4: Sample output of YOLO v2 
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Figure 4 represents a sample output of YOLO v2 where we 

can see two guns, one wrench and one plier are detected in 

green boxes with labels as their class name and 

probabilities of matching. 

 

3.4 Parameters 

I have divided the comparison parameters as primary 

parameters and secondary parameters – 

 

3.4.1 Primary Parameters 

Primary parameters are the one which I observed manually 

from the tested results. 

TP: True Positive, which was determined by how many 

correct predictions the algorithm made, i.e., how many 

components were correctly detected. 

TN: True Negative, which is determined by how many 

negative predictions were done correctly, i.e., if any 

particular component is absent in the image, then the 

system, should not detect the component in that image. 

FN: False Negative, which is determined if any component 

is left undetected in any image. 

FP: False Positive, which is determined if any component is 

wrongly detected or a blank space is detected as one of the 

components. 

 

3.4.2 Secondary Parameters 

These are the parameters which are calculated from the 

primary parameters. 

TPR: True Positive Rate is given by the following formula 

–    

TPR = TP/ (TP+FN) 

It is also known as Recall it determines - out of the present 

components, how many components were predicted 

correctly. 

FPR: False Positive Rate is given by the following formula 

– 

FPR = FP/ (FP+TN) 

It determines - out of all the blank spaces how many were 

wrongly detected as a component. 

Accuracy: Accuracy is calculated by the following formula 

–    

Accuracy = TP+TN/ (TP+FN+TN+FP) 

It determines the ratio of total number of correct 

predictions of presence and absence of components to the 

total number of cases.    

Precision: Precision is calculated as –  

Precision = TP/ (TP+FP)    

It determines how many detections made are correct. 

F-score: It is the harmonic mean of Recall and Precision. 

Hence the formula is, 

F-score = 2* Precision * Recall / (Precision + Recall) 

Higher the value of F-score more perfect is the Precision 

and Recall. 

 

4 Results and Discussion 

First, I made some changes in the FRCNN code to make it 

faster by changing number of strides, for this I tested for 

stride value of one and stride value of 2. Thus, I had initial 

two cases for FRCNN. I trained the system for both the 

cases for the time interval of 12 hours as provided by the 

online platforms as a result I was able to observe that in 

these 10 hours the code with stride value of 1 was able to 

train only 400 images which would give really bad and 

non-accurate results for 4 different components as training 

on only 400 images is not sufficient for identifying four 

different objects. In the other case where the stride value 

was two I trained for the same amount of time of 10 hours 

and was able to train on 500 images which is still not 

sufficient for 4 different objects but going for stride value 

of 3 on a convolution matrix of 3X3 would have resulted in 

overall depletion of accuracy and precision as many 

features could have gone undetected, thus I proceeded with 

stride value of two and trained it only for 3 objects as 

training on 500 images could be used for detecting 3 

objects and stride value of 2 made the code faster as it was 

able to train on 100 more images in the same time span. 

Next, I modified the YOLOv2 code where I constructed an 

additional function of early exiting as I observed in training 

from the base code, that after a certain value of epochs the 

loss was not decreasing but training on large number of 

images caused each epoch to execute slower and thus, I 

added early exiting function, through which the code will 

undergo early execution if the loss value is not decreased 

for three consecutive epochs. This helped to improve the 

code by training a greater number of images in less time 

once the loss value is not changing the execution would 

stop. Though it has a smaller number of epochs as 

compared to other algorithms but each epoch of YOLOv2 

takes much more time than the epochs for other algorithms 

thus waiting for complete execution of all the epochs 

without improving the loss value was just a wastage of time 

hence through my method one can execute the code faster 

and there is no need to execute all the epochs, once the loss 

value hits minimum the code will stop training.  

I planned to go for 50 epochs and my code had early 

exiting on epoch value of 36 which occurred under 10 

hours and the system was trained for 1000 images the 

highest out of all the three and thus I can test it for all the 

objects, but if it would have to complete all the 50 epochs it 

couldn’t have completed it in 10 hours, the number of 

images had to be greatly decreased.  

I have tested each of the algorithms for 200 images. For 

analyzing the results, I have calculated the various 

parameters for each component to be used for comparative 

analysis between the algorithms. 

The comparative analysis would be done in tabular form 

for each component. 

 

4.1 Gun Component 
 

Table 1: Gun Component parameters for all 3 algorithms 
 

 YOLO v2 FRCNN R-FCN 

TP 277 131 59 

FP 28 21 12 

TN 48 103 113 

FN 7 7 9 

TPR 0.975 0.95 0.867 

FPR 0.368 0.17 0.096 

Accuracy 0.902 0.89 0.86 

Precision 0.908 0.86 0.83 

F-score 0.940 0.90 0.848 

 

As one can observe in the above table TPR is highest in YOLOv2 

i.e., 0.975 or 97.5% algorithm that means the algorithm was able 

to detect 97.5% of the samples correctly. 

Accuracy, Precision and F-score are also observed highest in 

YOLO v2 algorithm, hence one can successfully conclude from 

these results that the YOLO v2 algorithm gave the best results for 

the Gun component. 
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4.2 Knife Component 
 

Table 2: Knife Component parameters for all 3 algorithms 
 

 YOLO v2 FRCNN R-FCN 

TP 190 275 117 

FP 18 7 15 

TN 69 0 76 

FN 27 97 11 

TPR 0.875 0.74 0.914 

FPR 0.206 1 0.164 

Accuracy 0.852 0.725 0.965 

Precision 0.91 0.975 0.886 

F-score 0.892 0.841 0.899 

 

As observed in the above table TPR and Accuracy is 

highest in R-FCN for the knife component that indicates R-

FCN was able to detect most samples correctly. 

The precision is highest in FRCNN i.e., 0.975 or 97.5% 

which implies that majority of the predictions made by the 

algorithm were correct, but there is a vast difference in its 

accuracy and precision as it had left lots of samples 

undetected which had hampered its accuracy. So, even 

though the algorithm made minimum error when it detected 

the component but it had left lots of samples undetected. 

Which has also affected its F-score which implies the TPR 

and the Precision is not that perfect. 

The FPR observed in FRCNN is 1 or 100% that is because 

its TN value is 0 which means there was no image in which 

the Knife component was absent. 

As observed the F-score is highest in R-FCN algorithm 

which implies its TPR and Precision are the most perfect. 

 
4.3 Wrench Component 

 

Table 3: Wrench Component parameters for all 3 algorithms 

 

 YOLO v2 FRCNN R-FCN 

TP 53 33 26 

FP 2 3 8 

TN 145 142 110 

FN 4 76 3 

TPR 0.92 0.3 0.896 

FPR 0.013 0.02 0.067 

Accuracy 0.97 0.688 0.68 

Precision 0.96 0.916 0.764 

F-score 0.939 0.45 0.824 

 

Results are clearly conclusive as YOLO v2 has best TPR, FPR, 

Accuracy, Precision and F-score as compared to the other two 

algorithms. 

There is a vast difference in the accuracy and precision of 

FRCNN algorithm because though it was able to detect the 

components accurately with very less number of wrong detections 

but it left out a lot of samples undetected due to which it’s 

accuracy was hampered greatly. And so is its F-score which has 

fallen even below 50%. 

 

4.4 Pliers Component 

 

Table 4: Pliers Component parameters for all 2 algorithms 

 

 YOLO v2 R-FCN 

TP 60 8 

FP 0 4 

TN 142 120 

FN 0 1 

TPR 1 0.88 

FPR 0 0.032 

Accuracy 1 0.64 

Precision 1 0.66 

F-score 1 0.758 

 

FRCNN is not present since it was trained for only 500 images 

and thus it couldn’t be trained for all the 4 components thus, 

Plier’s component was absent in training as well as testing of 

FRCNN. 

For the YOLO v2 algorithm there were no wrong detection and 

neither was any Pliers left undetected thus its FN and FP values 

are 0 and since FP was 0 thus FPR also became 0%. 

The Accuracy and Precision are 100% since there were no errors 

found in detecting the Pliers component using YOLO v2 

algorithm. 

So clearly, YOLO v2 algorithm gave best results for detecting 

Plier’s component with an F-score of 100% which implies that it’s 

TPR and Precision has achieved perfection. 

 

5. Conclusion 

I was successfully able to implement 3 algorithms namely – 

YOLO v2, FRCNN and R-FCN, on the online platforms. I 

had successfully trained all the algorithms and tested these 

algorithms on 200 images each. I was successful in 

improving the performance of YOLOv2 code and FRCNN 

code by decreasing their time taken for training and hence 

completed training on a greater number of images 

ultimately giving better results. 

I have accurately calculated all the parameters for each 

component namely, TP, TN, FP, FN, TPR, FPR, Accuracy, 

Precision, F-score. 

And observing these results one can reach to the conclusion 

that out of the three, YOLO v2 is the best algorithm for 

detecting various firearms components in X-ray Baggage 

scanning, as in the training period YOLO v2 was the fastest 

to execute and was able to train on 1000 images which is 

the highest compared to the other two algorithms, and it 

gave the best results for most of the components except the 

Knife component where R-FCN had the best F-score but 

even in that case the difference between F-score of R-FCN 

and YOLO v2 was minimal. 

Hence, one can arrive on the conclusion that YOLO v2 is 

the best algorithm to implement on X-ray Baggage Dataset. 
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