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Abstract

The vibrations of cylindrical bodies in a deformed medium is discussed. The problem reduces to
finding those values of complex Eigen frequencies for which the system of equations of motion and
the truncated radiation conditions have a nonzero solution to the cash-box of infinitely differentiable
functions. It is shown that the problem has a discrete spectrum located on the lower complex plane
and the symmetric spectrum is an imaginary axis.
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Introduction

In this paper we consider oscillations of cylindrical bodies in a deformable medium [1,2,3].
From the physical point of view, the damping in an ideal elastic medium is explained by the
radiation of energy excited by the natural oscillations due to divergent elastic waves. The
behavior of complex Eigen frequencies depending on the geometric and physic mechanical
parameters of the system is investigated. The environment of cylindrical and spherical bodies
is considered as elastic, viscoelastic and multicomponent. The obtained numerous results are
compared on a computer. A piecewise homogeneous mechanical system is regarded as
dissipative homogeneous and inhomogeneous. The ideal elastic body has no losses [4,5].
Such a body is characterized by a linear single-valued relationship between stress and strain
throughout the entire period of the alternating voltage. Hence it follows that stress and
deformation are always in phase. The energy dissipation of an elastic wave will occur if the
stress and strain are not connected by an unambiguous dependence during the period of
oscillations. The absence of such an unambiguous relationship between stress and
deformation arises when temporal derivatives appear in the equation connecting them. Even
if the equation is linear with respect to stress and strain, the presence of time derivatives is
always associated with dissipation. As a result, with an alternating voltage there is a
hysteresis effect. This means that in the frequency range in which attenuation has an
appreciable magnitude, the strain will lag behind the voltage. The presence of only a
nonlinear connection between stress and deformation (without time derivatives in the
equation) has two effects. Such a connection, firstly, leads to the interaction of the elastic
wave under consideration with other waves (for example, with thermal vibrations) and as a
result there is a redistribution of energy between the waves. Secondly, the considered wave
will generate higher harmonics, transferring their energy to them. In both cases, the
interaction depends on the strain amplitude. The nonlinear relationship between stress and
strain in the presence of time derivatives also leads to damping, which depends on the strain
amplitude. The Eigen vibrations of the rods and shells in an elastic medium are considered in
[6, 7, 8]. In these works, the environment of rods and shells is replaced by elastic springs, i.e.
the coefficient of spring stiffness is taken into account in the calculation. In [9], the natural
vibrations of spherical shells in an elastic medium that satisfy the Lame equation (for shells
and an elastic medium) are considered. Numerical results are obtained and analysis is made.
In the present paper, in contrast to the known papers, instead of the Somerfield radiation
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conditions at infinity, the natural vibrations of the
cylindrical shells are considered with allowance for the
alternative condition - non-reflecting boundaries.

1. The body's own oscillations in the medium
Three problems of natural oscillations of bodies interacting
with the medium are considered. We consider model
problems for the wave equation and, for example,
demonstrate the general scheme for constructing a solution
with allowance for the radiation principle. The solution of
the problem of natural oscillations of a semi-infinite rod
with mass m (Fig. 1) has the form
r a = [l e e
u(.r:rj:J ¥ (1)9 \ D<x<x
Lae""ﬂ_“r’: x0l
where @ =g +i®,; @,)0. Let @w/k=Cc— known

real speed, @/C=K— complex wave number. On an

infinite section U(X,t) = ae™'“e

—iawx/c

U= m

We define the dependence of u on x for t=0:
i(a)R—ia)|)x !

u(x,0) = ae° =ae° e

As can be seen, Fig. 1 with increasing x displacement

iy
u(x,0) at the expense of € © term increases to infinity.
Thus, when solving the problems of natural oscillations of

cylindrical bodies in an elastic medium at infinity (

r—o ) the potential of the displaced Summerfield is not
fulfilled. Thus, a new type of condition is required when
r—oo

1.1. Consider the natural oscillations of the composite
rod, to the left it is fixed, and to the right is the damper
(Fig. 1). The main goal in this problem is to show the
independence of the Eigen frequencies of the left rod from
the length of the right rod if shortened Summerfield
conditions are put at the end of the right rod [4].

v z x
AN A

X

Fig.1: Calculation schem

It is required to find the solution of the following
homogeneous equation:

o’u o'
e Pw
G = EF, Young's E-module, F-cross-sectional area, p -

density of the rod material) with the following boundary
conditions
u(0,t)=0;

U(x,—0,t)-U(x +0,t)=0;
GU (% -0,1)-GU}( +0,t) =0,

(1.1)

GU, (X, 1) + 4, (x,,1) =0. (1.2)
We express the solution of (1.1) in the form
U(x,t) =U(x)e™ (1.3)

where U (X) - amplitude function, for each section

—LA+8e ™ ¢ P )-=2(-Be¢ M ¢
oea™ -G
G,‘ _: :j_‘,‘: G s :::';,
+ 2 1+ Pa Pa ) 1_ Pa
C.. 1+ Be e ) C;l( Be e

0<x <xand 0<X <XX <X<X,,we write in the form

.0 .0
I—X -I—X
C C
Ce™ +C,e ™, O<x<x
e o
C C
Cie™ +Cre ™, X <X<o

(1.4)
To determine the constants C we have the following
boundary conditions

u()=0;

U(x -0)-U(x,+0)=0;

G,(x,—0)-G,U*(x,+0) =0,

GU*(%,) —lwpd (x,) = 0. (1.5)
From the boundary conditions we obtain

(1.6)
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2iw

G G =
where  f3 Z{C—Z - /U}/{C—2 +u}. If we  set {&_&}ecrﬂm +{i+i}: 0
p2 p2 sz sz sz Cpl (1.7)
1=G,/C,,, that is, the right-hand end is set to the The spectrum of eigenvalues is defined by formula
radiation conditions ﬂlzo, then (1.6) takes the following
form
o - Cokz —i& GC, +G,C,,
X 2% GCu-GCy 4 GLu>GCy (k=012..) (18)
_ CLQk+Yr i Cn Ln GC,, +G,Cyy
< 2X1 2X1 Gch1_Gch1 at GZCpl < Glcpz .
Where by logarithm is meant the main real branch is the U=0, r=r
invalid part of the eigenvalues @, has the meaning of the U(r-0)=U(r+0), o, (r-0)=o, (r+0),r=r,
frequency of natural oscillations. They exactly coincide P ' ’
with the natural frequencies of the left side of the rod ( o, :ﬂz_u' r=R
0 <X <X) with a fixed end at G,C,, > G,C,,. When or (1.12)

G1Cp2
frequencies of the rod, with a free right end. The imaginary
parts U, have the meaning of the damping coefficients and

<G,C,, actual parts U, coincide with the natural

are the same for all eigenvalues U, . The logarithmic
damping decrement decreases inversely proportional to the
Eigen frequency number. If G, =G, and z;, = i1, , then

we get the natural oscillations of the rod, the left end is
fixed, and the right damper. The frequency equation (1.8)
takes the following form

(6. le | =
[C |
o o (1.9
Natural frequency
(2k+1)
=2 iR k=012,... (1.10)
o, m |2xl np, ( )

Reflection is absent, since the supplied conditions are
satisfied by a divergent cylindrical and spherical waves.

G, G

= + 3 {2

B {C w3 C.

p2

— M}

at i=0, there exists a real natural frequency. Real parts @
coincide with the Eigen frequencies of the rod with free
right the end. The imaginary parts are equal to zero. When

u=G,;/C, Semi-infinite rod, there is no natural

frequency. In this way (,u:Gl/Cpl non-reflection

conditions), the frequency equations (1.6) do not depend on
the length of the right rod.

1.2. Anti-flat oscillations of a cylinder immersed in an
infinite medium.
It can be shown that, for R >> 1, the problem under
consideration is equivalent to the problem of the Eigen
vibrations of a two-layered cylinder depicted in Fig. 2,
which is satisfied by the following equations of motion and
boundary conditions:

2 2
A T B S B

2 2 N2 (1.11)
o® ror Cj ot

~ 44~

where p - he Lame coefficient

Now we determine the conditions for the absence of
reflection for r = R. For R >> 1 divergent waves has the
form

1

e
\ar

Since the asymptotic are valid

2 i)
Ho" () = [ @,
o r

where « - wave number; y is the natural frequency. From
relation (1.13) we have

. V3
1(ar——owt
(ar 7 —at)

U(r,t)= (1.13)

ouU o itar-"-ot) o i(ar—7—at)
- = - e
or  oar 2(ar)*"®
U .
Or a—:lau——u (1.14)
or
E,,l'. P
t
I
8
6 >
E,V. 2
Fig.2: Calculation scheme
Further
ouU i@ it —at)
=—— (1.15)

ERN
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or ﬂ = —jwu - After some transformations, we get
ot

o __aoU_ 1 (1.16)

or w ot 2r
Thus, the condition for r = R has the following form
ou a oU 1

— | ==7-72U)|

or ot R

_t U Hay
rx3 | r=R C , at r=R 2R r=R
P (1.17)

For radial oscillations, it follows directly from (1.17) that

Hp U My
C,ot|™ 2R

P (1.18)
Under this condition (1.18), obtaining the frequency

equation does not depend on the radius of the outer
cylinder.

O |r=r=—

|r:R

1.3. Radial oscillation of a spherical body. Let us
consider in an unbounded medium the radial oscillations of
the cavity, accompanied by the emission of longitudinal
sound waves, which leads to a loss of energy, and thus to a

damping of the oscillations. When C , >>C ¢ the problem
under consideration is equivalent to the problem of the

natural oscillations of the spherical hole shown in Fig. 2.
The solution of this problem will be sought in the form of a

"potential” of displacement ¢(r,t), satisfying equation

2 2
8_20 ga_(o_ia (2020 (1.19)
or® ror C, ot

The solution (19) presented in the form
A e R e

o(r,t) = {—e'm +—e'a')e"”‘} (1.20)
r r

Satisfies the boundary conditions

O|ra=0m
0 a,ou 1
@ v=b = __p___)|r:b (1.21)
or w ot r
Where
op
2
o, =—pao+——1
18 ﬂ[ t¢ r ar:|
2 2
0] A+2
G atgr &=
p s P
cr=£
Longitudinal wave velocity; P - velocity of

propagation of transverse waves. Substituting (1.20) into
(1.21), we obtain

¢(r,t)=ée
r

Substituting (1.22) into the boundary condition (1.21), we
have

i(apr-ot)

o Z=41—i
(ra C—) =4(1—ixa)

S

~ 45~

from here at C P >>C S
2C
S (1_ S )

P

(1.22). TIpn

w =

a—> oo natural frequencies @ — 0; When C P —>®

the natural frequency takes the following form ¢ = 2C, .
a
It is clear from (1.22) that @ =g +i®, where
o :ﬁ; o, 2& « 1. The resulting expression
a C,

(1.22) completely corresponds to the results of the work of
Landau and Lifshitz, which are obtained on the basis of the
Somerfield radiation condition. Thus, two problems for an
infinite and finite domain are equivalent. This is explained
by the fact that at the outer boundary conditions are set for
the absence of reflection, which in the general case are
written in the form

LURR,)=IU(R,)

Here L and | linear differential operators,

(1.23)

R.._ border
selected area of infinite media, YU - vector of displacement.
Equation (1.23) replaces the Sommerfeld radiation
condition. Equations (1.7), (1.18), and (1.21) is a particular
case of (1.23). Equation (1.23) is the nonreflecting
condition of the "Troyanovski-Safarov”. In a particular
case, it results in a shortening of the Sommerfeld radiation
condition [1.8]
: o . -
I|m\/F(a—+|KlUJ=O

r

r—o

2. The Eigen vibrations of piecewise-homogeneous
cylindrical systems

We consider the natural oscillations of piecewise-
homogeneous cylindrical bodies in an infinitely elastic
medium (Fig. 2). The purpose of which is to show the
influence of piecewise homogeneity on natural frequencies
and damping indices of a mechanical system. The linear
equation of motion in displacement potentials in the
absence of volume forces has the form

1 8¢k 1 8(//k
A =0, Ay, ———2%=0; (2.1
¢k Cf)j atz l//k SzJ ( )
2 2
A Se s
rar r-oo or
:%+16V/Zk- :1%_81//zk.
““or ro0 * ro6 or’

Solutions of equations (2.1) are sought in the form:

cosnd .
r, 6?t gt
¢k Z¢1n ay ){—sin n@}

sinn@| .
Wzk r, at Z@Zn >{ }elwt;

(22)

cosn@

where N - integer; @ - complex natural frequenc
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r— " At infinity (r—o) The Sommerfeld

a'O
conditions for each component are formulated. Substituting
2
2 2 2 w . ]
V ¢in + Ki win = O’ Ki = 2 | :1121

i
Let us consider the natural oscillations of a cylindrical hole
in an elastic medium. On the boundary r=a we set the
condition free of stress, i.e.

O'rr| = O-r9|r:a =0. (2.3)
Substituting (2.2) into (2.3), we obtain the frequency
equation

Zln x2n + Zanln = O

where

Xin =QoH & (Q,)+(ay, - dlgS)Hél) (€,);

n+1

r—oo

Iimﬁ[%HKMHJ:O ,
r

The solution of the wave equation is sought in the form
© r)\(cos@) .
03t oot S
v) S\ @n(r))(sind

where @ - purity; n- is the number of waves; t- time;
Substituting (2.3) into (2.4), we obtain the Helmholtz
equation, whose solution has the form

m:i(wﬁwwBnH“)n(Klr)]

v) 5\ C,HP(K,r)+DHP(K,r) 25)

where H @ (z)- Hankel functions of the first and
second kind of the n-th order a=w/c, and
B=WICs— \ave numbers; An, By, Cn, Dn, - arbitrary

constants, which are determined from the boundary
conditions. From the boundary conditions it follows that

(2.2) into (2.1), we obtain the following ordinary
differential equations:

¢! = (A +2u,) po.ci = u ! po.

Xon = n[(n _1)Hr(11) (Ql) -QH o (Ql)];

n+l

Zln = n[(l_ n)Hrgl) (Qo) - QOH o (Qo)]’

n+l

Zzn = (aiz _le IZ)HrEl) (Ql)+QlH e (Ql);

n+l

d,=1-v,))/@-2v,); a,=n% a,=n’-n; Q, =Q,L;

L =(1-2v)/(2(1-v,)); @, =@alC,,
With natural oscillations at r= Rw Shortened Sommerfeld
conditions are put in place, i.e.

r—oo

|imﬁ(%+mz%nj:o
r

H,EZ) (z) describes a converging wave; therefore, the
solution of (2.5) takes the form

¢Jg )

v) &CHY (K,

After setting (2.5) into the boundary conditions (2.3), we
obtain a system of algebraic equations with complex
coefficients

[D{a}=0,

where {q}={AnCn}-vector column of arbitrary constants;
[c] is a square matrix whose elements are expressed in
terms of Henkel functions of the first kind of the n-th order.
For a system of algebraic equations to have a nontrivial
solution it is necessary and sufficient

[c]=0 (2.7

The roots of the transcendental (2.7) equation describe the
frequency of the cavity's natural vibrations. The frequency
equation (2.7) takes the following form:

D, =xH ,[(p ~DyH ,(¥) - (0> - p+Yy2 1 2H (Y)]-

—H,(0[(p° —p+ Y2 12)YH, ()= (p? + p— Y2 14)Y?H (v)}

1/2

Where X =wa(p/(A+2u)"%;y=wa(p/ un)"?,
A and - Lame coefficients; -density of the material.

(2.8)

Equation (2.8) after certain transformations can be written
in the following form:

(P* =DF()F(Y) - (y*IF(X)+F(y) + p* = (p* —y*12)* =0,

Where F(X)=xH!(X)/H (X), p=123......

Let us consider in an unbounded medium the radial
oscillations of a spherical cavity, accompanied by the
emission of longitudinal sound waves, which leads to a loss
of energy, and thereby to an attenuation of the oscillations.
When Cp,>>Cs the problem wunder consideration is
equivalent to the problem of the natural oscillations of a
spherical body. The roots of the characteristic equation
(2.8) are found by the Mueller method. On the basis of

~ 46~

these studies, it is revealed that the mechanical system
under consideration has a discrete complex natural
frequency. Table 1 shows the results obtained and their
comparison, the results of those other authors [12, 16]. The
results obtained show that with increasing modulus of
elasticity, the corresponding natural frequencies of the
mechanical system slowly increase.
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Table 1. Comparison of results (V = 0,25)

Our Results Pao and Mao [17] | Bnron and Parnes [17]
0,44741-0.44420i | 0.44647-0.44127 i 0.4464-0.4410 i
1,09272-0,77653i | 1.09272-0.7653 i 1.0929-0.441 i
1,907554-0,89782i | 1.90754-0.8978 i 1.9076-0.897 i

2,75652-0,99151

2.75652-0.9915 i

3,63132-1,06662 i

3.63132-1.0666 i

a|s|wiv-lo|Z

4.52440-1.13140 i

4.52440-1.1314 i

Define €2 for different Poisson coefficients "1 and n.
When n=0 we obtain axially symmetric oscillations of the
cylindrical hole. The partial equation (2.8) takes the form

-Qd,HP(Q,)+HP(Q,)=0. (2.9)
The frequency equation (2.9) is solved numerically, i.e. the
Mueller method. Results of calculations n=>0

(v, =0,25) of the natural oscillations are given in Table
2. As can be seen from the table, the corresponding
complex frequencies increase with increasing number of
waves along the circumference. Complex frequencies
consist of two parts, real (Re{2) and imaginary parts (Im
Q) which means natural frequencies and damping
coefficients.

Table 2: Dependence of the complex Eigen frequencies of a cylindrical hole

n=0 n=I n=2 n=3
X 0,4529D+00 0,10927D+01 0,19075D+01 0,27565D+01
-i0,47651D+00 | -i0,76538D+00 | -i0,89782D+00 | -i0,99155D+00
, 0,28621D+00 0,72325D+01
-i0,17852D+00 | -i0,32283D+01
Q, 0,404607D+00 0,12307D+00
-i0,178552D+00 | -i0,22283D+00

The frequency equations (2.9) depend only on the
parameter Y ( Poisson's ratio). With increasing Poisson's
ratio within 0 <Y <0.4 The real and imaginary parts of the

complex frequency change to 27%. When Y 1=0,5 the
medium becomes incompressible, naturally, there are no

the contact r=a we set the condition for rigid contact. The
partial equation for n=i takes the form

AQ) = 477H11(91)H1(Qz) —(@=-m)Q,H, (Q,)H, () -
-(1+m)QH, (Q)H,(Q,) +Q,Q,H,(Q)H, (Q,); (2.10)

attenuations. For verification, the results obtained are O =8 O, = pa
compared with the results of [7, 9]. at V' 1=0,25. where 7= p, / p,, P, - tight inclusion density;
Now let us consider the natural oscillations of a rigid Q = . _ .
A X . : =q,Q, Q. = fa;
cylindrical inclusion. In this case, we seek the solution of 1 =B,
the wave equation and the hard inclusion in the form. On
Table 3: Comparison of complex frequencies
n 9 Hamia meroguka 11
0 | 0,44647-i0,44127 | 0,45297-i0,47651 | 0,446-i0,4410
| 1,09272-i0,7653 1,0927-i0,76538 0,229-i0,441
2 | 1,90754-i0,8978 1,90750-i0,89782 | 1,9076-i0,8971
3 | 2,75661-i0,9915 | 2,75665-i0,99155 -

The results of the calculations are presented in Table 3
(v, =0,25), according to which 77 >1 the real parts of

the complex self-purity vanish. When 77 =0 we get the

vibrations of the environment around the rigid body, i.e. we
have only imaginary roots. As a result of using the
asymptotic value of the Henkel function (for a >> 1), we
obtained

w=-i(Cy,/C,+1)Cy/a, (2.11)

The existence of imaginary values of the natural frequency
means that oscillatory processes in the system only
attenuating. Imaginary Eigen frequencies turns depends on
the longitudinal and transverse speed and aperture radius.
The existence of a discrete frequency plays an important
role for the calculations of underground pipelines are in the
ground environment. The obtained numerical results are

~ 47~

presented in the form of tables and figures. The appearance
of an additional free surface basically thickens and reduces
the eigenvalue of the frequency by 10-16%. The existence
of natural frequency means that in the vicinity of the free
surface of the cylindrical holes may life Rayleigh wave.
Thus, according to (2.11), with N — O the real part of the
complex frequency does not exist. Now we consider the
natural oscillations of a continuous cylindrical inclusion in
an elastic medium (Fig. 2-4). The solution of the equation
of motion of the medium and the inclusion in the potentials
takes the form. At the contact boundary, we set the
condition for rigid contact. Solution, substituting in the
motion and boundary conditions, we obtain a homogeneous
complex algebraic equation in the form. Here the
determinant (C) is of the fourth order, its elements have the
form
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C,= (n*+n- asz /2)H,El) (ab) — alergf)l(alb);

C
C13
C

p =—H[(n+1)H rgl) (Bb) - pbH r@l (Bb)];
—n[(n +1)J,, (a,b) — 0], (@,b)];

14 _ﬂn[(n + 1)J n (ﬂzb) - ﬂzb‘] n-1 (ﬁzb)];

Cyu =nl(n+HH rgl) (b)) —a,bH r(11—)1 (ab)];

C22 = _(n2 +n- ﬁlzbz / Z)Hrgl) (ﬂlb) + ﬂler@l(ﬂlb)];
Cos = —n[(n+1)J, (a;0) —a,bI, ; (e,0)];

Table 4: The change in the complex frequency, depending on E at 77 =4; v, =V =0,14 (hard contact).

E=E,/E,
Q 0,2 0,4 0,6 08

Q, Re Q, | 2.26428D-01 | 1.8172D-01 | 1.5839D-01 | 1.4324D-02
Re Q1 | -i1.2969D-01 | -i7.7092D-02 | -i5.7656D-02 | -i4.7033D-02

Re (), | 32339D-01 | 23924D-01 | 2.0207D-01 | 1.7995D-01

Q2 Re 2, | -2i.5641D-01 | -i2.0152D-02 | -i1.7192D-02 | -i1.5278D-01
0 Re €, | 4.81550D+00 | 4.8144D+00 | 4.8137D+00 | 4.8134D+00
3| Re Q, | 4.7709D+00 | -i4.7677D+00 | -i4.7667D+00 | -i4.7662D-02
Re Q, | 4.0795D+00 | 4.0866D+00 | 4.0845D+00 | 4.0831D+00
Q, Re Q, 5.2295D | -i5.2428D+00 | -i5.2421D+00 | -i5.2416D+00
0 Re Q. | 6.1617D+00 | 6.1612D+00 | 6.1609D+00 | 6.1607D+00
> | Re Q, | 3.5815D+00 | -i3.5786D+00 | -i3.5781D+00 | -i3.5778D-02

Cp = H(N* +n= B30 12)],(B,0) - 5,03, (Bb)];
Cyy = a,bH Y, (ab) —nH P (a,);

Cy, =—nH " (Ab);

Cys =—la,bd, 1 (a,0) —nJ, (a;b)];

Cy =-nJ, (Bb);
C
C

a=—NH rEl) (ayb);

2= _ﬂle rgl—)l (,B1b) +nH rEl) (ﬂlb);

Cis =nJ, (a,b);

C44 = [ﬂzb‘] n-1 (ﬂzb) -nJ n (ﬂzb)];

=l p,.

The numerical solution was carried out on a computer with
various parameter ratios 77 = p, / p, E=Ei/Ez, v, =V,
=0,25. If the environment is absolutely rigid, then
E, — oo.( Table 4). The equation corresponding to the
condition on the surface loses its meaning, it must be
replaced by the boundary condition Ur|r:b:U9|r:b =0.

As a result, we obtain a system of algebraic equations with
respect to unknowns A, B, . The change in the natural
frequencies as a function of n is shown in Table 5.

Table 5: Dependence of complex Eigen frequencies of hard

inclusion on 77(,01 /pz)

n R.Q, —il Q)

0,2 | 0,38248D+00 | 0,40845D+00

0,4 | 0,73515D+00 | 0,89541D+00

0,6 | 0,19341D+01 | 0,14480D+01

0,8 | 0,28341D+01 | 0,156907D+01

1,0 | 0,27431D-12 | 0,34807D+01

1,2 | 0,26728D-11 | 0,66809D+01
It can be seen that when 77 = | The imaginary parts of the
complex frequencies tend to infinity. The picture is similar
for a change in E, at E = | the imaginary parts of the

complex frequencies tend to infinity.

Table 6: Dependence of the complex Eigen frequencies of a continuous elastic inclusion on n

n m=0 m=I m=2 m=3
0 0 3,8301D+00 | 7,0223D+00 | 10,1734D+00
1| 1,8412D+00 | 5,3317D+00 | 8,2401D+00 | 11,7401D+00

A similar picture was constructed with a change in the
parameter E. It can be seen from Fig. 2.3 that when E =1

the imaginary parts of the complex frequencies tend to
infinity. Let us consider the natural vibrations of cylindrical

~ A8~
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shells in an infinitely elastic medium. The equation of

motion of cylindrical shells and the environment is given
in:
o’u oW _ R?

+—=——X
00* 00 B "

4y 2 2
N p? aVY+28—\£+W +W=R—x2 (2.12)
06 00 00 B

2

(4, + 24, Jgraddivi — u,rotrotd = p, ou

— hO2 B — EOhO .

12R* 1-v2'
Here, the index "0" refers to the shell, and "c" refers to the
environment, R is the radius of the shell, V¢ - Poisson's

bZ

. .. O
ratio, Eo- modulus of elasticity of the shell, o and —~ ¢ -
normal and tangential, the components of the reaction from

the environment, K, and K, - unit vectors,

— —

ot? u=uK, +u,K,- vector of displacement of

gradqo:Z—(fKr +%% Ky; diVU:ia(g:r)Jri%; environment, A and“c- the Lame coefficients. The

) , contact between the shell and the environment can be hard
X, = =0, _n—Pohy ZTE‘; X, = =0 |,_a—poh, ZTS’; or sliding:

U‘I’:a: 0 ‘I’:a’W‘r:a_ r‘r:a (2.13)

ar s 4 1

2.5 —

2.0 2

1.5

1.0

0.5

T | | |
0.z 0.4 0.6 0.5 1.0 1.2 ”

(=]
10 2

Fig.3: shows the dependence of the imaginary eigenfrequencies on

n(E, =E, =1, n=2)1)r=052)R=1;
At infinity conditions of "reflecting borders" are put. The
solution of equation (2.12) is sought in the form:

V V,(R) \sinn@
W = |W,(R) || cosn@
U, | &U,(r) |sinneg |
u U, (r) \cosné

e’i("t (214)

~ 49~

where V_(R),W, (R),U,(r) and U (r) - displacement

amplitude, @ = @y, +ia)| — complex natural frequency

The results of calculations are presented in Table 6. As an
example, consider the axisymmetric vibrations of a
cylindrical shell located in an unbounded elastic medium.
The differential equation describing the axisymmetric
vibrations of a cylindrical shell has the form:
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(2.15)

@,, —ol10

n 2 2

b? ° W+26—VZV+W +W=—&R

00" o6 Jh,
where

2u r @ @
ORrr = RZ X10A€ thxm =_dlngol |_Q1J+Q1Hll |_Qlj,
1-
0, =KR=2, d¢=--1
C, 1-2v,

Substituting (36) into (37), we obtain a complex

transcendental equation for determining Ua:

HY(Q
h=(Q2v,—ay )+ b, —b,d,Q 31)( )

THO (@)

Where
h,=h,/R v, =1-VvZ;
dl = 1_V1 , Ql :Qo Sl;
1-2v,

@+v,)1—-2v,).

(1_V1) ’

S, =nE-

20 7 @,
—Z
- “ o,
1-0 7] -
— -~
//
10t T~ ==

Fig.4: Dependence of natural frequencies (a)R ) and deformation

coefficients (—@, ) from7 .

E 1—v§
ble—l-l . ay =bP+1
W
Qo___ ; Co:‘\/Eo/po;
Co
772101/,00; E:EllEo'

A particular equation for the sliding contact condition takes the form:

h2Y1n_zo (Qo) xln
Zln

hZYZn_Zo (QO)ZZH
X2n

Where

hz :ho/R; Yln =”H§1)(Q ) Q Hn+1(Q )

Zy =nlL-mH (@) +QHL Q)]

Xip = (0,97 + a5, ) HY (Q,) + QHE (Q);

X, = (a5, — Q5 12HY (Q,) + Q,HY, (Q,);

Y, =nH"(Q,), j=12

V,=1-v,;  a,=b*(n°-D+L Q,=aga
szﬂlazﬁl(Cpllel); Q,=a,Ra, a,=0l/C,;
b®=h’/12R* b, =E,(L-V2)I(E,(L+V,));

a5, =n’ B, =Eh, I(L-V);

C, = E, / p, — wave propagation velocity
Z,(Q,)=b /[(Qiv, —a,)-n*/(Qv,-a,,)] (217)

In this case we obtain asymmetric vibrations of the
cylindrical shell, which are described by equation
hz (QSVZ - am) + b1 - bld].QlH él) (Ql) / Hl(l) (Ql) =0 (2'18)

whereQ, =Q L,;...L, =gEQ+v,)A-2v,)/(1-V,)

=0

~g5o~

(2.16)

(the index "0" corresponds to the shell, and the "1" -to the

environment). If we use the asymptotic expression for the
Henkel function for |, >>1, then for the zero and first
orders we obtain the expression for complex Eigen
frequencies
2
O - b,d,l, N Ay d, N d,lb, (2.19)
° 2hv, \[v, [hy, ( hyv,
To obtain complex and imaginary Eigen frequencies, it is
necessary that condition
_10g+iQ,
Q=i
2
(ag1 /v1)>(by /hovy ) +(dyliby 7hyvy)®)

(g1 /v1)>(by hyvy )+(diliby /hypvy)?) (220)
To satisfy the first condition, the elastic modulus E must
satisfy the inequality
E > (L+v,) (0% +Dh; ([h, + A-v))InL-2v,) ") *(L-vg) ™
A similar condition is posed for n:
n< hz (1_ 2V1)(1_Vl)il[hzam(l"'vl)(l_ 2V1)71)71(Eo / E1) _1]
Numerical values of asymmetric x (n = 0) Eigen
frequencies are given in the table 7.
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Table 7. Dependence of complex Eigen frequencies of axisymmetric oscillations of cylindrical shells on E

E=0,03 E=0,09 E=0,12 E=0,15 E=0,25
1,3308D-01 2,3976D-01 3,2670D-01 | 4,1665D-01 1,5270D-12
Opy -i1,9767D-02 | -i4,5891D-02 | -i6,1776D-02 | -i7,9394D-02 | -i1,3691D-01

at 7=0Lv, =v, =014,h, =0,025. As we see,

(E,/E,)=0,21 the real parts of the natural frequency

vanish, and the behavior of the imaginary parts remains
unchanged. The numerical results obtained are confirmed
by the condition (2.20). The results of the sliding contact
calculations for n = 5 are given in Table. 8 If the condition
of rigid contact (equality of displacements at (r = a) is put
on the interface of the shells with the medium, then the
frequency equation (2.20) takes the form

Q3nQ2n _anQ4n = 0! (2.21)

where
Q= (Qlv, - nz)hZZ(2+J.)n +nh,Y, +bZ

2
Q(2+jn)n = (Qovz —anl)hZZ(M)n —blxjn +nhZZ(

in

Li=12.

j+2

The results of numerical calculations are given in the table.
9 (with n=4 v 1= 0 o=0,14, 11 =0,3, E=0,2 - 0,1), according
to which for rigid contact imaginary and real parts are 40-
60% larger than when sliding. Now we consider the case of
non-axisymmetric vibrations of a cylindrical layer in an
elastic medium. Numerical results were obtained with the
following values of the parameters: E=0,08; R= a/b=0,08;
n=5; 177=0,08-0,72. The results of -calculations are

presented in Table. 10. When 7 =l we obtain complex

natural frequencies of the hole. The change in the complex
Eigen frequencies as a function of 1 is shown In Fig. 2 and
Fig. 3 it is seen that as the number of waves along the circle
increases, the real and imaginary parts of the complex
Eigen frequencies first decrease, and then begin to increase.

Table 8: Dependence of the complex frequencies of non-axisymmetric oscillations of cylindrical shells on E with sliding contact

@ E=0,2 E=0,4 E=0,6 E=0,8 E=1,0

1 5,9531D-02 6,1341D-02 6,1901D-02 6,2193D-02 6,1787D-02
-i7,5656D-02 | -i7,3121D-02 | -i7,2823D-02 | -i7,1202D-02 | -i6,8760D-02

2 1,1582D-01 1,1585D-01 2,4513D-01 4,4340D-01 1,1588D-01
-i6,9000D-01 | -i6,9004D-01 | -i4,4318D-01 | -i6,8910D-01 | -i6,8987D-01

3 5,7958D+00 | 5,6652D+00 | 5,7376D+00 | 5,7505D+00 | 5,7971D+00
-i3,7114D+00 | -i3,6201D+00 | -i3,5791D+00 | -i3,6992D+00 | -i3,7144D+00

4 5,4433D+00 | 5,5961D+00 | 5,4244D+00 | 5,0541D+00 | 5,4428D+00
-3,8908D+00 | -i3,9481D+00 | -i3,8281D+00 | -i3,9896D+00 | -i3,8914D+00

5 6,8053D+00 | 4,8054D+00 | 6,8055D+00 | 6,8064D+00 | 6,8053D+00
-i2,8277D+00 | -i2,8277D+00 | -i2,8279D+00 | -i2,8181D+00 | -i2,8227D+00

Table 9: Dependence of the complex frequencies of non-axisymmetric oscillations of cylindrical shells on E for rigid contact

(0] E=0,2 E=0,4 E=0,6 E=0,8
1 2,2642D-01 1,8172D-01 1,5839D-01 1,4324D-01
-i1,2969D-01 | -i7,7092D-02 | -i5,7656D-02 | -i4,7033D-02
9 3,2339D-01 3,3921D-01 3,0207D-01 1,79995D-01
-i2,5641D-01 | -i2,0152D-01 | -i1,7197D-01 | i1,5278D -01
3 4,8155D=00 4,8144D=00 4,8137D+00 4,8134D+00
-i4,7809D+00 | -i4,7677D+00 | -i4,7667D+00 | -i4,7662D+00
4 6,1617D+00 6,1612D+00 6,1609D+00 6,1607D+00
-i5,5815D+00 | -i5,5786D+00 | -i5,5781D+00 | -i5,5778D+00
Table 10: Dependence of the complex frequencies of a cylindrical layer on 77
0] n =0,08 n =0,16 n =0,24 n =0,32
1 1,6906D-01 4,16999D-01 5,3200D-01 6,8173D-01
-i1,5803D-02 | -i3,3343D-02 | -i1,07018D-01 | -i1,0860D-01
9 5,1175D-13 5,1163D-13 5,1139D-13 5,1102D-13
-i9,9134D-01 | -i2,9001D+00 | -i8,8770D+00 | -j1,0389+01
3 6,8166D+00 6,8176D+00 8,5821D+00 8,5830D+00
-i3,5504D+00 | -i3,6155D+00 | -i6,3848D+00 | -i6,3877+00

From the results (Fig. 4) it follows that with decreasing
minimum frequencies as a function of n are mixed to the
right. We consider the natural oscillation of a cylindrical
layer of a cylindrical layer in a particular motion in a

particular medium in the elastic medium: [€] = 0, where

~g]~

€y = {nz +n— ﬂzzrz }ln(aﬁr)—a*rlél_)l(afr);
€9 = {nz +n —ﬁzzrz}H ® (a;r)—a*, H r(]ﬂ(a:r);

€9 =-n(n+1)H, (5r)+ B, HO(BIT);
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€9 = —n[— (n+2)1, (a;‘r)+ a,, | r,71(oz>’:r)];

€Y = _n[_ (n +1)Hrf(0!:|’)+ o, Hrgf)l(a:r)];

€@ = 0t 0L o) g i)

{n ne ﬂm( ), HO )

€@ =-nln=DHP (gr)- B HE (BT}
a”and B - longitudinal and transverse wave number.

The formulation of the problem of investigating energy
dissipation in the propagation of waves in an elastic
medium with spherical inclusions is proposed. The
coefficient of the so-called scattering coefficient is
introduced, which expresses the relationship between the
energies of the incident and scattered waves in the sphere.
Thus, the scattering coefficient is expressed in terms of the
characteristics of the incident and scattered waves. 3.
Oscillations of a deformable (elastic or viscoelastic)
cylinder in a liquid under the influence of internal pressure.
As an example, let us consider the solution of the problem
of oscillations of an elastic hollow cylinder immersed in a
liquid under the action of a periodic internal pressure In a
cylindrical coordinate system I,@,Z elastic isotropic

W =
€ 21

cylinder with Lame coefficients A, ££, which can depend
on r, takes up the volume

R <r<R,0<¢<27—0(z(w0. rNR,
fills the ideal density liquid o with the speed of sound

Region

waves in it C,
solid r=R,

assumed to be continuous. On the inner surface r=R, a
pressure is established that varies in time according to the
harmonic law p = poei“’t. when solving a stationary

problem, it is also necessary to take into account the
radiation conditions at infinity. The defining relations
connecting the stress tensor O and the strain tensor &
have the form

oc=AV-UE+2ue (u), R, <r <R,

o=p,ciV-UE, I)R,,

. On the contact surface of a liquid and a

Radial stresses and displacements are

(3.1)

Where E is the unit tensor of the second rank. When
account is taken of the axial symmetry of equation (3.1),
we represent it in coordinate form as follows

0o, Oy—O o%u,
o | r G at? =0
3.2)
29

In the equations (3.2) with ) R, should be considered
A= p.ct, 1t =0.0nthe inner surface =R, conditions
(3.3)

ot

=—Po€

~g)~

Oy r=R,-0 = Grr/r=R2+0 ! ur/r:Rz—O = ur/r=R2+0 .

The solution is represented in the form u, =U (r)e'”

and eliminating the stresses in (3.2), we arrive at the
equation of stationary oscillations with boundary conditions

d du u] 2u dU U

LU + po’U =0,LU =—| (142 + bl it
P dr {( U arr dr
IU(R)=-p, U(R,-0)=U(R,+0),IU(R,-0)=IU(R,-0).

If we also require that at infinity the function U satisfy the
Sommerfeld radiation conditions

lim /r|U| = const Iim\/F(Z—l:HCﬁU):O, (35)
—® 0

r—o

then the boundary value problem (3.4), (3.5) must have a
unique solution [9]. For an acoustic environment, the
function

d,  o,or

U =B, HP(ZD),
r C

then the boundary-value problem (3.4) with, r) R, and the

radiation conditions (3.5). In (3.6) B, arbitrary constant,

(3.6)

Héz) - Henkel function of the second kind of zero order.
Where in

ar,
o, =—p.0°BHP (—)e (3.7)

0

Then, except Bl in relations (3.6), (3.7), the problem on a
semi-infinite interval <r{ o can be reduced to a
R <r<R,
R; 2 R,, having determined on the surface I = R; the
following boundary condition:

problem on a finite interval for anyone

dH
U =—p,0HP (2~ ){ (—)} (38)
c, | dr "¢,
In the relation (3.8), the parameter @ enters

meromorphically. For the high-frequency range, using the
asymptotic representation of the Henkel function for large
arguments

H? (2) = \/Z ) [1+ 0(1)]
niZ z

Then condition (3.8) can be replaced by the approximate
relation
IU(R,)=—

p.0cU(R;), (3.9)

With a linearly incoming parameter @ . Equation (3.9)

means, not reflecting the conditions (1.23) for the problems
under consideration.

Conclusions
1. The formulation of the problem is proposed for the
natural oscillations of cylindrical bodies in a deformed

medium. The task is to find those Q= Q +i€; (

Q) - real and €Q; - imaginary parts of complex



World Wide Journal of Multidisciplinary Research and Development

Eigen frequencies) for which the system of equations
of motion and the truncated radiation conditions have a
solution in the class of infinitely differentiable
functions. It is shown that the problem has a discrete
spectrum.

Two problems of natural oscillations of bodies for an
infinite and finite region for some relations of
parameters turned out to be equivalent. This is due to
the fact that at the outer boundary conditions are set for
the absence of reflection.

The numerical results obtained for plane mechanical
systems in a particular case are compared with known
theoretical and experimental values. In short waves

(h/ A >0,5) the results differ to 10-15%, and in

long waves (h/ A >0,5) before 25%.

From the discussion of the results it is established that
with the increase of the elasticity modulus and
Poisson's ratio, the corresponding natural frequencies
of the mechanical system slowly increase. Natural

frequencies (€2,) and damping factors (Q,) at

sliding and rigid contact differ up to 15%., and at rigid
contact more than 15%. W.ith increasing shell
thickness, natural frequencies increase to 10%.
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