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Cylindrical Bodies in the Deformed Environment 
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Abstract 
The vibrations of cylindrical bodies in a deformed medium is discussed. The problem reduces to 

finding those values of complex Eigen frequencies for which the system of equations of motion and 

the truncated radiation conditions have a nonzero solution to the cash-box of infinitely differentiable 

functions. It is shown that the problem has a discrete spectrum located on the lower complex plane 

and the symmetric spectrum is an imaginary axis. 
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Introduction 

In this paper we consider oscillations of cylindrical bodies in a deformable medium [1,2,3]. 

From the physical point of view, the damping in an ideal elastic medium is explained by the 

radiation of energy excited by the natural oscillations due to divergent elastic waves. The 

behavior of complex Eigen frequencies depending on the geometric and physic mechanical 

parameters of the system is investigated. The environment of cylindrical and spherical bodies 

is considered as elastic, viscoelastic and multicomponent. The obtained numerous results are 

compared on a computer. A piecewise homogeneous mechanical system is regarded as 

dissipative homogeneous and inhomogeneous. The ideal elastic body has no losses [4,5]. 

Such a body is characterized by a linear single-valued relationship between stress and strain 

throughout the entire period of the alternating voltage. Hence it follows that stress and 

deformation are always in phase. The energy dissipation of an elastic wave will occur if the 

stress and strain are not connected by an unambiguous dependence during the period of 

oscillations. The absence of such an unambiguous relationship between stress and 

deformation arises when temporal derivatives appear in the equation connecting them. Even 

if the equation is linear with respect to stress and strain, the presence of time derivatives is 

always associated with dissipation. As a result, with an alternating voltage there is a 

hysteresis effect. This means that in the frequency range in which attenuation has an 

appreciable magnitude, the strain will lag behind the voltage. The presence of only a 

nonlinear connection between stress and deformation (without time derivatives in the 

equation) has two effects. Such a connection, firstly, leads to the interaction of the elastic 

wave under consideration with other waves (for example, with thermal vibrations) and as a 

result there is a redistribution of energy between the waves. Secondly, the considered wave 

will generate higher harmonics, transferring their energy to them. In both cases, the 

interaction depends on the strain amplitude. The nonlinear relationship between stress and 

strain in the presence of time derivatives also leads to damping, which depends on the strain 

amplitude. The Eigen vibrations of the rods and shells in an elastic medium are considered in 

[6, 7, 8]. In these works, the environment of rods and shells is replaced by elastic springs, i.e. 

the coefficient of spring stiffness is taken into account in the calculation. In [9], the natural 

vibrations of spherical shells in an elastic medium that satisfy the Lame equation (for shells 

and an elastic medium) are considered. Numerical results are obtained and analysis is made. 

In the present paper, in contrast to the known papers, instead of the Somerfield radiation
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conditions at infinity, the natural vibrations of the 

cylindrical shells are considered with allowance for the 

alternative condition - non-reflecting boundaries. 

 

1. The body's own oscillations in the medium 

Three problems of natural oscillations of bodies interacting 

with the medium are considered. We consider model 

problems for the wave equation and, for example, 

demonstrate the general scheme for constructing a solution 

with allowance for the radiation principle. The solution of 

the problem of natural oscillations of a semi-infinite rod 

with mass m (Fig. 1) has the form 

 

where .0;  IIR i   Let  ck/  known 

real speed,  kc/  complex wave number. On an 

infinite section .),( / cxiti eaetxu    

We define the dependence of u on x for t=0:

x
c

i
x

c
xi

c

i
R

I
IR

eaeaexu






 )(

)0,( . 

As can be seen, Fig. 1 with increasing x displacement 

)0,(xu  at the expense of 
x

c

I

e



 term increases to infinity. 

Thus, when solving the problems of natural oscillations of 

cylindrical bodies in an elastic medium at infinity (
r  ) the potential of the displaced Summerfield is not 

fulfilled. Thus, a new type of condition is required when
r 

.  
 

1.1. Consider the natural oscillations of the composite 

rod, to the left it is fixed, and to the right is the damper 

(Fig. 1). The main goal in this problem is to show the 

independence of the Eigen frequencies of the left rod from 

the length of the right rod if shortened Summerfield 

conditions are put at the end of the right rod [4].  

 

 
 

Fig.1: Calculation schem 

 

It is required to find the solution of the following 

homogeneous equation: 

0
2

2

2

2





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



t

u

x

u
G      (1.1) 

EFG  , Young's E-module, F-cross-sectional area,  - 

density of the rod material) with the following boundary 

conditions    

1 1

1 1

1 1 2 1
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    (1.2) 

We express the solution of (1.1) in the form
iwtexUtxU  )(),(      (1.3) 

where )(xU - amplitude function, for each section 

xx  10  and xx  10 21 xxx  , we write in the form 

1 1
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1 2 1

1 1

1 2 1

, 0
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        (1.4) 

To determine the constants C we have the following 

boundary conditions 

1 1

1
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( 0) ( 0) 0,

( ) ( ) 0.

U

U x U x

G x G U x

G U x l U x
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     (1.5) 

From the boundary conditions we obtain 

 

     (1.6) 
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where }/{}{
2

2

2

2  
pp C

G

C

G
. If we set 

22 / pCG , that is, the right-hand end is set to the 

radiation conditions  1=0, then (1.6) takes the following 

form 

1

2

12 2 2 1

2 2 2 1

{ } { } 0
C

i
x

p

p p p p

G G G G
e

C C C C



   

    (1.7) 

The spectrum of eigenvalues is defined by formula 
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1 1 1 1 2 22
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i Ln

x x G C G C





 


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( 0,1,2,...)k 

     (1.8) 

 

 

1 1 1 2 2 1

1 1 2 1 2 1

(2 1)

2 2

p p p p
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
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
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.  

 

Where by logarithm is meant the main real branch is the 

invalid part of the eigenvalues k  has the meaning of the 

frequency of natural oscillations. They exactly coincide 

with the natural frequencies of the left side of the rod (

10 xx  ) with a fixed end at 
1221 pp CGCG  . When 

1221 pp CGCG   actual parts ku  coincide with the natural 

frequencies of the rod, with a free right end. The imaginary 

parts ku  have the meaning of the damping coefficients and 

are the same for all eigenvalues ku . The logarithmic 

damping decrement decreases inversely proportional to the 

Eigen frequency number. If 21 GG   and 21
~~   , then 

we get the natural oscillations of the rod, the left end is 

fixed, and the right damper. The frequency equation (1.8) 

takes the following form 

     (1.9) 

Natural frequency 

,...)2,1,0(
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

kLn
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c p
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(1.10) 

Reflection is absent, since the supplied conditions are 

satisfied by a divergent cylindrical and spherical waves. 

}/{}{
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G , 

at i=0, there exists a real natural frequency. Real parts  k 

coincide with the Eigen frequencies of the rod with free 

right the end. The imaginary parts are equal to zero. When  

11 / рСG  Semi-infinite rod, there is no natural 

frequency. In this way (
11 / pCG non-reflection 

conditions), the frequency equations (1.6) do not depend on 

the length of the right rod. 

 

1.2. Anti-flat oscillations of a cylinder immersed in an 

infinite medium.  

It can be shown that, for R >> 1, the problem under 

consideration is equivalent to the problem of the Eigen 

vibrations of a two-layered cylinder depicted in Fig. 2, 

which is satisfied by the following equations of motion and 

boundary conditions: 
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where μ2 - he Lame coefficient  

Now we determine the conditions for the absence of 

reflection for r = R. For R >> 1 divergent waves has the 

form  
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Since the asymptotic are valid 
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where   - wave number; y is the natural frequency. From 

relation (1.13) we have 
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Fig.2: Calculation scheme 
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or ui
t

U





. After some transformations, we get 

U
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r
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1

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
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





  ,    (1.16) 

Thus, the condition for r = R has the following form 

3
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r R r R
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 
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For radial oscillations, it follows directly from (1.17) that 

2 2

2 2
rr r R r R r R

p

u
u

C t R

 
   


  


 (1.18) 

Under this condition (1.18), obtaining the frequency 

equation does not depend on the radius of the outer 

cylinder. 

  

1.3. Radial oscillation of a spherical body. Let us 

consider in an unbounded medium the radial oscillations of 

the cavity, accompanied by the emission of longitudinal 

sound waves, which leads to a loss of energy, and thus to a 

damping of the oscillations. When C p >>C s  the problem 

under consideration is equivalent to the problem of the 

natural oscillations of the spherical hole shown in Fig. 2. 

The solution of this problem will be sought in the form of a 

"potential" of displacement ),( tr , satisfying equation 
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The solution (19) presented in the form 


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
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(1.20) 

Satisfies the boundary conditions 
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Where 
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2
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- velocity of 

propagation of transverse waves. Substituting (1.20) into 

(1.21), we obtain 
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Substituting (1.22) into the boundary condition (1.21), we 

have 
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C
      (1.22). При 

а   natural frequencies 0 ; When C
p   

the natural frequency takes the following form 
a

Сs2
 . 

It is clear from (1.22) that IR i   where 

a

Сs
R

2
 ; 

P

s
I

C

С



 1. The resulting expression 

(1.22) completely corresponds to the results of the work of 

Landau and Lifshitz, which are obtained on the basis of the 

Somerfield radiation condition. Thus, two problems for an 

infinite and finite domain are equivalent. This is explained 

by the fact that at the outer boundary conditions are set for 

the absence of reflection, which in the general case are 

written in the form 

( ) ( )LU R lU R 
     (1.23) 

Here L and l linear differential operators, 
R - border 

selected area of infinite media, U  - vector of displacement. 

Equation (1.23) replaces the Sommerfeld radiation 

condition. Equations (1.7), (1.18), and (1.21) is a particular 

case of (1.23). Equation (1.23) is the nonreflecting 

condition of the "Troyanovski-Safarov". In a particular 

case, it results in a shortening of the Sommerfeld radiation 

condition [1.8]  
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2. The Eigen vibrations of piecewise-homogeneous 

cylindrical systems 
We consider the natural oscillations of piecewise-

homogeneous cylindrical bodies in an infinitely elastic 

medium (Fig. 2). The purpose of which is to show the 

influence of piecewise homogeneity on natural frequencies 

and damping indices of a mechanical system. The linear 

equation of motion in displacement potentials in the 

absence of volume forces has the form 
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 Solutions of equations (2.1) are sought in the form: 
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(2.2) 

where n  - integer;   - complex natural frequenc 
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.
0

1

a

r
r   At infinity  r  The Sommerfeld 

conditions for each component are formulated. Substituting 

(2.2) into (2.1), we obtain the following ordinary 

differential equations: 
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Let us consider the natural oscillations of a cylindrical hole 

in an elastic medium. On the boundary r=a we set the 

condition free of stress, i.e.  

0
 arrarrr  .      (2.3) 

Substituting (2.2) into (2.3), we obtain the frequency 

equation 
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With natural oscillations at r=
R  Shortened Sommerfeld 

conditions are put in place, i.e. 
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The solution of the wave equation is sought in the form  
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where  - purity; n- is the number of waves; t- time; 

Substituting (2.3) into (2.4), we obtain the Helmholtz 

equation, whose solution has the form 
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where )()2(),1( zH n - Hankel functions of the first and 

second kind of the n-th order рcw /  and 

 SСw /
 wave numbers; An, Bn, Cn, Dn, - arbitrary 

constants, which are determined from the boundary 

conditions. From the boundary conditions it follows that 

)()2( zH n  describes a converging wave; therefore, the 

solution of (2.5) takes the form  
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 (2.6) 

After setting (2.5) into the boundary conditions (2.3), we 

obtain a system of algebraic equations with complex 

coefficients  

[D]{q}=0, 

where {q}={An,Cn}-vector column of arbitrary constants; 

[c] is a square matrix whose elements are expressed in 

terms of Henkel functions of the first kind of the n-th order. 

For a system of algebraic equations to have a nontrivial 

solution it is necessary and sufficient  

[c]=0       (2.7) 

The roots of the transcendental (2.7) equation describe the 

frequency of the cavity's natural vibrations. The frequency 

equation (2.7) takes the following form:  
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       (2.8) 

 

Where ,)/(;))2/(( 2/12/1  paypaX   

  and  - Lame coefficients; -density of the material. 

Equation (2.8) after certain transformations can be written 

in the following form:

 

,0)2/()()()2/()()()1( 222222  yyFxFyyFxF   

 

Where .......3,2,1),(/)()( 1   xHxxHxF  

Let us consider in an unbounded medium the radial 

oscillations of a spherical cavity, accompanied by the 

emission of longitudinal sound waves, which leads to a loss 

of energy, and thereby to an attenuation of the oscillations. 

When Ср>>СS the problem under consideration is 

equivalent to the problem of the natural oscillations of a 

spherical body. The roots of the characteristic equation 

(2.8) are found by the Mueller method. On the basis of 

these studies, it is revealed that the mechanical system 

under consideration has a discrete complex natural 

frequency. Table 1 shows the results obtained and their 

comparison, the results of those other authors [12, 16]. The 

results obtained show that with increasing modulus of 

elasticity, the corresponding natural frequencies of the 

mechanical system slowly increase.  
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Table 1. Comparison of results ( 25,0v ) 
 

№ Our Results Pao and Mao [17] Bnron and Parnes [17] 

0 0,44741-0.44420 i 0.44647-0.44127 i 0.4464-0.4410 i 

1 1,09272-0,77653 i 1.09272-0.7653 i 1.0929-0.441 i 

2 1,907554-0,89782 i 1.90754-0.8978 i 1.9076-0.897 i 

3 2,75652-0,99151 2.75652-0.9915 i  

4 3,63132-1,06662 i 3.63132-1.0666 i  

5 4.52440-1.13140 i 4.52440-1.1314 i  

 

Define   for different Poisson coefficients 1  and n. 

When n=0 we obtain axially symmetric oscillations of the 

cylindrical hole. The partial equation (2.8) takes the form 

.0)()( 1

)1(

11

)1(

1  HHd o     (2.9) 

The frequency equation (2.9) is solved numerically, i.e. the 

Mueller method. Results of calculations 0n  

)25,0( 1 v  of the natural oscillations are given in Table 

2. As can be seen from the table, the corresponding 

complex frequencies increase with increasing number of 

waves along the circumference. Complex frequencies 

consist of two parts, real (Re ) and imaginary parts (Im

 ) which means natural frequencies and damping 

coefficients. 

 
Table 2: Dependence of the complex Eigen frequencies of a cylindrical hole 

 

 n=0 n=I n=2 n=3 

1  
0,4529D+00 

-i0,47651D+00 

0,10927D+01 

-i0,76538D+00 

0,19075D+01 

-i0,89782D+00 

0,27565D+01 

-i0,99155D+00 

2
 

  0,28621D+00 

-i0,17852D+00 

0,72325D+01 

-i0,32283D+01 

3
 

  0,404607D+00 

-i0,178552D+00 

0,12307D+00 

-i0,22283D+00 

 

The frequency equations (2.9) depend only on the 

parameter  ( Poisson's ratio). With increasing Poisson's 

ratio within 0  0.4 The real and imaginary parts of the 

complex frequency change to 27%. When  1=0,5 the 

medium becomes incompressible, naturally, there are no 

attenuations. For verification, the results obtained are 

compared with the results of [7, 9]. at  1=0,25.  

Now let us consider the natural oscillations of a rigid 

cylindrical inclusion. In this case, we seek the solution of 

the wave equation and the hard inclusion in the form. On 

the contact r=a we set the condition for rigid contact. The 

partial equation for n=i takes the form  

 )()()1()()(4)( 1122211

1

11 HHHH o  

);()()()()1( 21212111  ooo HHHH          (2.10) 

;; 1111 aa    

where 221 ,/    - tight inclusion density; 

;; 1211 aa  

 
Table 3: Comparison of complex frequencies 

 

n 9 Наша методика 11 

0 0,44647-i0,44127 0,45297-i0,47651 0,446-i0,4410 

I I,09272-i0,7653 1,0927-i0,76538 0,229-i0,441 

2 I,90754-i0,8978 I,90750-i0,89782 I,9076-i0,8971 

3 2,75661-i0,9915 2,75665-i0,99155 - 

 

 

The results of the calculations are presented in Table 3 

25,0( 1 v ), according to which 1  the real parts of 

the complex self-purity vanish. When 0  we get the 

vibrations of the environment around the rigid body, i.e. we 

have only imaginary roots. As a result of using the 

asymptotic value of the Henkel function (for a >> I), we 

obtained 

аCCCi sps /)1/( 111  ,             (2.11) 

The existence of imaginary values of the natural frequency 

means that oscillatory processes in the system only 

attenuating. Imaginary Eigen frequencies turns depends on 

the longitudinal and transverse speed and aperture radius. 

The existence of a discrete frequency plays an important 

role for the calculations of underground pipelines are in the 

ground environment. The obtained numerical results are 

presented in the form of tables and figures. The appearance 

of an additional free surface basically thickens and reduces 

the eigenvalue of the frequency by 10-16%. The existence 

of natural frequency means that in the vicinity of the free  

surface of the cylindrical holes may life Rayleigh wave. 

Thus, according to (2.11), with 0n  the real part of the 

complex frequency does not exist. Now we consider the 

natural oscillations of a continuous cylindrical inclusion in 

an elastic medium (Fig. 2-4). The solution of the equation 

of motion of the medium and the inclusion in the potentials 

takes the form. At the contact boundary, we set the 

condition for rigid contact. Solution, substituting in the 

motion and boundary conditions, we obtain a homogeneous 

complex algebraic equation in the form. Here the 

determinant (C) is of the fourth order, its elements have the 

form 
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Table 4: The change in the complex frequency, depending on Е


at  =4; 0 = =0,14 (hard contact). 

 

01 /
 

  
0,2 0,4 0,6 0,8 

1
 

1Re 
 

2.26428D-01 1.8172D-01 1.5839D-01 1.4324D-02 

1Re   -i1.2969D-01 -i7.7092D-02 -i5.7656D-02 -i4.7033D-02 

2
 

2Re 
 

3.2339D-01 2.3924D-01 2.0207D-01 1.7995D-01 

2Re 
 

-2i.5641D-01 -i2.0152D-02 -i1.7192D-02 -i1.5278D-01 

3
 

3Re 
 

4.81550D+00 4.8144D+00 4.8137D+00 4.8134D+00 

3Re 
 

4.7709D+00 -i4.7677D+00 -i4.7667D+00 -i4.7662D-02 

4
 

4Re
 

4.0795D+00 4.0866D+00 4.0845D+00 4.0831D+00 

4Re
 

5.2295D -i5.2428D+00 -i5.2421D+00 -i5.2416D+00 

5
 

5Re 
 

6.1617D+00 6.1612D+00 6.1609D+00 6.1607D+00 

5Re 
 

3.5815D+00 -i3.5786D+00 -i3.5781D+00 -i3.5778D-02 
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The numerical solution was carried out on a computer with 

various parameter ratios 21 /    E=E1/E2, 21    

=0,25. If the environment is absolutely rigid, then 

1E .( Table 4). The equation corresponding to the 

condition on the surface loses its meaning, it must be 

replaced by the boundary condition 0
 brbrr UU  .  

As a result, we obtain a system of algebraic equations with 

respect to unknowns A п , B п . The change in the natural 

frequencies as a function of n is shown in Table 5. 

 
Table 5: Dependence of complex Eigen frequencies of hard 

inclusion on )/( 21   
 

  

1eR  1 miI  

0,2 0,38248D+00 0,40845D+00 

0,4 0,73515D+00 0,89541D+00 

0,6 0,19341D+01 0,14480D+01 

0,8 0,28341D+01 0,156907D+01 

1,0 0,27431D-12 0,34807D+01 

1,2 0,26728D-11 0,66809D+01 

 

It can be seen that when I  The imaginary parts of the 

complex frequencies tend to infinity. The picture is similar 

for a change in E, at E = I the imaginary parts of the 

complex frequencies tend to infinity. 

 
Table 6: Dependence of the complex Eigen frequencies of a continuous elastic inclusion on n 

 

n m=0 m=I m=2 m=3 

0 0 3,8301D+00 7,0223D+00 10,1734D+00 

1 1,8412D+00 5,3317D+00 8,2401D+00 11,7401D+00 

 

A similar picture was constructed with a change in the 

parameter E. It can be seen from Fig. 2.3 that when E = I 

the imaginary parts of the complex frequencies tend to 

infinity. Let us consider the natural vibrations of cylindrical 
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shells in an infinitely elastic medium. The equation of 

motion of cylindrical shells and the environment is given 

in: 

 
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Here, the index "0" refers to the shell, and "c" refers to the 

environment, R is the radius of the shell,  0 - Poisson's 

ratio, E0- modulus of elasticity of the shell, σrr and  0  - 

normal and tangential, the components of the reaction from 

the environment, rK


 and K


 - unit vectors, 

 KuKuu rr


 - vector of displacement of 

environment, c  and c - the Lame coefficients. The 

contact between the shell and the environment can be hard 

or sliding: 

 


rrrWrrU uu ,         (2.13) 

 

 
 

Fig 2: shows the dependence of the real parts of the natural frequencies on   

  

 

 
 

Fig.3: shows the dependence of the imaginary eigenfrequencies on 

 

)2,1( 21  nEE  1) R=0,5; 2) R=1; 

At infinity conditions of "reflecting borders" are put. The 

solution of equation (2.12) is sought in the form: 
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               (2.14) 

where )(),(),( rURWRV nn 
 and )(rU r

- displacement 

amplitude,  IR i  complex natural frequency 

The results of calculations are presented in Table 6. As an 

example, consider the axisymmetric vibrations of a 

cylindrical shell located in an unbounded elastic medium. 

The differential equation describing the axisymmetric 

vibrations of a cylindrical shell has the form: 
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Substituting (36) into (37), we obtain a complex 

transcendental equation for determining U1: 
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Fig.4: Dependence of natural frequencies )( R and deformation 

coefficients )( I  from .
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A particular equation for the sliding contact condition takes the form: 
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In this case we obtain asymmetric vibrations of the 

cylindrical shell, which are described by equation 
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where )1/()21)(1(; 111111 vvvELLo    

(the index "o" corresponds to the shell, and the "1" -to the 

environment). If we use the asymptotic expression for the 

Henkel function for 11 l , then for the zero and first 

orders we obtain the expression for complex Eigen 

frequencies
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To obtain complex and imaginary Eigen frequencies, it is 

necessary that condition 
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To satisfy the first condition, the elastic modulus E must 

satisfy the inequality 
12
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A similar condition is posed for η: 
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Numerical values of asymmetric x (n = 0) Eigen 

frequencies are given in the table 7. 
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Table 7. Dependence of complex Eigen frequencies of axisymmetric oscillations of cylindrical shells on Е 
 

 E=0,03 E=0,09 E=0,12 E=0,15 E=0,25 

1R
 

1,3308D-01 

-i1,9767D-02 

2,3976D-01 

-i4,5891D-02 

3,2670D-01 

-i6,1776D-02 

4,1665D-01 

-i7,9394D-02 

1,5270D-12 

-i1,3691D-01 

 

 at .025,0,14,0;1,0 21  ohvv  As we see,

21,0)/( 1 oEE  the real parts of the natural frequency 

vanish, and the behavior of the imaginary parts remains 

unchanged. The numerical results obtained are confirmed 

by the condition (2.20). The results of the sliding contact 

calculations for n = 5 are given in Table. 8 If the condition 

of rigid contact (equality of displacements at (r = a) is put 

on the interface of the shells with the medium, then the 

frequency equation (2.20) takes the form 

,04123  nnnn QQQQ  (2.21) 

where 

.2,1)(

;)(

)2(21)2(212

2

0)2(

12)2(

22

2

2

0









jZnhxbZhavQ

ZbYnhZhnvQ

njjnnjnnjn

jnjnnjjn
 

The results of numerical calculations are given in the table. 

9 (with n=4  1=  0=0,14,  =0,3, E=0,2 - 0,1), according 

to which for rigid contact imaginary and real parts are 40-

60% larger than when sliding. Now we consider the case of 

non-axisymmetric vibrations of a cylindrical layer in an 

elastic medium. Numerical results were obtained with the 

following values of the parameters: E=0,08; R= α/b=0,08; 

n=5;  =0,08-0,72. The results of calculations are 

presented in Table. 10. When  =I we obtain complex 

natural frequencies of the hole. The change in the complex 

Eigen frequencies as a function of η is shown In Fig. 2 and 

Fig. 3 it is seen that as the number of waves along the circle 

increases, the real and imaginary parts of the complex 

Eigen frequencies first decrease, and then begin to increase.  

 

Table 8: Dependence of the complex frequencies of non-axisymmetric oscillations of cylindrical shells on E with sliding contact 
 


 

E=0,2 E=0,4 E=0,6 E=0,8 E=1,0 

1 5,9531D-02 6,1341D-02 6,1901D-02 6,2193D-02 6,1787D-02 

 -i7,5656D-02 -i7,3121D-02 -i7,2823D-02 -i7,1202D-02 -i6,8760D-02 

2 1,1582D-01 1,1585D-01 2,4513D-01 4,4340D-01 1,1588D-01 

 -i6,9000D-01 -i6,9004D-01 -i4,4318D-01 -i6,8910D-01 -i6,8987D-01 

3 5,7958D+00 5,6652D+00 5,7376D+00 5,7505D+00 5,7971D+00 

 -i3,7114D+00 -i3,6201D+00 -i3,5791D+00 -i3,6992D+00 -i3,7144D+00 

4 5,4433D+00 5,5961D+00 5,4244D+00 5,0541D+00 5,4428D+00 

 -3,8908D+00 -i3,9481D+00 -i3,8281D+00 -i3,9896D+00 -i3,8914D+00 

5 6,8053D+00 4,8054D+00 6,8055D+00 6,8064D+00 6,8053D+00 

 -i2,8277D+00 -i2,8277D+00 -i2,8279D+00 -i2,8181D+00 -i2,8227D+00 

 

Table 9: Dependence of the complex frequencies of non-axisymmetric oscillations of cylindrical shells on E for rigid contact 
 


 

E=0,2 E=0,4 E=0,6 E=0,8 

1 
2,2642D-01 1,8172D-01 1,5839D-01 1,4324D-01 

-i1,2969D-01 -i7,7092D-02 -i5,7656D-02 -i4,7033D-02 

2 
3,2339D-01 3,3921D-01 3,0207D-01 1,79995D-01 

-i2,5641D-01 -i2,0152D-01 -i1,7197D-01 i1,5278D -01 

3 
4,8155D=00 4,8144D=00 4,8137D+00 4,8134D+00 

-i4,7809D+00 -i4,7677D+00 -i4,7667D+00 -i4,7662D+00 

4 
6,1617D+00 6,1612D+00 6,1609D+00 6,1607D+00 

-i5,5815D+00 -i5,5786D+00 -i5,5781D+00 -i5,5778D+00 

 

Table 10: Dependence of the complex frequencies of a cylindrical layer on   
 

  

  =0,08   =0,16   =0,24   =0,32 

1 
1,6906D-01 4,16999D-01 5,3200D-01 6,8173D-01 

-i1,5803D-02 -i3,3343D-02 -i1,07018D-01 -i1,0860D-01 

2 
5,1175D-13 5,1163D-13 5,1139D-13 5,1102D-13 

-i9,9134D-01 -i2,9001D+00 -i8,8770D+00 -j1,0389+01 

3 
6,8166D+00 6,8176D+00 8,5821D+00 8,5830D+00 

-i3,5504D+00 -i3,6155D+00 -i6,3848D+00 -i6,3877+00 

 

From the results (Fig. 4) it follows that with decreasing 

minimum frequencies as a function of η are mixed to the 

right. We consider the natural oscillation of a cylindrical 

layer of a cylindrical layer in a particular motion in a 

particular medium in the elastic medium: [Є] = 0, where  
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 and 
 - longitudinal and transverse wave number. 

The formulation of the problem of investigating energy 

dissipation in the propagation of waves in an elastic 

medium with spherical inclusions is proposed. The 

coefficient of the so-called scattering coefficient is 

introduced, which expresses the relationship between the 

energies of the incident and scattered waves in the sphere. 

Thus, the scattering coefficient is expressed in terms of the 

characteristics of the incident and scattered waves. 3. 

Oscillations of a deformable (elastic or viscoelastic) 

cylinder in a liquid under the influence of internal pressure. 

As an example, let us consider the solution of the problem 

of oscillations of an elastic hollow cylinder immersed in a 

liquid under the action of a periodic internal pressure In a 

cylindrical coordinate system zr ,,  elastic isotropic 

cylinder with Lame coefficients , , which can depend 

on ,r  takes up the volume

 zRrR ,20,21  . Region 2Rr   

fills the ideal density liquid c  with the speed of sound 

waves in it 0c . On the contact surface of a liquid and a 

solid 2Rr  Radial stresses and displacements are 

assumed to be continuous. On the inner surface 1Rr   a 

pressure is established that varies in time according to the 

harmonic law .0

tiepp   when solving a stationary 

problem, it is also necessary to take into account the 

radiation conditions at infinity. The defining relations 

connecting the stress tensor   and the strain tensor   

have the form  

),(2 uuE   21 RrR   

,2

0 uEсс  
2Rr  ,     (3.1) 

 

Where E is the unit tensor of the second rank. When 

account is taken of the axial symmetry of equation (3.1), 

we represent it in coordinate form as follows  

.)2(
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    (3.2) 

In the equations (3.2) with 2Rr   should be considered

0,2

0   сс . On the inner surface 1Rr   conditions  

ti

rr ep  0 ,      (3.3) 

 0000 2222
,   RrrRrrRrrrRrrr uu . 

The solution is represented in the form 
ti

r erUu )(  

and eliminating the stresses in (3.2), we arrive at the 

equation of stationary oscillations with boundary conditions  
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 (3.4) 

 

If we also require that at infinity the function U satisfy the 

Sommerfeld radiation conditions 

0)(lim,lim
0




U
c

i
dr

dU
rconstUr

rr


,    (3.5) 

then the boundary value problem (3.4), (3.5) must have a 

unique solution [9]. For an acoustic environment, the 

function  

)(
0

)2(

01
c

r
H

dr

d
BU


 ,     (3.6) 

then the boundary-value problem (3.4) with, 2Rr   and the 

radiation conditions (3.5). In (3.6) 1B  arbitrary constant, 

)2(

0H - Henkel function of the second kind of zero order. 

Where in  

ti

crr e
c

r
HB 

 )(
0

)2(

01

2      (3.7) 

Then, except 1B  in relations (3.6), (3.7), the problem on a 

semi-infinite interval  rR1  can be reduced to a 

problem on a finite interval 21 RrR   for anyone 

23 RR  , having determined on the surface 3Rr   the 

following boundary condition: 

U
c

r

dr

dH

c

r
HlU c

1
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 .  (3.8) 

In the relation (3.8), the parameter   enters 

meromorphically. For the high-frequency range, using the 

asymptotic representation of the Henkel function for large 

arguments  









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1
(1

2
)( )4/()2(

0
z

Oe
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zH zi 
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. 

Then condition (3.8) can be replaced by the approximate 

relation  

)()( 303 RUciRlU c ,     (3.9) 

 

With a linearly incoming parameter  . Equation (3.9) 

means, not reflecting the conditions (1.23) for the problems 

under consideration. 

 

Conclusions 

1. The formulation of the problem is proposed for the 

natural oscillations of cylindrical bodies in a deformed 

medium. The task is to find those  iR i  (

R  - real and i  - imaginary parts of complex 
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Eigen frequencies) for which the system of equations 

of motion and the truncated radiation conditions have a 

solution in the class of infinitely differentiable 

functions. It is shown that the problem has a discrete 

spectrum. 

2. Two problems of natural oscillations of bodies for an 

infinite and finite region for some relations of 

parameters turned out to be equivalent. This is due to 

the fact that at the outer boundary conditions are set for 

the absence of reflection. 

3. The numerical results obtained for plane mechanical 

systems in a particular case are compared with known 

theoretical and experimental values. In short waves 

)5,0/( h  the results differ to 10-15%, and in 

long waves )5,0/( h  before 25%. 

4. From the discussion of the results it is established that 

with the increase of the elasticity modulus and 

Poisson's ratio, the corresponding natural frequencies 

of the mechanical system slowly increase. Natural 

frequencies  2  and damping factors  1  at 

sliding and rigid contact differ up to 15%., and at rigid 

contact more than 15%. With increasing shell 

thickness, natural frequencies increase to 10%. 

 

 References 
1. Safarov I.I. Oscillations and waves in dissipative - 

inhomogeneous media and structures. Tashkent, Fan, 

1992.- 250 p. 

2. Avliyakulov N.N., Safarov I.I. Modern problems of 

statics and dynamics of underground turbines. -

Tashkent, 2007.-306 pp. 

3. Bozorov M.B., Safarov I.I., Shokin Yu.I. Numerical 

simulation of oscillations of dissipatively 

homogeneous and inhomogeneous mechanical 

systems. Siberian Branch of the Russian Academy of 

Sciences, Novosibirsk, 1966.- 188 p. 

4. Mayboroda V.P., Troyanovsky I.E., Safarov I.I. Free 

and forced oscillations of systems of solids on 

inhomogeneous viscoelastic shock absorbers. Journal 

of the USSR Academy of Sciences. "Machine 

Science". 1983. №3. P.71-77 

5. Safarov I.I., O. Ogdorov, O. Solieva. Actual vibrations 

of a plane, cylindrical and spherical body in an elastic 

medium (with external non-reflecting boundaries). The 

Uzbek journal "Problems of Mechanics", 1995, No. 1. 

C.10-15 

6. Safarov I.I. Self-oscillations of cylindrical shells in an 

elastic medium. The Uzbek journal "Problems of 

Mechanics", 1995, No.22. 17-21 

7. Safarov I.I. Nazimova Sh.N., Urinov S.R. The actual 

oscillations of piecewise homogeneous deformable 

systems with allowance for internal wave dissipation 

of energy. Proceedings of the International Conference 

RDAMM-2001. 2001. Vol. 6, part 2. B.352-353 

8. Safarov I.I., Akhmedov M. Sh., Boltaev.Z.I. 

Distribution of the natural waves of extended Lamellar 

viscoelastic bodies of variable thickness. LAP, 

Lambert Academic Publishing (Germany). 2015. 112р. 

9. 9. Safarov I.I., Akhmedov M. Sh., Boltaev.Z.I. Setting 

the Linear Oscillations of Structural Heterogeneity 

Viscoelastic Lamellar Systems with Point Relations. 

Applied Mathematics, 2015, 6, 225-234 

http://www.scirp.org/journal/am  

10. Safarov I.I., Akhmedov M. Sh., Boltaev.Z.I. Natural 

Oscillations of Cylindrical Bodies with External 

Friction on the Boundary. Applied Mathematics, 2015, 

6, 629-645 http://www.scirp.org/journal/am. 

11. Safarov I.I., Kuldashev N.U., Ochilov Sh.B Numerical 

Solution of The Problem of The Impact a Plane 

Stationary Elastic Waves by a Cylindrical Body. Case 

Studies Journal ISSN (2305-509X)-Volume 6, Issue-5-

May-2017. http://www.сasestudisjournal.com 

12. Safarov I.I., Teshaev M.Kh., Boltaev Z. Of Own and 

Forced Vibrations of Dissipative Inhomogeneous 

Mechanical Systems. Applied Mathematics, 2017, 8. 

P.1001-1015. http://www.scirp.org/journal/am 

13. Corn G. Korn T. Handbook of Mathematics. Moscow, 

Nauka 1978.- 831 p. 

14. Lebedev NN Special functions and their applications. 

M.-L.: State. Publisher fiz-mat. literature. 1963, 358 p. 

15. 15.Dyakonov V.M. Reference book on algorithms and 

programs. Moscow: Nauka, 1989, 240 p. 

16. 16. Safarov II, Kayumov S.S/ Propagation and 

diffraction of waves in dissipative - inhomogeneous 

cylindrical deformable mechanical systems. Tashkent: 

FAN, 2002,  

17. 17.PaoY.H., Mow C.C. The diffraction of elastic 

waves and dynamic stress concentrations. N.Y. 1973. 

694p. 


