

WWJMRD 2017; 3 (11): 6-9 www.wwjmrd.com International Journal Peer Reviewed Journal Refereed Journal Indexed Journal UGC Approved Journal Impact Factor MJIF: 4.25 e-ISSN: 2454-6615

A.Vijayasankar

Assistant Professor. Department of Mathematics, National College, Trichy, Tamilnadu, India

M.A.Gopalan

Professor, Department of Mathematics, SIGC, Trichy, Tamilnadu, India

V.Krithika

Research Scholar, Dept. of Mathematics, National College, Trichy, Tamilnadu, India

On The Ternary Cubic Diophantine Equation

$$2(x^2 + y^2) - 3xy = 56z^3$$

A.Vijayasankar, M.A.Gopalan, V.Krithika

Abstract

The sequences of integral solutions to the cubic equation with four variables $2(x^2 + y^2) - 3xy = 56z^3$ are obtained. A few properties among the solutions are also presented.

Keywords: Non-Homogeneous Cubic, Cubic with three unknowns, integral solutions

Introduction

The Diophantine equation offers an unlimited field for research due to their variety [1-4]. In particular, one may refer [5-13] for cubic equation with three unknowns. In [14-15] cubic equations with four unknowns are studied for its non-trivial integral solutions. This communication concerns with the problem of obtaining infinitely many non-zero distinct integral solutions of ternary cubic equation given by $2(x^2 + y^2) - 3xy = 56z^3$. A few interesting properties among the solutions and special numbers are presented.

Method of analysis

The diophantine equation to be solved for its non-zero distinct integral solutions is given by $2(x^2 + y^2) - 3xy = 56z^3$

(2)

(6)

(1)

Introducing the transformations

$$x = u + v, y = u - v, u \neq v \neq 0$$

in (1), it leads to

$$u^2 + 7v^2 = 56z^3 \tag{3}$$

(3) can be solved through different methods and we obtain different sets of integer solutions to (1).

Set 1

Assume $z = a^2 + 7b^2$	(4)
where a and b are non-zero distinct integers.	
Write 56 as $56 = (7 + i\sqrt{7})(7 - i\sqrt{7})$	(5)
Substituting (4) & (5) in (3) and applying the method of factorization, define	
$u + i\sqrt{7}v = (7 + i\sqrt{7})(a + i\sqrt{7}b)^3$	
Equating the real and imaginary parts, we have	
$u = 7a^3 + 49b^3 - 21a^2b - 147ab^2$	
$v = a^3 - 49b^3 + 21a^2b - 21ab^2$	(6)

Correspondence: A.Vijayasankar Assistant Professor, Department of Mathematics, National College, Trichy, Tamilnadu, India

From (2), the integer solutions of (1), are

$$x(a,b) = 8a^{3} - 168ab^{2}$$

 $y(a,b) = 6a^{3} + 98b^{3} - 42a^{2}b - 126ab^{2}$
 $z(a,b) = a^{2} + 7b^{2}$

Properties

•
$$x(a,1) + y(a,1) - 14(2P_a^5 - 7G_a - 4t_{4,a}) \equiv 0 \pmod{98}$$

 $\bigstar \quad x(a,1) - 8 CP_{6,a} \equiv 0 \pmod{168}$

- 18[y(a,a) x(a,a)] is a cubical integer.
- $x(a,a) + z(a,a) 8CP_{6,a} t_{4,a} \equiv 7 \pmod{168}$

★
$$26[z(a,a) + y(a,a) - x(a,a)] - 2704 CP_{6,a} = 0.$$

Set 2

Rewrite 56 as
$$56 = \frac{(7 + i5\sqrt{7})(7 - i5\sqrt{7})}{4}$$
 (7)

Substituting (4) & (7) in (3) and applying the same procedure as mentioned in the above set, we have

$$u + i\sqrt{7}v = \frac{(7 + i5\sqrt{7})}{2}(a + i\sqrt{7}b)^{3}$$

Equating the real and imaginary parts, we have

$$u = \frac{1}{2} \left(7a^3 + 245b^3 - 105a^2b - 147ab^2 \right)$$
$$v = \frac{1}{2} \left(5a^3 - 49b^3 + 21a^2b - 105ab^2 \right)$$

As our aim is to find integer solutions, choose a = 2A, b = 2B in the above equations we get then the corresponding non-zero integer solutions of (1) are given by

$$u = 28A^{3} + 980B^{3} - 420A^{2}B - 588AB^{2}$$

$$v = 20A^{3} - 196B^{3} + 84A^{2}B - 420AB^{2}$$
(8)

From (2), the integer solutions of (1), are

$$x(A, B) = 48A^{3} + 784B^{3} - 336A^{2}B - 1008AB^{2}$$

$$y(A, B) = 8A^{3} + 1176B^{3} - 504A^{2}B - 168AB^{2}$$

$$z(A, B) = 4(A^{2} + 7B^{2})$$

Note

 $z(A,B) = 256(A^2 + 7B^2)$

We can write 56 in an another way as

$$56 = \frac{(119 + i5\sqrt{7})(119 - i5\sqrt{7})}{256}$$

As proceeding in the above sets, we get the corresponding non-zero distinct integer solutions of (1) given by $x(A,B) = 31744A^3 - 150528B^3 + 64512A^2B - 666624AB^2$ $y(A,B) = 29184A^3 + 275968B^3 - 118272A^2B - 612864AB^2$

Set 3

One may write (3) as

$$u^2 + 7v^2 = 56z^3 * 1$$
 (9)
Write 1 as

$$1 = \frac{(3 + i\sqrt{7})(3 - i\sqrt{7})}{16} \tag{10}$$

Using (4), (5) and (10) in (9) and applying the method of factorization, define

$$(u + i\sqrt{7}v) = \frac{1}{4} \left[\left(3 + i\sqrt{7} \right) \left(7 + i\sqrt{7} \right) \left(a + i\sqrt{7}b \right)^3 \right] (11)$$

Equating real and imaginary parts of (9), we have

$$u = \frac{1}{4} \left(14a^3 + 490b^3 - 210a^2b - 294ab^2 \right)$$
$$v = \frac{1}{4} \left(10a^3 - 98b^3 + 42a^2b - 210ab^2 \right)$$

As our aim is to find integer solutions, choosing a = 4A, b = 4B in the above equations we obtain $u = 224A^3 + 7840B^3 - 3360A^2B - 4704AB^2$ $v = 160A^3 - 1568B^3 + 672A^2B - 3360AB^2$ (12) In view of (2), the integer solutions to (1) are given by

$$x(A, B) = 384A^{3} + 6272B^{3} - 2688A^{2}B - 8064AB^{2}$$

$$y(A, B) = 64A^{3} + 9408B^{3} - 4032A^{2}B - 1344AB^{2}$$

$$z(A, B) = 16(A^{2} + 7B^{2})$$

Properties

★
$$x(1,B) - 6y(1,B) + 50176 CP_{6,B} \equiv 0 \pmod{21504}$$

•
$$3x(A,1) - 2y(A,1) - 6144 P_{A-1}^3 \equiv 0 \pmod{20480}$$

- ★ $z(A, A) x(A, A) 128t_{4,A}$ is a cubical integer.
- y(A, A) x(A, A) is the product of a cubical integer and a perfect square.

Conclusion

In this paper, we have presented sets of infinitely many non-zero distinct integer solutions to the ternary cubic equation, given by $2(x^2 + y^2) - 3xy = 56z^3$. As Diophantine equations are rich in variety due to their definition, one may attempt to find integer solutions to higher degree diophantine equation with multiple variable along with suitable properties...

References

- L.J.Mordell, Diophantine Equations, Academic press, New York, 1969.
- 2. Carmichael, R.D. 1959. The Theory of Numbers and Diophantine Analysis, New York, Dover.
- 3. Dickson, L.E. 2005. History of Theory of Numbers, vol.2, Diophantine Analysis, New York, Dover.
- 4. Telang.S.G., Number Theory, Tata Mc Graw Hill Publishing Company, NewDelhi (1996)

- 5. M.A.Gopalan and S.Vidhyalakshmi, A.Kavitha, Observations on the Ternary Cubic Equation $x^2 + y^2 + xy = 12z^3$, Antarctica J.math., 2013, 10(5),453-460.
- 6. M.A.Gopalan and K.Geetha, On the ternary cubic diophantine equation, $x^2 + y^2 xy = z^3$, Bessels J.Math., 2013, 3(2),119-123.
- 7. S.Vidhyalakshmi, M.A.Gopalan and A.Kavitha, Observations on the Ternary Cubic Equation $x^2 + y^2 - xy = 7z^3$, International Journal of Computational Engineering and Research., May 2013, Vol 3, Issue 5, 17-22.
- 8. M.A.Gopalan, S.Vidhyalakshmi, G.Sumathi, On the Ternary Cubic Diophantine Equation $x^{3} + y^{3} + z(x^{2} + y^{2} - 20) = 4(x + y)^{2}z$, impact J.Sci. Tech, 2013, Vol 7(2), 1-6.
- 9. S.Vidhyalakshmi, T.R.UshaRani, M.A.Gopalan, Integral Solutions of Non-Homogeneous Cubic Equation $ax^2 + by^2 = (a+b)z^3$, Diophantine J.Math., 2013, 22(1), 31-38.
- 10. K.Meena, M.A.Gopalan, S.Vidhyalakshmi, Aarthy Thangam.S, On the ternary non-homogeneous cubic equation

 $4(x + y)^{2} - 7xy + (x + y) + 15(x - y) = 16(z^{3} - 1)$ Bessel J.Math., 2014, 4(3),75-80.

- 11. S.Vidhyalakshmi, M.A.Gopalan and A.Kavitha, on the ternary cubic equation $5(X + Y)^2 7XY + X + Y + 1 = 23z^3$, IJIRR, 2014, 1(10), 99-101.
- 12. M.A.Gopalan, N.Thirunraiselvi, V.Krithika, on the ternary cubic Diophantine equation $7x^2 4y^2 = 3z^3$, International Journal of Recent Scientific Research, September 2015, Vol.6, Iss-9, pp-6197-6199.
- 13. M.A.Gopalan, S.Vidhyalakshmi, N.Thiruniraiselvi, On the Non-Homogeneous ternary Cubic Equation, $2a^2(x^2 + y^2) - 2a(k+1)(x+y) + (k+1)^2 = 2^{2n}z^3$ Universe of Emerging Technologies and Science, January 2015, Vol-II, Iss-I, pp-1-5.
- 14. M.A.Gopalan and K.Geetha, Observations on Cubic Equation with four unknowns $x^{3} + y^{3} + xy(x + y) = z^{3} + 2(x + y)w^{2}$,

International Journal of Pure and Applied Mathematical Sciences, 2013, Vol.6,No.1, 25-30.

15. M.A.Gopalan, ManjuSomanath, and V.Sangeetha, Lattice points on Homogeneous cubic equation with four unknowns

 $(x + y)(xy + w^2) = (k^2 - 1)z^3, k > 1,$ Indian Journal of Science, 2013, Vol-2, No.4, 97-99.