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On The Ternary Cubic Diophantine Equation
2(x? + y?)—3xy =562°
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Abstract
The sequences of integral solutions to the cubic equation with four variables

2(x? + yz)—3xy =562 are obtained. A few properties among the solutions are also
presented.
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Introduction

The Diophantine equation offers an unlimited field for research due to their variety [1-4]. In
particular, one may refer [5-13] for cubic equation with three unknowns. In [14-15] cubic
equations with four unknowns are studied for its non-trivial integral solutions. This
communication concerns with the problem of obtaining infinitely many non-zero distinct

integral solutions of ternary cubic equation given by 2(X2 + yz)—3xy =562%. A few
interesting properties among the solutions and special numbers are presented.

Method of analysis
The diophantine equation to be solved for its non-zero distinct integral solutions is given by

2(x? +y?)—3xy =567° )
Introducing the transformations

X=Uu+Vv,y=u-v,u=v=0 @)
in (1), it leads to

u?+7v* =562° 3)

(3) can be solved through different methods and we obtain different sets of integer solutions
to (1).

Setl

Assume Z = a’ + 7bh? @)
where a and b are non-zero distinct integers.

Write 56 as 56=(7+i\/7x7—i«/7) (5)

Substituting (4) & (5) in (3) and applying the method of factorization, define
u+iv7v= (7+i\/7Xa+i\/7b)3

Equating the real and imaginary parts, we have
u=7a’+49°-21a’b —147ab*
v=a®-49b° +21a’b - 21ab? ©)
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From (2), the integer solutions of (1), are

x(a,b) =8a*® —168ab?

y(a,b) = 6a® +98b° — 42a°b —126ab”

z(a,b) =a® + 7b*

Properties

= x(al)+y(al)-14(2PF ~7G, - 4t, , }=0(mod 98)
& X(a1)-8CP,, =0(mod 168)

< 18[y(a, a) — x(a, a)] is a cubical integer.

<+ X(a,a)+z(a,a)-8CP;, —t, , =7(mod168)

+ 26[z(a,a)+ y(a,a)—x(a,a)]-2704CP,,, =0.

Set 2

Rewrite 56 as 56 = ©)

Substituting (4) & (7) in (3) and applying the same
procedure as mentioned in the above set, we have

u+i\/7v=£—)7+i25ﬁ (a+i\/7b)3

Equating the real and imaginary parts, we have

u= %(7513 +245b° ~105a°h —147ab? )

(7+i5v77-i547)
4

v= %(5a3 ~49b° + 21a%h ~105ab?)

As our aim is to find integer solutions, choose
a=2A,b=2B in the above equations we get then the
corresponding non-zero integer solutions of (1) are given
by

u=28A°+980B° - 420A*B - 588AB*

v=20A°-196B° +84A’B - 420AB’

(8)
From (2), the integer solutions of (1), are
X(A B) = 48A° + 784B° — 336 A°B —1008 AB?
y(A B) = 8A° +1176B° —504A’B —168AB*
2(AB) = 4(A% +7B?)
Note
We can write 56 in an another way as
e 119+ i5\/z&19 ~i57)

As proceeding in the above sets, we get the corresponding
non-zero distinct integer solutions of (1) given by

X(A, B) = 31744 A° —150528B° + 64512 A’B — 666624 AB?
Y(A B) = 29184A° + 275968B° —118272A%B — 612864 AB?
2(A, B) = 256(A? + 782 )

~g~

Set3
One may write (3) as

u? +7v? =56z°*1 9)
Write 1 as
1- B+iV7)E-iV7) (10)

16
Using (4), (5) and (10) in (9) and applying the method of
factorization, define
. 1 . . . 3
(u+ |\/7v) = Z[(3+ |ﬁX7 + |ﬁXa+ lﬁb) } (11)
Equating real and imaginary parts of (9), we have

u= %(14a3 +490b° - 210a°h - 294ah?)

v= %(10:;13 ~98b° + 42a%h - 210ab’

As our aim is to find integer solutions, choosing
a=4A,b = 4B in the above equations we obtain

u=224A° +7840B° —3360A’B — 4704 AB?

v=160A° —1568B° + 672A’B —3360AB* (12)
In view of (2), the integer solutions to (1) are given by

X(A,B) = 384A° + 6272B° — 2688AB —8064AB
Y(A B) = 64A° + 9408B° — 4032A%B — 1344 AB’
2(A,B) =16(A% + 78?)

Properties
% X(@,B)-6y(1,B)+50176 CPG,B =0(mod 21504)

% 3x(AD)-2y(Al)-6144P;, =0(mod 20480)
<+ Z(A/A)—x(A A)-128t, , isacubical integer.

< Y(A A)—Xx(A, A) is the product of a cubical
integer and a perfect square.

Conclusion
In this paper, we have presented sets of infinitely many
non-zero distinct integer solutions to the ternary cubic

equation,  given by2(x2+y2)—3xy:5623. As
Diophantine equations are rich in variety due to their
definition, one may attempt to find integer solutions to

higher degree diophantine equation with multiple variable
along with suitable properties...
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