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Abstract 
The sequences of integral solutions to the cubic equation with four variables 

  322 5632 zxyyx   are obtained. A few properties among the solutions are also 

presented. 
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Introduction 

The Diophantine equation offers an unlimited field for research due to their variety [1-4]. In 

particular, one may refer [5-13] for cubic equation with three unknowns. In [14-15] cubic 

equations with four unknowns are studied for its non-trivial integral solutions. This 

communication concerns with the problem of obtaining infinitely many non-zero distinct 

integral solutions of ternary cubic equation given by   322 5632 zxyyx  . A few 

interesting properties among the solutions and special numbers are presented. 

 

Method of analysis 
The diophantine equation to be solved for its non-zero distinct integral solutions is given by 

   322 5632 zxyyx 
    (1) 

Introducing the transformations  

   0,,  vuvuyvux     (2) 

in (1), it leads to 

  
322 567 zvu       (3) 

(3) can be solved through different methods and we obtain different sets of integer solutions 

to (1). 

 

Set 1 

Assume 
22 7baz        (4) 

where a and b are non-zero distinct integers. 

Write 56 as   777756 ii      (5) 

Substituting (4) & (5) in (3) and applying the method of factorization, define 

 
  37777 biaiviu   

Equating the real and imaginary parts, we have 

 
2233

2233

212149

14721497

abbabav

abbabau





   (6)
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From (2), the integer solutions of (1), are 

22

2233

23

7),(

12642986),(

1688),(

babaz

abbababay

ababax







 
 

Properties 

   )98(mod047214)1,()1,( ,4

5  aaa tGPayax  

 )168(mod08)1,( ,6  aCPax  

  ),(),(18 aaxaay   is a cubical integer. 

 )168(mod78),(),( ,4,6  aa tCPaazaax   

   .02704),(),(),(26 ,6  aCPaaxaayaaz   

 

Set 2 

Rewrite 56 as 
  

4

757757
56

ii 
    (7) 

Substituting (4) & (7) in (3) and applying the same 

procedure as mentioned in the above set, we have 

 

  37
2

757
7 bia

i
viu 




 

Equating the real and imaginary parts, we have 

 

 

 2233

2233

10521495
2

1

1471052457
2

1

abbabav

abbabau





 
      

As our aim is to find integer solutions, choose 

BbAa 2,2   in the above equations we get then the 

corresponding non-zero integer solutions of (1) are given 

by 

 2233

2233

4208419620

58842098028

ABBABAv

ABBABAu





  (8) 

From (2), the integer solutions of (1), are 

 

 22

2233

2233

74),(

16850411768),(

100833678448),(

BABAz

ABBABABAy

ABBABABAx







 
 

Note  

We can write 56 in an another way as 

  
256

7511975119
56

ii 
  

As proceeding in the above sets, we get the corresponding 

non-zero distinct integer solutions of (1) given by 

 22

2233

2233

7256),(

61286411827227596829184),(

6666246451215052831744),(

BABAz

ABBABABAy

ABBABABAx







 

 

Set 3 

One may write (3) as 

 
1*567 322 zvu     (9)

 
Write 1 as 

 16

)73)(73(
1

ii 
    (10)

 

Using (4), (5) and (10) in (9) and applying the method of 

factorization, define 

   




 

3

77773
4

1
)7( biaiiviu  (11) 

Equating real and imaginary parts of (9), we have 

 

 

 2233

2233

210429810
4

1

29421049014
4

1

abbabav

abbabau





 

As our aim is to find integer solutions, choosing 

BbAa 4,4  in the above equations we obtain  

2233

2233

33606721568160

470433607840224

ABBABAv

ABBABAu





 (12) 

In view of (2), the integer solutions to (1) are given by 

 

 22

2233

2233

716),(

13444032940864),(

806426886272384),(

BABAz

ABBABABAy

ABBABABAx







 
 

Properties 

 )21504(mod050176),1(6),1( ,6  BCPByBx   

 )20480(mod06144)1,(2)1,(3 3

1  APAyAx  

 AtAAxAAz ,4128),(),(   is a cubical integer. 

 ),(),( AAxAAy   is the product of a cubical 

integer and a perfect square. 

 

Conclusion 

In this paper, we have presented sets of infinitely many 

non-zero distinct integer solutions to the ternary cubic 

equation, given by   322 5632 zxyyx  . As 

Diophantine equations are rich in variety due to their 

definition, one may attempt to find integer solutions to 

higher degree diophantine equation with multiple variable 

along with suitable properties... 
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