WW JMRD 2022; 8(11): 76-83
www, wwjmrd, com
International Journal
Peer Reviewed Journal
Refereed Journal
Indexed Journal
Impact Factor SJIF 2017: 5,
182 2018: 5, 51, (ISI) 2020-
2021: 1, 361
E-ISSN: 2454-6615

A, Gheorghiță, M, Turnea, M, Ilea, D, Arotăriței
Department of Medical Biosciences,'Gr, T, Popa' University of Medicine and Pharmacy,16 Universitatii Street, Iasi,Romania,

I, Condurache , M, Rotariu
Department of Medical Biosciences,'Gr, T, Popa'
University of Medicine and Pharmacy, 16 Universitatii Street, Iasi,Romania,

C, G, Viscotel

Faculty of Physical Education and Sport "Dunărea de Jos" University of Galati, Galati, Romania,

Correspondence:

M, Ilea
Department of Medical Biosciences,'Gr, T, Popa' University of Medicine and Pharmacy, 16 Universitatii Street, Iasi,Romania,

Ordinary Differential Equations with Applications in Chemical Reactions

A, Gheorghiță, M, Turnea, M, Ilea, D, Arotăriței, C, G, Viscotel, I, Condurache, M, Rotariu

Abstract

Analytical chemical reactions are a very active interdisciplinary field, in which concepts, mathematical techniques and numbers are applied to a wide variety of phenomena in medicine and bioengineering, The theory of ordinary differential equations is a fundamental field of mathematics with many applications in chemistry, biology, medicine and bioengineering, Many chemical reactions can be described quantitatively by ordinary differential equations, In this article, we have presented some applications of ordinary differential equations in analytical chemistry, An extremely useful principle used in modeling chemical reactions has proven to be the principle of mass conservation, All the models presented are solved analytically, using different integration techniques specific to ordinary differential equations, By proper interpretation, the models presented prove to have a wide range of applications in chemistry,

Keywords: Models, Mathematical models, Chemical reactions, Ordinary differential equations,

1. Introduction

Although the development of chemistry has been essentially influenced by the development of mathematics, in recent decades the importance of completing the descriptive study of some chemical phenomena or mechanisms with aspects related to the processing and interpretation of the obtained data is recognized ${ }^{1}$, The most advanced form of the use of mathematics in chemistry is mathematical chemistry, It aims at the mathematical modeling of chemical processes and the study of models using methods specific to mathematics, Statistical research (which does not study the article) can sometimes be used to construct and validate mathematical models ${ }^{2}$,
The possibility of the abstract is the essential advantage of mathematical modeling in the case of chemical reactions, A mathematical model is a device that helps the chemist predict or explain the behavior of a chemical reaction, chemical experiment, or event, A mathematical model is a simplification of a complex real-world problem in the form of mathematical equations ${ }^{3}$,
To write a mathematical model, the following steps are followed:

- The problem is identified;
- The working hypotheses, the variables, as well as the relations between the variables and the model are formulated;
- Resolves the model;
- Check the model (testing with real data) ${ }^{4}$,

Many of the fundamental laws of chemistry can be formulated in terms of differential equations, In chemistry, biology, medicine, bioengineering, differential equations are used to model the behavior of complex systems, The differential equations represented the fundamental discovery of Newton, who considered it necessary to keep secrets and to be published only in the form of an anagram "Data aequatione quotcunque fluentes quantitae involente fluctions invenire et vice-versa", In contemporary mathematical language, this means, "It is useful to solve differential equations" ${ }^{5}$, It is often desirable to describe the
behavior of a real-life system or phenomenon in mathematical terms, In solving differential equations (especially in the case of those with separable variables) we often have a solution that involves logarithms, A constant C will result from the indeterminate integration ${ }^{6}$,
In a mathematical model of a chemical reaction, variable time will often occur, Solving problems with the help of mathematical modeling can be done according to the following scheme ${ }^{7}$,

2. Materials and methods

Differential equations belong to a wide class of equations in which the unknown is a function, They are called functional equations, Differential equations can be recognized because they contain derivatives of the unknown function, If the unknown function depends on a variable, the equation is called ordinary, The maximum order of the derivative that intervenes in the differential equation is called the order of the equation ${ }^{8}$
The general form of a first order equation can be defined as:
$f\left(t, x(t), \frac{d x}{d t}\right)=0$
where, $f: D \rightarrow R, D \subset R^{3}$ is an unknown function, and is the solution of the differential equation, In this article we will deal with the normal form of a differential equation:
$\frac{d x}{d t}=f(t, x(t))$
where: $f: D \rightarrow R, D \subset R^{2}$
It is called a solution of equation (2), a function
$x=x(t): D \rightarrow R$
, where is a range of real numbers that satisfies the conditions ${ }^{9}$:
$\{(t, x(t)) \in D, t \in I$

3. Results \& Discussion

The notion of solving a differential equation is equivalent to the notion of integrating this equation into the indicated domain of definition, From a geometric point of view, a solution represents an integral curve in the plane ($x O t$), If the solutions of some differential equations can be given with the help of formulas in which integrals of some known functions intervene, we will say that the equation is solvable by squaring ${ }^{9}$,
We will consider the chemical reaction: $a A+b B \rightarrow c C$, where A, B are the reactants, is the product, and a, b, c they are called stoichiometric coefficients ${ }^{10}$,
The reaction rate is defined as follows:
$r=-\frac{1}{a} \frac{d(A)}{d t}=-\frac{1}{b} \frac{d(B)}{d t}=-\frac{1}{c} \frac{d(C)}{d t}$
where

$$
\begin{equation*}
(A),(B),(C) \tag{4}
\end{equation*}
$$

substances,
We consider an irreversible reaction process in
which reactants A and B produce compound C : $A+B \xrightarrow{k} C$, where, k is the reaction constant, Whether $x=[A], y=[B], z=[C]$ concentrations of reactants A, B and C^{11},
Then the differential equation that models this process is:
$\frac{d z}{d t}=k x y$
For a biochemical reaction of the form: $A+B \xrightarrow{k} C+D$, the differential equation that models this reaction is:
$-\frac{d x}{d t}=\alpha x(t) y(t)$
(6)
where $x(t), y(t)$ represents the number of gram molecules present in \boldsymbol{A} and respectively \boldsymbol{B}, is a constant that depends on the type of reaction ${ }^{12}$,

If we consider the reaction irreversible: $A \xrightarrow{k} B$ then we get:
$\frac{d x}{d t}=\frac{d y}{d t}=-\kappa x$
where ${ }^{x}$ is the amount of substance ($\mathrm{mol} /$ liter) in $A,{ }^{y}$ is the amount of substance (mol / liter) in B, and κ is the reaction rate constant, Any metabolic processes can be described by such reactions, For a biochemical reaction of the form: $2 A+B \xrightarrow{k} C$, the differential equation that models this reaction is ${ }^{13}$,
$\frac{1}{2} \frac{d x}{d t}=-\frac{d y}{d t}=k x^{2} y$
If we consider the reaction: $\left\{\begin{array}{l}A \xrightarrow{\kappa_{1}} B \\ B \xrightarrow{\kappa_{2}} A\end{array}\right.$ then we get:
$\left\{\begin{array}{l}\frac{d x}{d t}=-\kappa_{1} x+\kappa_{2} y \\ \frac{d y}{d t}=\kappa_{1} x+\kappa_{2} y\end{array}\right.$
where ${ }^{x}$ is the amount of substance (mol / liter) in $A,{ }^{y}$ is the amount of substance ($\mathrm{mol} /$ liter) in B, and κ_{1}, κ_{2} are the reaction rate constants ${ }^{14}$,

Fig, 1: Numerical simulation of the solution of the differential equation (9) for: $x(0)<y(0)$ and $x(0)>y(0)$

Fig, 2: Numerical simulations of the solution of the differential equation (9) for: $k_{1}<k_{2}$ and $k_{1}>k_{2}$

Fig, 3: Numerical simulation of the solution of the differential equation (9) for: $t_{\max }=200$

For the reaction: $\mathrm{H}_{2}+\mathrm{O}_{2} \xrightarrow{\alpha} 2 \mathrm{HO}$, we will find the differential equation :
$\frac{d(H O)}{d t}=2 \alpha\left(H_{2}\right)\left(O_{2}\right)$
where α represents the reaction rate constant,
The main oxides of nitrogen are nitrogen monoxide (NO) and nitrogen dioxide (NO2), and together they are called NO noxious substances, In terms of health effects, NO is considered harmless, at least at the concentrations that usually exist in the street, NO 2 , on the other hand, can have the worst effects, Only a small fraction of the gases emitted
$\left\{\begin{array}{l}x^{\prime}=-\theta x^{2}(t) \rightarrow \frac{1}{x^{2}(t)} d x=-\theta d t \rightarrow \int \frac{1}{x^{2}} d x=-\theta \int d t \rightarrow \frac{1}{x}=\theta t+C \rightarrow x(t)=\frac{1}{\theta t+C} \\ \int \frac{1}{x^{2}} d x=-\frac{1}{x}+C_{1}\end{array}\right.$

Consider the reverse reaction:
$2 \mathrm{NO}+\mathrm{O}_{2} \xrightarrow{k} 2 \mathrm{NO}_{2}$
We will note through x the initial amount of propane $\left(\mathrm{NO}_{2}\right)$, through y_{0} the initial amount of (NO)

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=k\left(y_{0}-x\right)^{2}\left(z_{0}-\frac{x}{2}\right) \rightarrow \frac{d x}{\left(y_{0}-x\right)^{2}\left(2 z_{0}-x\right)}=\frac{k}{2} d t \rightarrow \int \frac{d x}{\left(y_{0}-x\right)^{2}\left(2 z_{0}-x\right)}=\frac{k}{2} \int d t \\
\int \frac{d x}{\left(y_{0}-x\right)^{2}\left(2 z_{0}-x\right)}=\int\left(\frac{A}{y_{0}-x}+\frac{B}{\left(y_{0}-x\right)^{2}}+\frac{C}{2 z_{0}-x}\right) d x=-A \ln \left|y_{0}-x\right|+\frac{B}{y_{0}-x}-C \ln \left|2 z_{0}-x\right|+C_{1} \\
A=-\frac{1}{\left(2 z_{0}-y_{0}\right)^{2}}, B=\frac{1}{2 z_{0}-y_{0}}, C=\frac{1}{\left(2 z_{0}-y_{0}\right)^{2}} \\
\frac{1}{\left(2 z_{0}-y_{0}\right)^{2}} \ln \left|\frac{y_{0}-x}{2 z_{0}-x}\right|+\frac{1}{\left(y_{0}-x\right)\left(2 z_{0}-y_{0}\right)}=\frac{k}{2} t+C_{2}
\end{array}\right.
$$

Tert-butyl chloride $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right)$ is a colorless organic compound in liquid form at room temperature, It is slightly soluble in water, The compound is flammable and volatile, and its main use is in nucleophilic substitution reactions, to produce different substances, ranging from alcohols to

$$
\left\{\begin{array}{l}
x^{\prime}=-\delta x(t) \rightarrow \frac{1}{x(t)} d x=-\delta d t \rightarrow \int \frac{1}{x} d x=-\delta \int d t \rightarrow \ln |x|=-\delta+C \\
\int \frac{1}{x} d x=\ln |x|+C_{1}, \delta=0,1223 / \mathrm{sec} \\
x(0)=x_{0} \rightarrow C=x_{0} \rightarrow x(t)=x_{0} e^{-\delta t}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
-\frac{d\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)}{d t}=-\frac{1}{5} \frac{d\left(\mathrm{O}_{2}\right)}{d t}=\frac{1}{3} \frac{d\left(\mathrm{CO}_{2}\right)}{d t}=\frac{1}{4} \frac{d\left(\mathrm{H}_{2} \mathrm{O}\right)}{d t}
\end{array}\right.
$$

We will mark by the initial amount of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, through b the amount of oxygen and through x the
by the engines is NO_{2}, the main quantity being NO , Present NO_{2} in ambient air is mainly due to subsequent oxidation of NO^{15},
We will consider the breakdown of nitrogen dioxide: $2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$
Because this reaction requires two molecules of NO_{2}, the rate at which the reaction takes place is proportional to the square of the concentration of NO_{2} where $x(t)$ is the concentration of nitrogen dioxide at time \boldsymbol{t},
and through z_{0} the amount of oxygen, The differential equation that models this phenomenon is form ${ }^{16}$,
salts, During a certain chemical reaction, the concentration $x(t)$ de $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ obeys the equation ${ }^{17}$,

A grate gas works using the chemical reaction:
amount of grill gas, The differential equation that models this phenomenon is form:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\alpha(a-x)(b-x)^{5} \rightarrow \frac{d x}{(a-x)(b-x)^{5}}=\alpha d t \rightarrow \int \frac{d x}{(a-x)(b-x)^{5}}=\alpha \int d t=\alpha t+C_{6} \\
\int \frac{d x}{(a-x)(b-x)^{5}}=\int\left(\frac{A}{a-x}+\frac{B}{(b-x)}+\frac{C}{(b-x)^{2}}+\frac{D}{(b-x)^{3}}+\frac{E}{(b-x)^{4}}+\frac{F}{(b-x)^{5}}\right) d x \\
\int \frac{1}{a-x} d x=-\ln |a-x|+C_{1}, \int \frac{1}{(b-x)^{2}} d x=\frac{1}{b-x}+C_{2}, \int \frac{1}{(b-x)^{3}} d x=\frac{1}{2} \frac{1}{(b-x)^{2}}+C_{3} \\
\int \frac{1}{(b-x)^{4}} d x=\frac{1}{3} \frac{1}{(b-x)^{3}}+C_{4}, \int \frac{1}{(b-x)^{5}} d x=\frac{1}{4} \frac{1}{(b-x)^{4}}+C_{5} \\
A \ln |a-x|+B \ln |b-x|-\frac{C}{b-x}-\frac{D}{2(b-x)^{2}}-\frac{E}{3(b-x)^{3}}-\frac{F}{4(b-x)^{4}}=-\alpha t-C_{6} \tag{15}
\end{array}\right.
$$

Constants A, B, C, D, E, F is determined by the method of indeterminate coefficients,

Hydrobromic acid is a strong inorganic acid, The salts of hydrobromic acid are called bromides, The chemical formula of hydrobromic acid is HBr , Under normal conditions of temperature and pressure, hydrobromic acid is a colorless gas that smokes in the air, being very greedy for water ${ }^{18}$,

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\alpha(a-x) \sqrt{b-x} \rightarrow \frac{d x}{(a-x) \sqrt{b-x}}=\alpha d t \rightarrow \int \frac{d x}{(a-x) \sqrt{b-x}}=\alpha \int d t \tag{17}\\
-\frac{2}{\sqrt{a-b}} \operatorname{arctg} \sqrt{\frac{b-x}{a-b}}=\alpha t+C \rightarrow \operatorname{arctg} \sqrt{\frac{b-x}{a-b}}=-\frac{\alpha(a-b)}{2}+C_{2} \\
\sqrt{\frac{b-x}{a-b}}=\operatorname{tg}\left(C_{2}-\frac{\alpha a-\alpha b}{2}\right) \rightarrow x(t)=b-(a-b) \operatorname{tg}{ }^{2}\left(C_{2}-\frac{\alpha a-\alpha b}{2}\right) \\
\int \frac{d x}{(a-x) \sqrt{b-x}}=\left\{\begin{array}{l}
\sqrt{b-x}=t \rightarrow b-x=t^{2} \rightarrow x=b-t^{2} \rightarrow d x=-2 t d t \\
-2 \int \frac{d t}{\left(a-b+t^{2}\right)}=-\frac{2}{\sqrt{a-b}} \operatorname{arctg} \sqrt{\frac{b-x}{a-b}}+C_{1}
\end{array}\right.
\end{array}\right.
$$

$\left\{\begin{array}{l}\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr} \\ \frac{d(\mathrm{HBr})}{d t}=\alpha \mathrm{H}_{2} \mathrm{Br}^{\frac{1}{2}}\end{array}\right.$
We will note through a the initial amount of hydrogen (H_{2}) through b cantity of $B r_{2}$ and through x the amount of grill gas, The differential equation that models this phenomenon is form:

Fig, 4: The real part of the solution of differential equations (17) for different values of the parameter α

Fig, 5: The imaginary part of the solution of differential equations (17) for different values of the parameter α

We consider the reaction reversible:
$\left\{\begin{array}{l}\mathrm{SO}_{3}^{2-}+\mathrm{H}^{+} \xrightarrow{k_{1}} \mathrm{HSO}_{3}^{-} \\ \mathrm{HSO}_{3}^{-} \xrightarrow{k_{2}} \mathrm{SO}_{3}^{2-}+\mathrm{H}^{+}\end{array}\right.$

We will note through x the initial amount of hydrogen (
$\left\{\begin{array}{l}\frac{d z}{d t}=k_{1}\left(x_{0}-z\right) y-k_{2}\left(z_{0}+z\right) \rightarrow \frac{d z}{k_{1}\left(x_{0}-z\right) y-k_{2}\left(z_{0}+z\right)}=d t \\ z(t)=\left[e^{\left(-k_{1} y-k_{2}\right)(t+C)}-\left(k_{1} x_{0} y-k_{2} z_{0}\right)\right] \frac{1}{\left(-k_{1} y-k_{2}\right)} \\ \left.\int \frac{d z}{z\left(-k_{1} y-k_{2}\right)+\left(k_{1} x_{0} y-k_{2} z_{0}\right)}=\int d t \rightarrow \frac{1}{-k_{1} y-k_{2}} \ln \right\rvert\, z\left(-k_{1} y-k_{2}\right)+\left(k_{1} x_{0} y-k_{2} z_{0} \mid=t+C\right.\end{array}\right.$
Let be an irreversible reaction process in which the reactants A, B, C produce the substance X : $A+B+C \rightarrow X$, We will note with a, b, c the initial $\int \frac{d x}{d t}=k(a-x)(-x)\left((-x) \rightarrow \frac{d x}{(a-x)(b-x)(c-x)}=k d t \rightarrow \int \frac{d x}{(a-x)(b-x)(-x)}=k\right] d t$
$\int \frac{d x}{(a-x)(b-x)(c-x)}=\int\left(\frac{A}{a-x}+\frac{B}{b-x}+\frac{C}{C-x}\right) d x=-A \ln |a-x|-B \ln |b-x|-C \ln |x-x|+C_{1}$
$\left.|(a-x)|^{\prime}|(b-x)|^{|c|}(c-x)\right|^{\mid c}=-k t+C_{2}$
($A+B+C=0$
$\left\{\begin{array}{l}A+B+C=0 \\ A(-b-c)+B(-a-c)+C(-a-b)=0 \rightarrow A=\frac{1}{(a-b)(a-c)}, B=\frac{1}{(b-a)(b-c)}, C=\frac{1}{(a-c)(b-c)} \\ A b c+B a c+C a b=1\end{array}\right.$

SO_{3}^{2-}) through ${ }^{y}$ cantity of H^{+}and through z cantity of ${ }^{\left(\mathrm{HSO}_{3}^{-}\right)}$, The differential equation that models this phenomenon is form ${ }^{19}$,
concentrations of the three substances, The mathematical model is of the form ${ }^{20}$,

Figure 6, Numerical simulation of the solution of the differential equation (19) for: $t_{\text {max }}=20$ and $t_{\text {max }}=200$ If we consider the general reaction: $m A+n B \rightarrow A_{m} B_{n}$ we get:
$\frac{d a}{d t}=-k a^{m} b^{n}$
Where the initial concentration b_{0} of the substance B far exceeds the initial concentration of the substance A, then the concentration of the substance B will be relatively constant during the reaction, and the reaction will be an order reaction m ${ }^{21}$,
$\frac{d x}{d t}=-k_{1} x^{m} \rightarrow \frac{d x}{x^{m}}=-k_{1} d t \rightarrow \int \frac{d x}{x^{m}}=-k_{1} \int d t \rightarrow \frac{1}{1-m} x^{1-m}=-k_{1} t+C \rightarrow x(t)=\sqrt[1-m]{(1-m)\left(-k_{1} t+C\right)}$

Radium is a radioactive chemical element that has the symbol Ra and atomic number 88, Its appearance is almost pure white, but it is light, it oxidizes on exposure to air, Radium is an alkaline earth metal found in uranium ores, It is extremely radioactive, its most stable isotope, $R a^{226}$, it
has a half-life of 1602 years and disintegrates ${ }^{22}$, Whether $x(t)$ cantity of $R a^{226}$ (grams) left at the moment t, then:

$$
\left\{\begin{array}{l}
x^{\prime}=-0,0004332 x(t) \rightarrow \frac{1}{x(t)} d x=-0,0004332 d t \rightarrow \int \frac{1}{x} d x=-0,0004332 \int d t \tag{22}\\
\int \frac{1}{x} d x=\ln |x|+C_{1} \\
x(0)=x_{0} \rightarrow C=x_{0} \rightarrow x(t)=x_{0} e^{-0,0004332 t}
\end{array}\right.
$$

To place these discoveries in time, paleontologists use several fossil dating techniques, The best known of these is radiocarbon dating, using carbon-14, an unstable carbon isotope formed by cosmic ray collisions with nitrogen atoms in the upper atmosphere, An accurate measurement of the carbon-14 ratio can then be transformed into an estimate of the death time ${ }^{23}$,
Carbon-14 is suitable for this type of estimation because the decay rate is very slow, Then, the rate of decay of the
$\left\{\begin{array}{l}x^{\prime}=a x(t) \rightarrow \frac{1}{x(t)} d x=a d t \rightarrow \int \frac{1}{x} d x=a \int t d t \rightarrow x(t)=C_{1} e^{a t} \rightarrow x(t)=x_{0} e^{a\left(t-t_{0}\right)} \\ \int \frac{1}{x} d x=\ln |x|+C \\ x\left(t_{0}\right)=x_{0} \rightarrow C_{1}=x_{0} e^{-a t_{0}}\end{array}\right.$
radioactive material is directly proportional to the amount of radioactive material, Suppose there is a certain amount of radioactive material defined by the variable x, where $x(t)$ is the amount of radioactive material at time t, The probability that each atom will disintegrate in a short period of time (Δt) it is independent of what other molecules do :
where $\boldsymbol{x}(\boldsymbol{t})$ is the amount of radioactive material at a time,
We are interested in finding the half-life for this isotope (the time interval in which half of the organic material disintegrates),
$\left\{x(t)=\frac{x_{0}}{2} \rightarrow \frac{x_{0}}{2}=x_{0} e^{-a t} \rightarrow e^{a t}=2\right.$

For Carbón-14, the half-life is $t=5715$ years,
For $t=5715$ years, we get: $a=-0,0001213$,
Plutonium is the chemical element in the actinide series with atomic number 94 in the periodic table of elements,

Plutonium ${ }^{210}$ is an isotope of plutonium, The number of atoms of plutonium ${ }^{210}$ stay after \boldsymbol{t} days, with an initial value of radioactive atoms $\boldsymbol{x}_{\mathrm{o}}$, is given by:

In 1986, a reactor at the Chernobyl nuclear power plant exploded and spread radioactive materials over Europe, This disaster is considered to be the worst accident in the history of nuclear energy, It was estimated that half the amount of cesium $\left(C s^{137}\right)$ and iodine ($\left.I^{131}\right)$ and 5% of
the remaining radioactive elements present in the reactor were released into the atmosphere ${ }^{24}$, The two radioactive elements were iodine-131 (\boldsymbol{I}^{131}) whose half-life is 8 days and cesium-137 $\left(C s^{137}\right)$ whose half-life is 30 years,

$$
\begin{equation*}
\left\{t=\frac{\ln 2}{a}=\frac{0.693}{4,95 * 10^{-3}}=140\right. \text { days } \tag{25}
\end{equation*}
$$

- For I^{131} we will get: $\left\{\begin{array}{l}t=\frac{\ln 2}{a}=\frac{0.693}{8}=0,0866 \\ x_{I}(t)=x_{0} e^{-0,0866}\end{array}\right.$
- For $C s^{137}$ we will get: $\left\{\begin{array}{l}t=\frac{\ln 2}{a}=\frac{0.693}{30}=0,023 \\ x_{C s}(t)=x_{0} e^{-0,023 t}\end{array}\right.$
isotope of uranium ${ }^{25}$, The number of atoms of Uranium

Uranium is a chemical element, a metal, from the actinide series of the periodic table of elements, Uranium ${ }^{237}$ is an
${ }^{237}$ left after \boldsymbol{t} days, with an initial value of radioactive
atoms $\boldsymbol{x}_{\mathrm{o}}$, is given by:

$$
\left\{\begin{array}{l}
t=\frac{\ln 2}{a}=\frac{0.693}{6,8}=0,1022 \tag{28}\\
x_{U^{237}}(t)=x_{0} e^{6,8 t}
\end{array}\right.
$$

4, Conclusions

The models represented by differential equations presented in this article offer some significant advantages compared to other models proposed in chemistry, namely: they can model evolutionary processes, allow a compartmental analysis of the modeled process, allow determining the stability of equilibrium configurations, allow sensitivity analysis, in relation to the reaction parameters, From a mathematical point of view, the theory of differential equations is well developed both qualitatively and numerically, As a disadvantage, they cannot model phenomena with a high degree of heterogeneity, These models can be used successfully in developing inverse methods for determining one or more reaction parameters involved in the model, The accuracy of the predictions of these models is strongly influenced by the internal kinetics, by the spatial-temporal scale of evaluation of the reaction parameters, by the control of the error of solving the mathematical model, An extremely useful principle used in modeling chemical reactions has proven to be the principle of mass conservation,

5, References

1. Beltrami E, Mathematical models for society and biology, Academic Press, New York ,2002,
2. Edeslstein L, Mathematical models in biology , SIAM , 2005,
3. Jones D S , Sleeman B D, Differential equations and mathematical biology , Chapman \& Hall/CRC Mathematical Biology and Medicine Series, Boca Raton, 2003,
4. Perko L, Differential equations and dynamical systems , 3th ed, , New York, Springer-Verlag, 2001,
5. Britton , N F, Essential mathematical biology , Springer-Verlag, London ,2003,
6. Taubes , C H, Modeling differential equations in biology , Prentice Hall, 2001,
7. 7, Edwars C , Penney D, Differential Equations Computing and Modeling, Hardback , 2007,
8. Barbu V, Ecuaţii diferenţiale Editura Junimea, Iaşi , 1985,
9. Zill G, A First Course in Differential Equations, 9th ed, , Brooks-Cole, Belmont, 2008,
10. Chicone C, Ordinary Differential Equations with Applications, Springer-Verlag, Berlin, 1999,
11. Teschl G, Ordinary Differential Equations and Dynamical Systems, A, M, S, , 2012,
12. Wolfgang W, Ordinary differential equations, Springer- Verlag ,1998,
13. Polking J , Arnold D , Boggess A, Differential Equations, Second Edition, Prentice Hall, 2005,
14. Hubbard J H, Differential Equations: A Dynamical Systems Approach: Ordinary Differential Equations, Springer,Berlin ,1997,
15. Hartman P, Ordinary Differential Equations, 2nd Ed, , SIAM, Philadelphia, 2002,
16. 16, Hairer G , Wanner E, Solving Ordinary Differential Equations II, Springer, 2010,
17. 17, Brin M, Stuck G, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002,
18. 18, Braun M, Differential equations and their applications: An introduction to applied mathematics, Springer-Verlag, 1993,
19. 19, Amann H, Ordinary differential equations: An introduction to nonlinear analysis, Walter de Gruyter, 1990,
20. 20, Sirovich L, Introduction to Applied Mathematics, Springer Verlag, 1998,
21. 21, Hoppensteadt F C, Peskin C S, Mathematics in Medicine and the Life Sciences, SpringerVerlag, Berlin-Heidelberg-New York ,1992,
22. 22, Logan J D, Wolesensky W R, Mathematical Methods in Biology, Oxford: Wiley ,2009
23. 23, Zill D, Wright W, Differential equations and boundary value problems, Brooks/Cole, Boston, 8th edition, 2013,
24. 24, Simmons G, Differential equations with applications and historical notes, McGraw-Hill, New York, 1991,
25. 25, Boyce W, DiPrima R, Elementary differential equations and boundary value problems, Wiley, New Jersey, 10th edition, 2012,
