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Abstract 
This article focuses on the dynamic behavior of a cylindrical shell (elastic or visco-elastic) contacting 

with ideal (or viscous) liquid. The problem of wave propagation in a cylindrical shell filled or 

submerged liquid has great practical importance. The phenomenon of wave-like motion of the fluid in 

the elastic cylindrical shells attracted the attention of many researchers [1, 2, 3, 4, 5, 6]. In these 

works devoted to wave processes in the elastic cylindrical shell - ideal liquid, used and refined 

classical equations of shells, consider the influence of the radial and longitudinal inertial forces, 

considered the average density of the flow of liquid or gas. In works [7, 8, 9] analyzes the laws of 

wave processes in an elastic shell with viscous fluid in the model of the linear equations of 

hydrodynamics of a viscous compressible fluid. Unlike other systems are cylindrical shell (elastic or 

viscoelastic) and liquid (ideal or viscous) is regarded as inhomogeneous dissipative mechanical 

system [10, 11, 12]. 

 

Keywords: The cylindrical shell, viscous barotropic liquid, wave process, dissipative non-uniform, 

wavy motion. 

 

Introduction 

Statement of the problem. 

An infinite length of deformable (viscoelastic) cylindrical shell of radius R with constant 

thickness 0h , density 0 , Poisson's ratio 0 , filled with a viscous fluid with density at 

equilibrium. Fluctuations of a shell under a load, the density of which is denoted p1, p2, pn 

respectively, can be described by following [1, 2, 4], equations: 
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Here  zr uuuuu ,, 


 - displacement vector points of the middle surface of the shell and 

membranes for Kirchhoff - Love it has a dimension equal to three

 wuvuuu zr  ;;  , and to membranes such as the dimension of Timoshenko u


 

is five. Here, in addition to the axial, circumferential and normal movements added more 

angles of rotation normal to the middle surface in the axial and circumferential directions 

[12];  T
wvu - the displacement vector with axial, radial and circumferential 

components, respectively ("+" sign in front of pn and the sign "-" before the last component 

of the inertial member says that is considered positive motion towards the center of 

curvature);  tRE – the core of relaxation; 0E – instantaneous modulus of elasticity. The 

amplitudes of the oscillations are considered small, which allows you to record the basic 

relations in the framework of the linear theory. The system of linear equations of motion of a 

viscous barotropic liquid can be written as [12]: 
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Here, in the equations (2) 


= ),,( zr  


- the 

velocity vector of fluid particles; 
 and Р- disturbance 

density and fluid pressure; 


0  and а0 – density and sound 

velocity in the fluid at rest; 
  ,  - kinematic and 

dynamic viscosity; for the second viscosity coefficient 
  

accepted ratio 
 =

 
3

2
; rrrrz ррр ,,

- components 

of the stress tensor in the fluid. Equation (1), respectively, 

kinematic and dynamic boundary conditions, which, 

because of the thin-walled shell, we will meet on the 

middle surface (r=R). Equations (1) and (2) is a closed 

system of relations hydro visco elastic cylindrical shell for 

containing a viscous compressible fluid. This for shell 

obeying Kirchhoff-Love hypotheses. Be investigated joint 

shell and liquid fluctuations, harmonic of the axial 

coordinate z and decay exponentially over time, or time-

harmonic and damped with respect to z.  

 

Method of solution. 

We accept the integral terms in (1) small, then the function

    ti Retrtru
 

 ,,


, where  tr ,


 - slowly varying 

function of time, R - real constant. Next, using the 

procedure of freezing [18], then the integral-differential 

equation (1) takes the form  
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Where, for shell Kirchhoff - Love 
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- Respectively, cosine and sine Fourier transforms 

relaxation kernel material. As an example, the viscoelastic 

material take three parametric kernel relaxation 

    1/ tAetR t
, ρ – material density shell; E – 

Young's modulus; ν – Poisson's ratio, .12/ 22 Rha   

Let's move on to the dimensionless axial coordinate 

Rx /  and multiply by R2 system (3). The matrix of 

the resulting system will take the form 
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Expanding equation (2) and (3) in coordinate form, it is 

easy to see that the relations (2) - (3) break up into 

independent boundary value problems: 

- Torsional vibrations: 
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- Longitudinal transverse vibrations: 
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Let the wave process is periodic in z and fades over time, 

then is given a real wave number k, and the complex 

frequency is the desired characteristic value. Solution of (2) 

- (6) for the major unknowns satisfying constraints imposed 

above the dependence on time and coordinates z, should be 

sought in the form [14] 
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Expressions (7) in the form 
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where r , z ,  , mmm WVU ,, , r ,  , z - Amplitude 

integrated vector - function; к– wavy number; С - phase 

velocity; ω – complex frequency; m – circumferential wave 

number (the number of district-wave), takes values m = 1, 

2, 3… .When m = 0 , happening Ax symmetrical 

vibrations. This approach allows you to seek a solution for 

every fixed value of the wave number of the district m 

independently. 

In this way С, k,   it is well-known real and complex 

spectral parameters of the type of problem.  

To elucidate their physical meaning consider two cases: 

1) Rкк   ; С = СR +iCi, Then the solution of (5) has 

the form of a sine wave х, whose amplitude decays 

over time; 

2) IR iккк  ; С = СR, Then at each point х 

fluctuations established, but х attenuate.  

 In the case of axially symmetric on the axis r = 0 

conditions must be satisfied conditions 0 rzr рр  , 

r =0. If the outer surface г=R assumed stationary, then 

ur=uz=uφ=0. The superposition of the solutions (8) forms an 

exponentially decaying over time the standing wave that 

describes the natural oscillations of a liquid and a 

cylindrical shell of finite length with boundary conditions. 

With infinite length sheath similarly specified type of 

movement (8) will be called private or free fluctuations. In 

the case of steady-state over time and fading coordinate the 

process, in contrast, is a well-known real rate of  , as 

desired be a complex wave number k. In contrast to their 

own, these fluctuations will be called the established. 

Actual values of the   in the first case, and k, second 

frequency have the physical meaning of the process in time 

and the coordinate, respectively. Imaginary part - the rate 

of decay of wave processes in time and Z, respectively 

[13]. The value of 1/Imk sometimes defined as the interval 

damped wave propagation. In the extreme case, the elastic 

range spread endless. The degree of attenuation of wave 

process in the time period is characterized by the 

logarithmic decrement  

 Re/Im2c
    (8) 

Decrement is similar to the spatial 

kky Re/Im2  .  

You can also introduce the concept of phase velocity of its 

own and steady motions 
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The values Сс and Су have physical sense speeds of zero 

state at its own and steady oscillations, respectively, and, in 

contrast to the elastic (real) case, do not coincide with each 

other at the same frequencies. Two types of oscillations 

(and set their own), you can put two different formulations 

of the problem. And in the non-stationary case, namely the 

Cauchy problem for an infinite shell and boundary value 

problem for the semi-infinite interval changes Z. In either 

case, the solution is using the integral transformation of the 

decisions of the respective steady-state problems. For 

example, in the case of the Cauchy problem, the main 

vector of unknown’s 
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waves 
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Where vectors 
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nY  are their own form of the problem of 

natural oscillations, normalized so that the spatial Fourier 
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Similarly, the main vector of unknown’s 
y

Y  boundary 

value problem is calculated according to the expression 
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where 
y

kY - forms steady-state oscillation, the linear 
combination of which should form a Fourier spectrum 

given boundary perturbation 
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Obviously, the solutions (8) and (9) have a meaning only 

when there are (10) and (11). So, there are four possible 

variants of steady motions, which are discussed below, and 

established their own systems fluctuations shell - fluid 

inside and outside the sheath liquid [15]. Substituting the 

solution (7) in the system of differential equations (2) - (6) 

we obtain a system of ordinary differential equations with 

complex coefficients, which is solved by Godunov’s 

orthogonal sweep method with a combination of method of 

Muller [18] in the complex arithmetic. 

 

Torsional vibrations. 
After performing in (5) the change of variables (7) 

permitting relations describing stationary torsional 

vibrations of the shell liquid, formulated in the form of the 

spectral boundary value problem for a system of two 

ordinary differential equations 
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First investigate fluctuations of fluid in the walls. Equations 

(12) can be converted to a single equation for the 

displacement v 
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The solution of equation (13) is limited at r = 0 has the form 

0)( 2
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       (14) 

 

where J1- Bessel function of the first order, and A is an 

arbitrary constant. Given the immobility of the shell, we 

obtain the dispersion equation 
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From whence 
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in the case of natural oscillations and 


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v
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in the case of steady-state oscillations. Here, through the Гn 

marked the roots of Bessel functions assigned to R. As it 

can be seen from (15), (16) own motion aperiodicity always 

on time, with the anchor points are fixed (the phase 

velocity Со=0), while the steady motion are oscillatory in 

nature, as the nodal point move at the speed of Су, a 

monotonically increasing from zero to indefinitely with an 

increase in viscosity or 
 . These characteristic features 

of the motion of a viscous medium will appear in the 

following more complex example. 

 Let us now consider the relation (12) in the case of the 

internal arrangement of the liquid. This problem can be 

solved in the same way using special features and have a 

dispersion equation  
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which was first obtained in A. Guz [7]. Here we have 

introduced new designations 
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shear wave velocity shell: Jo- Bessel function of zero order. 

The direct solution of the equation (18) comes up against 

certain difficulties caused by the need to calculate the 

Bessel functions of complex argument. Therefore we 

examine (18) by means of asymptotic representations of 

these functions at small and large arguments z. The 

smallness of z occurs in the low-frequency vibrations. 

According to the known expansion J0 and J1 power series 
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Hold the expansions (19) only the first term, we obtain  

0
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dispersion equation of torsional vibrations or dry shell 

filled with an ideal liquid, keeping in (19) on the first two 

terms, we have the equation 
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the root of which, for example, in the case of steady-state 

oscillations is given by 
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The physical interpretation of (18) is provided below. 

Consider now the situation when z is large enough, which 

corresponds to a high-frequency vibrations and low 

viscosity. In this case the asymptotic formulas for the 

Bessel functions have the form  

 

)
4

sin()
2

()(),
4

cos()
2

()( 2/1

1

2/1

0








 z

z
zJz

z
zJ   

 

 

On the basis of (20) and (21) it is easy to show that for 

sufficiently large positive imaginary part z: 

.)(/)( 10 izJzJ  Substituting (1) and further assuming 

smallness 
  in comparison with the 

2k


, to obtain an 

approximate dispersion equation, which is also contained in 

the[7]  
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Where, in the pursuit of the viscosity 
v  to zero (and also 

tends   to infinity), we have a trivial result 0
k


, 

which was obtained at low   from equation (20). 

Equation (22) when an unacceptably high viscosities. In 

this case, the phase velocity C unlimited increases with ω. 

This example shows inconsistencies of various asymptotic 

estimates in the mid-frequency vibrations. Thus, the 

analysis of wave processes asymptotic methods in the first 

approximation is not possible to establish the limits of 

applicability of formulas and calculations to estimate the 

error. In this paper for solving spectral problems using a 

direct numerical integration of permitting relations of the 

type (12) by the method of orthogonal shooting in complex 

arithmetic. This approach avoids the above difficulties 

associated with the calculation of Bessel functions of 

complex argument. Another advantage is due to the 

specificity of the orthogonal sweep method, which is due to 

the procedure orthonormality can solve highly rigid system 

with a boundary layer. As a result of a numerical study has 

found that the problem of natural oscillations (12) admits 

no more than one complex value ω, corresponding 

vibrations of the shell together with the adjacent liquid 

layers to it. The rest found the Eigen values appeared 

purely imaginary. They correspond to the a periodic motion 

of a fluid with almost stationary shell. Proper form 

corresponding complex values also are complex, that is, the 

phase of joint oscillations of the shell and liquid is not the 

same along the radius. In the case of steady-state 

oscillations all the calculated Eigen values k and their own 

forms be complex. 
  

 
 

Fig. 1: Dependence of the real part of the complex frequencies (Re ) to 
wave numbers (k) for different values of η. 1-0.0009; 2-0.0018; 3-0.18, 4-

0.19, 5-according to the formula (20); By the formula (22). 
 

 

Fig. 2: Dependence of the logarithmic decrement ( с ) on the wave 

numbers (k) for different values of η. 1-0.0009; 2-0.0018; 3-0.18, 4-0.19, 

5-0.20; 6-0.22. 
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Fig. 3: Dependence of   on the wave number r, for different 

values of the viscosity of a liquid 1-0.0009; 2-0.0018 ; 3-0.18; 4-

0.19. 

 

 
 

Fig. 4: Dependence of the imaginary part of the complex 

frequencies (Im) to wave numbers (k) for different values of η:1-

0.0009;2-0.0018;3-0.18; 4-0.19;--- by the formula (22) 

 

 
 

Fig. 5: Dependence of the spatial decrement on the wave number 

k for different values of η: 1-0.0009; 2-0.0018; 3-0.18; 4-0.19. 

 

 
Fig. 6: Dependence of on the wave number r. When 

 

Fig. 7: Dependence of   on the wave number. When

018,0,8    

 

 

Fig. 8: Dependence of   on the wave number r. When 

0018,0,16   . 

 

 

Fig. 9: Dependence of   on the wave number r. When

018,0,16   . 
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Numerical results 

Consider the case of natural oscillations, when the shell is 

filled with liquid. In Figure 1,2,3,4,6,7,8 c and 1,2,4,5 

show, respectively, depending on the dispersion curves Re 

ω, Im ω,   the wave number k- the first mode, in which 

the damping coefficients of the smallest, and the Eigen 

values are complex Bat. In accordance with the numbering 

of graphs asked four different values of the coefficient η 1) 

0.0009: 2) 0.0018 3)0.15 4)0.018 (а= 0.6199; 

25.0;1;0101.0
~

;0529.0~
0   Rh .) for the 

remaining parameters according to (1) In Fig. 3,6,7,8,9 to 

show their own forms Rev for values k equal to 1 and 8, 

respectively. It is easy to notice the difference in the 

behavior characteristic of the dispersion curves 1.2 and 3.4. 

In the last two cases, there is a wave number since a 

variable with only takes purely imaginary values 

corresponding to a periodic motion of the system. For 

curves 1.2 with less viscosity real part of the Eigen values 

Re  nonzero at all wave numbers and the damping rate 

has a finite limit at infinity. The greater the viscosity, the 

earlier start a periodic traffic (curves 3,4) and the higher 

limit of the damping rate (curves 1,2). It follows that where 

is a minimum critical viscosity ηk, above which a zone of 

high wave numbers of the first mode, there are a periodic 

wave number. As a result of numerical experiment, it was 

found that the critical values of the coefficient of viscosity 

ηk, is in the range  0.0125   0.0120 . Analyzing the 

dependence of energy dissipation on the wave number, two 

opposite tendencies should be noted. As the wave number 

increases, at a fixed amplitude, tangential stresses linearly 

increase according to (6): c another, as shown in Fig. 3, 

localization of the fluid motion amplitudes near the shell 

simultaneously results, which leads to a decrease in the 

mass of fluid involved in the motion, as well as tangential 

stresses. The difference in the behavior of curves 1,2 and 

3,4 is due to which of the two tendencies prevails. At small 

wave numbers, a linear dependence of the eigenfunction v 

on the radius is observed, that is, the entire mass of the 

liquid is involved in the motion. Ask increases, the central 

part of the liquid begins to "not keep up" with the 

vibrations of the shell, which leads to the localization of the 

amplitudes. The rate of localization depends on the 

viscosity of the liquid. If the localization occurs slowly, 

then starting from some k (owing to the growth of stresses), 

the self-motions become aperiodic (curves 3,4). If, on the 

other hand, the average amplitude of the fluid oscillation 

decreases rapidly enough, the motions will always remain 

oscillatory (curves 1,2). In this case, large voltage wave 

numbers prevail over voltages, and increase with increasing 

localization. In view of the latter circumstance, the 

damping coefficient always increases with increasing k. 

The linear dependence of the shape on the radius at small k 

also indicates the fulfillment of the flat-section hypothesis 

on which the elementary theory of viscoelastic rods is 

based. Using the Ritz method one can find the parameters 

of the Feucht core model and determine the limits of 

applicability of this model in the framework of the 

hydrodynamic theory, but for a narrower class of straight 

rods of circular cross section. Variational equation of the 

principle of possible displacements, equivalent to the 

relations 
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Has the form. Choosing a linear function as the basis 
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and after substituting (24) into (23) and the standard 

procedure, we obtain where the parameters β and a0 are 

expressed in terms of the polar moments of inertia of the 

shell I1 and liquid I0 as follows  
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 Equation (23) describes the torsional vibrations of a 

viscoelastic Feucht rod according to the relations 
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where is the coefficient of viscosity. 

The solution of (25) is represented in the form 

 

 ))(exp(),( 0 tkzitz    .  

 

Where the following relations satisfy  

 

   .01 222

0  iка (26) 

Taking into account the relation I1 / I0 = 4h, it is easy to see 

that equation (26) coincides with equation (22), which was 

obtained for the asymptotic solution of problem (16) for 

small oscillation frequencies. In Fig.1,4 The dotted lines 

show the dispersion curves of natural oscillations found 

from Eq. (22). As follows from the figures, a satisfactory 

coincidence of dotted and continuous lines is observed in 

the region of small wave numbers whose upper bound 

exceeds unity in this case and increases with increasing 

viscosity of the liquid. In the short-wavelength range, there 

is a discrepancy due to the localization of the oscillation 

amplitudes near the shell. Small wave numbers correspond 

to the natural vibrations of long finite tubes. We now turn 

to an analysis of the steady-state oscillations of a shell 

filled with a liquid. Figure 1-9 shows the dispersion curves 

and waveforms for two values of the viscosity coefficient 

(below and above the critical value) 1) 0.0018, 2) 0.018 and 

the same values of the remaining parameters as in (22). In 

the first case of relatively low viscosity, the results of the 

calculation are in good agreement with the asymptotic 

solutions of the Goose equation (18) at high frequencies.  

 

Longitudinal - transverse vibrations 

This section analyzes the stationary longitudinal-transverse 

vibrations of a shell filled with fluid, which according to 
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(6) can be described by a system of four ordinary 

differential equations  
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With the boundary conditions 
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The value of р in the first equation of system (27) is 

defined through the main unknowns according to the 

expression  
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The spectral problems (27), (28), as in the case of 

longitudinal - transverse vibrations were solved by 

orthogonal shooting. To find the roots of the characteristic 

equation method were used Mueller.  

 

Numerical results. 

The results of numerical study of natural oscillations. 

Figure 10 shows the dispersion curves Re  the wave 

number k - for the case of an incompressible (С0 =  - dot-

dash line) and compressible (С0=0,1 - solid line) of the 

liquid. Shell parameters and coefficients of viscosity taken 

following: h0 = 0,05; р=1,8; v0 = 0,25; h=6,011*10( -4); 

к=-2 η/3. Here and henceforth given dimensionless 

quantities for which the units of length and mass density 

are

0
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0 1
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






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

E
RR . For an incompressible fluid, there 

are two modes, corresponding mainly longitudinal (curve 

1) and preferably a cross (curve 2) fluctuations in the shell, 

with complex Eigen values. All other traffic have their own 

imaginary Eigen values that is a periodic in time. The 

dashed lines in Figure 10 are designated the dispersion 

curves corresponding to the vibrations of a shell with an 

ideal incompressible fluid. The solution of the latter 

problem is given below. It should be noted that, unlike the 

dry shell joint oscillations transverse vibrations of said 

sheath fluid density p1, It takes place on a smaller 

compared to the frequency of longitudinal vibrations in the 

entire range of the wave number. When administered 

viscosity oscillation frequency of the first mode decreases, 

apparently due to the involvement of additional masses in 

movement of fluid in the boundary layer and in the second 

mode appears critical wave number restricting oscillatory 

motions bottom region. In [15], who investigated the steady 

oscillations, noted the desire for zero phase velocity of the 

lowest mode with decreasing frequency. Proper motion of 

the shell and the viscous compressible fluid has an infinite 

number of modes. The paper S. Vasin et al. [16] using 

asymptotic methods of solving, the latter effect could not 

be found. Fig.11 shows the dispersion curves for the first 

four events with a minimum of vibration frequencies 

(curves 3, 4, 5, 6) in ascending order of magnitude Re . 

Comparing curves 1.2 and 3.4 together, we can see that the 

second worse than the first few vibration modes of the shell 

- compressible fluid to the selected parameters are 

satisfactorily described by a model of an incompressible 

fluid in the region of wave numbers k < 1. This gives 

grounds for the study of the said system in the first 

approximation neglect the compressibility of the fluid. 

System elastic shell - is a viscous liquid dissipations- 

inhomogeneous viscoelastic body at a radial coordinate. 

Moreover, in contrast to the earlier torsional vibrations here 

for an incompressible fluid, there are two, and compressible 

- unlimited number of vibration modes. It is interesting to 

find out how this system can be shown a synergistic effect. 

Figure 11 shows the dispersion curves (2) for the following 

parameters of the shell and liquid: 
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Dash-dotted lines correspond to fluctuations in the dry 

shell. The dashed lines show the frequency dependence for 

the case of an ideal fluid v = 0. In contrast with the 

previously discussed embodiment, the density p = 8, in this 
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case partial frequency (v = 0) of the longitudinal and 

transverse vibrations of the shell with a perfect fluid 

intersect. It is natural to expect that the v near the 

intersection of partial frequencies will be a strong 

connectedness of both modes, leading to increased energy, 

resulting in a synergistic effect. Indeed, the presence of 

events demonstrates the effect of the conversion of Vina- 

longitudinal mode in transverse and longitudinal cross-

section in a change of the wave number in the vicinity of 

the intersection of partial frequencies. Violation of the 

monotony of growth and synergies. Compared to the 

previous description of this effect there are two features. 

Firstly, the effect is far from the place of approximation 

curves of two modes, secondly, damping factor curves do 

not intersect. Yu. Novichkov in [17] investigated the 

coherence of joint oscillations of ideal compressible gas 

and the shell with the help of diagrams wines. As he 

examined the frequency of partial oscillations of gas in 

rigid walls and an empty shell. 

Returning to Figure 11, we note a similar manifestation of 

the effect of wines in places of convergence curves 4.5 and 

5.6. In these areas in Fig. 3 there is a synergistic effect for 

the curves. It is interesting to trace the influence of fluid 

viscosity on connectivity modes. 3.4 Curves in Figure 4 

correspond to the value of the viscosity coefficient η=0,11 

at constant other parameters. In this case, fashion 

predominantly transverse vibrations are defined on a finite 

interval of the wave of change, and the effect of guilt is not 

observed, indicating a loose coupling modes. Another large 

increase in viscosity (η=0,13, curve 5) leads to the fact that 

fashion is everywhere transverse vibrations becomes a 

periodic and у longitudinal oscillations appear critical wave 

numbers, limiting the scope of the vibration motions of the 

top. The physical nature of the observed effect is revealed 

when analyzing the vibrations of a shell filled with a 

perfect fluid. The equations of harmonic oscillations of an 

ideal liquid is easy to deduce from (27), formally putting 

viscosity coefficients equal to zero. 
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General solution of (26) satisfying the finiteness condition unknown at zero, has the form 
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Where А arbitrary constant:J0, Jl,- Bessel functions of zero 

and first order, respectively. The boundary conditions at the 

r=R similarly written conditions (28)  
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Where w - axial movement of the shell, which is not now 

coincides with the axial movement of the liquid. After 

substitution of the solutions (22) of (23) there is a system of 

homogeneous linear algebraic equations in the unknown А 

and U1. The roots of the determinant of this system are the 

desired Eigen values, and its decision to define the relation 

between А and U1. 
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Fig. 10: Addiction Re with the wave number k in the case of an incompressible fluid 

 

 
 

Fig. 11: Addiction Im a the wave number in the case of a compressible fluid 
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For an incompressible fluid, there are two real own Bessel functions I0 and I1 
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Unlike dry shell here second frequency locking is absent 

and the phase speed at low k equal to the 
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Which coincides with the speed of the wave Rezalya (see. 

the review at the beginning of this chapter). In the case of a 

compressible fluid 0  and limiting the phase velocity 

of the transverse mode oscillation in the shell k —> 0 is the 

velocity of waves Korteweg Zhukovsky. 
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Numerical study showed that the critical value Ck does not 

depend on the viscosity of the liquid, but with increasing η 

weakening the dependence of oscillations of Poisson's 

ratio, so that the ratio 1)/(min)(max  imim  and 

own form U It becomes flat. As follows from the above 

results, generally within the engineering problem statement, 

we cannot adequately describe the longitudinal vibrations 

of the cylindrical shell filled with a viscous fluid via rod 

theory.  
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