

~ 96 ~

WWJMRD 2018; 4(12): 96-99

www.wwjmrd.com

International Journal

Peer Reviewed Journal

Refereed Journal

Indexed Journal

Impact Factor MJIF: 4.25

E-ISSN: 2454-6615

Vinay Menon

School of Computer Science

and Engineering,

Vellore Institute of

Technology, Vellore, India

Geraldine Bessie Amali.D

School of Computer Science

and Engineering,

Vellore Institute of

Technology, Vellore, India

Gopichand G

School of Computer Science

and Engineering,

Vellore Institute of

Technology, Vellore, India

Santhi H

School of Computer Science

and Engineering,

Vellore Institute of

Technology, Vellore, India

Gayatri P

School of Computer Science

and Engineering,

Vellore Institute of

Technology, Vellore, India

Correspondence:

Geraldine Bessie Amali.D

School of Computer Science

and Engineering,

Vellore Institute of

Technology, Vellore, India

Performance Analysis of Various Uninformed and

Informed Search Strategies on 8 Puzzle Problems - A

Case Study

Vinay Menon, Geraldine Bessie Amali.D
*
, Gopichand G, Santhi H,

Gayatri P

Abstract
The 8-puzzle is basically a type of puzzle game in which the area is divided into a uniform grid of 9

spaces which is made up by a square grid of size 3*3. Another version of this puzzle game is that of

the 15-puzzle which instead has 16 spaces in a 4*4 grid. The contents of the 8-puzzle are arranged in

such a manner as there is one empty grid where the contents can be moved into for a re-arrangement

of the puzzle in order to get the optimal state. Usually the optimal state is that of rearranged contents

in such a manner as the numbers constituting the grades are arranged in ascending order. The

different algorithms for performing the 8-puzzle problem is performed for finding the one that is most

optimal and also a comparison of performance is being done where different parameters are taken

into concern.

Keywords: Breadth first search, Depth first search, A* search, Hill Climbing Search

Introduction

The main objective of the 8-puzzle is to reach a given goal state from an initialized state with

a number of steps leading to the goal state. As a result, it is observed that there exists not

only a single way but multiple routes to reach this desired goal state. All the possible routes

to the given goal from the initial state will not be of uniform length. Some of these routes

will be extremely short in comparison to other routes which will take a large number of steps

to reach the optimum state. There may also occur instances where the there is no way to

reach the optimum goal with a given algorithm but there may exist another algorithm that

can converge to the same goal state from the same initial state. Typical algorithms that are

used for such 8-puzzle problems is that of searching algorithms where the problem is solved

step by step by searching for a solution. This solution is basically a sequence of steps that

results from the first state initialized to the final optimum state. The biggest problem

involved in the 8-puzzle problem is to find the shortest solution,that is the solution

containing the least number of steps from initial state to final state. The basic idea behind the

8-puzzle problem is that the space that contains no number is legally exchanged with any tile

that is adjacent to it horizontally or vertically. For a given 8-puzzle problem initialized with a

given state and a given final state, the search space is represented by all the possible states

that exist while traversing from the initial state to the final state. There exists 3,62,880

different solution sets of the 8-puzzle.The four directions of movement are up, down, left and

right. In the traditional approach, the cost of moving from one state to another by moving the

tile is equal to one. Therefore, for performing the 8-puzzle problem we will see the working

of different search algorithms such as Breadth First Search, Depth First Search, A
*
(A star),

Hill Climbing and Steepest Ascent Hill Climbing. Different metrics for distance will also be

assumed for the calculation of the heuristic value for some of the above mentioned

algorithms. Various other metrics will also be looked into [11].

World Wide Journal of Multidiscip linary Research and Development

~ 97 ~

World Wide Journal of Multidisciplinary Research and Development

Literature Review

The study puts focus on the analysis of social networks to

understand the reason for maintaining relationships on such

social networks, determining users that are similar in their

hobbies and interest, as well as identifying content that is

currently popular in some particular community as well as

hot topics that are circulating around within a community.

The proposed social search uses aspects of breadth first

search. Since the entire social network graph cannot be

studies, small sample of the graph is used for analysis

through a method called graph sampling [1]. The paper [2]

proposes an implementation of DFS on lazy functional

language in order to construct algorithms from the

individual sections. This implementation of algorithm

formulation is agreeable with a given proof. The study [3]

involves a group of search algorithms that are known as the

star algorithms, each of which are of different types and

have considerable variations. This study [4] focuses on the

implementation of Genetic algorithm in solving the N-

puzzle problem. Previous methods in solving the N-puzzle

problem have also been recorded in terms of performance.

The reason why Genetic algorithm is very well explained

and justified. The results of comparison prove that the

Genetic algorithm presents with better complexity than the

other observed methods in performing N-puzzle. This

research focuses on this implementation and stresses on the

extension of this in solving similar NP Hard problems

using Genetic algorithms. [10] [11].

Search Algorithms

A search algorithm is basically used for search problems

where it is necessary to attain a given optimum state using

the search space in a given problem domain. Traditionally,

the idea of applying search algorithms is always related to

data structures such as arrays, search trees, linked and

several other data structures where the goal is determined

by actions such as finding the minimum value present in

the data space provided by such data structures. For any

given problem domain, these algorithms will have to be

modified to suit the needs that include satisfying a given

optimum condition which could be either finding a given

value or attaining a particular state. The different

algorithms that are used for solving the 8-puzzle problem

will be explained. The output of the Breadth First Search is

that of the sequence of actions that are generated as the

traversal from the root state to the final optimum state.

Breadth First Search

Breadth First Search is a type of search algorithm that is

based on the Breadth First Traversal seen in trees and

graphs. In this strategy, the initial state of the problem is

taken as the root and the search space is represented as

nodes where the immediate neighbors of a given node

result from a single move or operation to the node. In

Breadth First Search, the searching occurs in such a fashion

where the immediate neighbors are explored first and once

all the given immediate neighbors that exist within a single

level is completely visited and no optimum state is found, it

moves onto the next level of neighbors with the goal of

finding the optimum state. Therefore, the different levels of

neighbors are visited linearly as the number of levels of

neighbors. The Breadth First Search algorithm uses the

queue data structure to perform the search which works on

a "First In First Out" principle. Depending on the problem

domain and the given goal state, the time complexity can

be estimated linearly with the number of vertices and the

number of edges. The number of edges can vary from 1 to

the square of the number of vertices. Therefore, in practical

terms, as the size of the search space increases so does the

time complexity involved in finding the optimum state.[5]

Depth First Search

Depth First Search is a type of searching algorithm that is

based on the Depth First Traversal seen in trees and graphs.

In this strategy, the initial state of the problem is taken as

the root and the search space is represented as nodes where

the immediate neighbors of a given node result from a

single move or operation to the node. In Depth First Search,

the searching starts from the root node and it goes as far in

each branch and when the last node in the branch is visited;

it backtracks all the way up and moves into the next branch.

A more detailed explanation of this is, a given node goes to

its first immediate neighbor, from there it goes to the first

immediate neighbor of the last visited neighbor and goes on

until there are no more immediate neighbors and then it

back tracks all the way back to the root node where it then

moves onto the next immediate neighbor, and this goes on

until the optimal state or goal state is attained. Similar to

Breadth First Search, the time complexity varies linearly

with the number of edges and number of vertices. This

algorithm performs good when the goal state or the optimal

state is far along a branch without the need to go through

all the levels in order to reach this state as in Breadth First

Search. The Depth First Search algorithm uses a stack data

structure which follows a "Last In Last Out" principle.

[6][7]

A* Algorithm

A
*

(A star) algorithm is a very widely used algorithm for

search problems and it is so because of its enhanced

performance when it comes to searching and also the

accuracy in getting the given solution out of the search

space. Generally, this algorithm is considered very greater

than other approaches to searching. The algorithms that are

known to outperform the A star algorithm generally are

overthrown by other algorithms that can preprocess the

search space which gives them an added advantage that

they know exactly which route to take so that they reach

the final state. This algorithm is an informed search

algorithm that finds the goal state by searching through all

the possible routes to the solution so that the route with the

least cost is found. From all these routes, the algorithm

considers that route which seems to bring upon the goal

state in the fastest time. It applies a weighted graph

methodology where a particular edge from one node to

another is given a weight value which will decide which

route is to be taken from a given node where the least

weight is chosen upon to minimize the cost incurred. A star

algorithm must proceed in such a manner as to minimize a

cumulative function of the cost already incurred in the path

as well as the heuristic which is used to estimate the cost of

the least expensive path from the current node to the goal

state. [8]

 () () () (1)

Where f (n) is calculated as the sum of the cost already

incurred c(n) and the heuristic h(n) that gives the cost of the

least expensive route to the optimum goal state.

~ 98 ~

World Wide Journal of Multidisciplinary Research and Development

Hill Climbing Algorithm

Hill Climbing search algorithm is another search algorithm

that focuses on the use of heuristics. In Artificial

Intelligence, it is used for optimization problems. Hill

Climbing search is well known to provide a sufficiently

good route to the final goal state. This algorithm is used to

bring the solution by maximizing or minimizing a function

from the inputs that are given. Even though it may not

bring about the best possible or optimal solution, this

algorithm is well known to provide a very good solution

with a very good time complexity. The basis of this

algorithm is that it goes through all the possible solutions

present in the search space to find the optimal solution.

Once it finds a reasonably good solution, the algorithm will

terminate and return the given solution as the best route to

the goal state which may or may not be the actual optimal

state in the given search space. This search algorithm is

known to have a greedy approach in finding the relevant

solution. According to the greedy approach, the search

moves along those routes which minimizes the cost

function to reach the optimal state. The greedy approach

can in turn lead to a very long route towards the goal state

because it only takes the cheaper route from the node it

currently is in. This greedy approach can be evidently seen

in the variant of Hill Climbing search known as Simple Hill

Climbing Algorithm. [9]

Steepest Ascent Hill Climbing Algorithm

Steepest Ascent Hill Climbing differs from the traditional

Hill Climbing algorithm in the sense that it chooses the

successor nodes in such a way that it does not select the

first node that it encounters; rather it chooses the best node

among all the successors to the current node. Steepest

Ascent Hill Climbing algorithm has features of the Breadth

First Search algorithm as well. Under this algorithm comes

the topic of foothills. It basically deals with local maxima

where it is better than the neighbor nodes but not better

than nodes that are comparatively far away from the current

local maxima. There are situations in the current node

where two routes have approximately similar values and

hence it is not clear as to which route to take in order to

reach the optimal state. Such states are known as plateau

states. Sometimes, during the routing in the algorithm, we

might end up in a state which does not lead to any good

routes and basically cannot proceed further from the current

node. In such situations, backtracking becomes important

so that such a state can be escaped by choosing another

route which is eventually better. Such a state is known as

ridge state.

Results and Discussion

The Manhattan distance is the measure of distance between

two points along the axes at right-angle. The name comes

from the shortest path taken between two sources in the city

of Manhattan which has a grid shaped streets.

 In the case of 8-puzzle problem, we use the equation stated

below where xi and yi are the x and y co-ordinates of the i
th

tile in states.

 () ∑ (| () ̅ | | () ̅ |)

 (2)

Fig.1: A sample move using Manhattan distance

The Hamming distance between two strings of equivalent

length is the number of positions at which the relating

symbols are not the same. Basically, it is the least number

of substitutions or minimum number of errors that has to be

made to convert on string to another.

The approach used here for problem relaxation by creating

a heuristic which will not only reduce the cost to find the

solution but also not in raise at the same time. In this case,

we have combined the values for Hamming distance as

well as Manhattan distance as heuristic value for a-star,

steepest ascent hill climbing and hill climbing searches.

We make use of the concept of priority queue to order our

moves. The priority is based on the heuristic value and the

then adding that value to the depth. If ordered properly, the

queue will allow the next best move for expansion. In this

way, we obtain the right solution in minimum number of

moves if the solution exists for the particular search

algorithm.

We manually entered the start and goal states before

coming to a conclusion. One such implementation is given

below.

Start State:

2 5 8

0 1 3

4 7 6

Goal State:

1 2 3

4 5 6

7 8 0

We calculated the time taken, number of initialized nodes

as well as the number of moves made by the search

algorithm to reach the goal state regardless if solution is

found or not.

Table 1: Comparison of the algorithms based on space

complexity and number of moves

Algorithm Nodes Explored Number Of Moves

DFS 258938 102

BFS 7802 14

Hill Climbing No solution found 8

Steepest Ascent HC No solution found 23

A* 127 14

Table 1 indicates the various numbers of nodes initialized

and the number of moves to reach the goal state for the

above start and goal state

~ 99 ~

World Wide Journal of Multidisciplinary Research and Development

Fig.2: Comparison of the average time taken to reach the goal using the various search techniques

We performed the 8-puzzle problem for the above

mentioned search algorithms. We used the multiple start

and goal states apart from the one mentioned above. It is

observed that DFS is not an optimal search algorithm for

this problem while BFS can be for most of the cases as the

cost per move is one. Hill climbing and its variant, steepest

ascent hill climbing are not suitable for most of the cases

even though it has the best solutions for some. A
*
 with the

combined heuristic is shown to be best for almost all the

cases and seems to be better compared to simply using one

heuristic metric. The comparison of the performance of the

various algorithms is presented in figure 2.

Conclusion
Even though all the search algorithms find an optimal

solution, they find it in different amount of time. The more

refined the heuristic is, the quicker we get the results. It is

also clear that even though the methods are considered to

be search algorithms, it is not always that we can find the

solution for a particular problem. Another thing that is

evident is that the reverse of the same problem whereby the

goal state and start state is exchanged, we don’t always get

the same number of steps as solution and at times, there are

no solutions for some of the methods that could find the

solution for the reverse states.

References
1. Bhagyashree.P & Gayathri.G.S. (2016). A Survey on

Breadth First Search & Metropolis Hasting Random

Walk. International Journal of computer science and

mobile computing, 5(3). 1-5.

2. King, D. J., & Launchbury, J. (1995, January).

Structuring depth-first search algorithms in Haskell.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT

symposium on Principles of programming

languages (pp. 344-354). ACM.

3. Nosrati, M., Karimi, R., & Hasanvand, H. A. (2012).

Investigation of the*(star) search algorithms:

Characteristics, methods and approaches. World

Applied Programming, 2(4), 251-256.

4. Bhasin, H., & Singla, N. (2012). Genetic based

algorithm for N-puzzle problem. International Journal

of Computer Applications, 51(22).

5. Awerbuch, B. (1985). Reducing complexities of the

distributed max‐flow and breadth‐first‐search

algorithms by means of network

synchronization. Networks, 15(4), 425-437.

6. Tarjan, R. (1972). Depth-first search and linear graph

algorithms. SIAM journal on computing, 1(2), 146-

160.

7. Awerbuch, B. (1985). A new distributed depth-first-

search algorithm. Information Processing

Letters, 20(3), 147-150.

8. Nosrati, M., Karimi, R., & Hasanvand, H. A. (2012).

Investigation of the*(star) search algorithms:

Characteristics, methods and approaches. World

Applied Programming, 2(4), 251-256.

9. Mühlenbein, H., Schomisch, M., & Born, J. (1991).

The parallel genetic algorithm as function

optimizer. Parallel computing, 17(6-7), 619-632.

10. [10] Reinefeld, A. (1993). Complete Solution of the

Eight-Puzzle and the Bene t of Node Ordering in

IDA*. In International Joint Conference on Artificial

Intelligence (pp. 248-253).

11. Mitchell, M., Holland, J. H., & Forrest, S. (1994).

When will a genetic algorithm outperform hill

climbing? In Advances in neural information

processing systems (pp. 51-58).

