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Abstract 
In work on the basis of the bar theory, the flexural - tensional vibration of a viscous elastic curved 

pipeline is considered by the action of the internal with a moving ideal fluid. The problem of 

oscillations of a viscous elastic rod is solved. 

 
Keywords: liquid, pipeline, Fourier method, relaxation nuclei. 

 

Introduction 

Curved pipelines are often used in engineering and construction [1,2,3]. For example, the 

supply of fuel from the fuel tanks of an aircraft in the combustion chamber of engines is 

carried out by means of pipelines. Therefore, the problem of studying the oscillation of 

pipelines with a flowing liquid is an actual problem and of practical interest.  

 

Basic relations and statement of the problem 

We consider the spatial oscillation of a curved pipeline and the incompressible fluid 

contained in it in the relative axis Oz (Fig. 1) passing through the supports. It is assumed that 

the pipeline is under the influence of a variable internal pressure. The velocity of the fluid is 

neglected. The length of the pipeline is- l , the thickness of its wall is -h, and the total mass of 

a homogeneous pipeline and liquid 21 mmm  . In this formulation of the problem, we 

will neglect longitudinal forces of inertia in comparison with transverse forces. Pipeline 

element dz  and mass dzlmdm )/( . Transverse distributed load nq  on the pipeline is 

expressed by the formula  
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2   tpppRF viii , w - deflection of a pipeline element, 

vpp ,,, 0
- values of the circular frequency, the initial phase, the static and the amplitude 

of the dynamic components of the variable internal pressure ip  in the pipeline, ii FR ,  

internal radius and cross-sectional area of the pipeline, t  -time.  
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Fig 1: Calculation scheme 

 

The magnitude of the buoyancy force AdF  Archimedes 

acting on a pipe element in length dz , equal to 

,,2 hRRgdzRdF ikkcA    where с - fluid 

density,
2/8.9 сmg  , force 

cFd


 resistance of 

movement of a pipe element is determined by the Stokes 

formula [4  

dzVFd ac


 , 

Where 
aV


- absolute element speed,  - coefficients of 

resistance, depending on the viscosity of the liquid and the 

shape of the inner surface of the pipe. According to the 

theorem on addition of velocities
21 VVVa


 , where 1V


 

and 2V


- relative and portable velocity of the pipe element. 

In addition, the latter is given by  
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In this way, 
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 resistance can be represented in the form
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where  - angle of rotation of the tube as a solid with 

respect to Oz. Total moment zM  forces of restoration (or 

visco-elasticity) in the supports is directly proportional to 

the angle   turning the tube like a rigid body about the 

axis Oz:  
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Where  tRc – relaxation core; 0c – instantaneous 

modulus of elasticity. The tangent a  to the trajectory, 

normal na  and Coriolis ka  acceleration of the selected 

pipeline element are equal 
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Thus, the forces of inertia kn dFdFdF ,,  of the selected 

pipeline element will be recorded 
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Equation of pipeline equilibrium in the form of a sum of 

moments of all applied forces and inertia forces relative to 

the axis Oz
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Where 
g

 - gravitational acceleration. Equation (2) after 

some transformations and taking into account  
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It takes the form  
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Where hRJFpTT iiii

3,   - axial moment of 

inertia of the cross-sectional area of the pipeline,

mFgg k /1  . Bending movements of the pipeline 

satisfying the boundary conditions  
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we take in the form 
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Where 0W  and )(twk -amplitude of static and dynamic 

components of bending movements. Substituting solution 

(5) into equations (3) and (4) and applying to the Bubnov-

Galerkin procedure [5], after simple transformations we 

obtain (к=0) 
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The system of equations (6) is solved under the following 

initial conditions 
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 (7)  

Here 00 , - the initial angle of rotation and the angular 

velocity of the pipeline deviation from the vertical plane. 

When 0,0)(,0)( 0  vptwt , then we obtain the 

following nonlinear integral equation for determining the 

quasistatic component of the deflection of the pipeline 0W  
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If 0)( tRE , then the results of calculations are 

obtained [6]. If сonst , тогда (6) принимает 

следующий вид  
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system of integro-differential equations (8) is solved by the 

perturbation method. A general form, the system of integro-

differential equations (2.16) in an elastic formulation 

0)( tR ) is given in the works [7,8].  

 

 

Consider the free oscillations of the pipeline 

For this purpose, it is assumed 0,0,0  р . 

Linearization of the system of differential equations (6), 

then we obtain the following system of equation

where  
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This formula corresponds to the results obtained in [7]. 

When 0)( tR , then the frequencies 1  and 2  

natural oscillations of the pipeline will be determined by 

formulas 
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When the viscoelastic properties of pipelines are taken into 

account, then (9) is expressed by means of the 

transcendental equation for the angular and bending 

oscillations of the pipelines 
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Where IR i  - complex frequency,
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Respectively, the cosine and sine Fourier images of the 

relaxation core of the material. Let us investigate the 

influence of the buoyancy force of Archimedes, the forces 

of inertia of Carioles, the resistance force and the 

magnitude of the static component of the internal pressure 

in the liquid, and also the geometric and physic-mechanical 

parameters of the tube on its free vibrational motion. 

Numerical results. The numerical solution of problem (6) 

was determined by the Runge-Kutta method. The results of 

calculations for the following values basic parameters: 
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Fig. 2.-3 shows plots of the angle   of rotation and the 

dynamic deflection )(0 tw  the middle point of the span of 

the pipe from the time t, respectively. The solid lines in the 

graphs show the results of the calculation, taking into 

account the resistance forces, and the dashed lines - without 

taking these forces into account. Calculations were carried 

out for two variants of the coefficients   and density 0 : 

1. Pas25 , 
3

0 /800 mkg .2. Pas025.0 , 

3

0 /25.1 mkg . Figures 1-2 illustrate the results of 

calculations for two mentioned above options.  

Taking into account the above, it is possible to draw the 

following conclusions. 

 

 

Fig.2: Dependencies of the angle of rotation   and deflection 

0w
 middle point of the span of the pipe from time t  at 

3

00 /800,25,50 mkgPasbarp  
 

 

 
 

 
 

Fig. 3: Dependence of the angle of rotation   and deflection 0w
 

middle point of the span of the pipe from time t  at 
3

00 /25.1,025.0,50 mkgPasbarp  
. 

 

Conclusions  

Based on the developed approximate mathematical model 

of the flexural-rotational vibrational movements of the 

pipeline, its free oscillations were investigated. It is 

established that with increasing static component of 
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internal pressure, an increase in the amplitude of free 

bending vibrations and an increase in the frequency of free 

rotational vibrations of the tube simultaneously occur. It is 

shown that for relatively large values of the resistance 

forces, free bending, rotational vibrations of the tube decay 

with time. 
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