

~ 381 ~

WWJMRD 2018; 4(2): 381-383

www.wwjmrd.com

International Journal

Peer Reviewed Journal

Refereed Journal

Indexed Journal

UGC Approved Journal

Impact Factor MJIF: 4.25

E-ISSN: 2454-6615

Paramjeet Kaur

MCA, UGC -NET

Assistant Professor of

Computer Science

Guru Nanak College,

Ferozepur Cent. Punjab, India.

Correspondence:

Paramjeet Kaur

MCA, UGC -NET

Assistant Professor of

Computer Science

Guru Nanak College,

Ferozepur Cent. Punjab, India.

The Study of Software Re-Engineering

Paramjeet Kaur

Abstract
The nature of software re-engineering is to improve or transform existing software so it can be

understood, controlled and reused as new software. To a large extent, it involves maintenance

activities like predictive, corrective, perfective, and adaptive. Re-engineering may involve re-

documenting the system organizing and restructuring the system, translating the system to a more

modern programming language. The functionality of software is not changed and normally the

architecture also remains same.

Keywords: Introduction, predictive, corrective, adaptive, reverse engineering, objective, conclusion

1. Introduction

Software Re-Engineering
Software re-engineering is concerned with re-implementing legacy system to make them

more maintainable. The re-engineering re-use things already in the old software to avoid

waste of material and spiritual reduce maintenance cost take to bring about the economic

value, the most effective. The functionality of the software is not changed and normally the

system architecture also remains same. It involves maintenance activities like understanding,

repairing, improving and evolving

When deciding the software re-engineering?

a) Software re-engineering applicable when some (but not all) subsystem of a large system

requires frequent maintenance.

b) When the software changes affect a subsystem and the subsystem that needs to be re-

designed.

c) When hardware and software becomes outdated. Software Re-engineering process is

shown in diagram:

World Wide Journal of Multidiscip linary Research and Development

~ 382 ~

World Wide Journal of Multidisciplinary Research and Development

The goal of Re-engineering

The problem is that the system is in use today, the basic

system to be a lack of well-designed structure and

organization of code and changes the whole software

system is difficult and expensive. Corporation do not want

to destroy the system because it was built for many

subsidiaries of the group which if destroyed will result in

the application may have made will be lost. The initial cost

for developing logic and component of the system software

should not be wasted. Therefore, re-use through re-

engineering is desired. There are four main objective of the

re-engineering software
 Prepare for enhanced functionality.

 Improve maintenance.

 Access to the new platform.

 Improved reliability.

Although re-engineering should not be taken to enhance the

functionality of existing systems, it is frequently used to

prepare for advanced functionality.

General Model of Software Reengineering

Re-engineering starts with the source code of the basic

system exist, and ends with the source code of the system

will target. This process can be as simple as using the

translation tool to translate source code from one language

into another language (FORTRAN to C) or from one

operating system to other operating systems (UNIX to

DOS).

Fig: General model of software re-engineering.

 The model in Figure applies three principles of re-

engineering: abstraction, the amendment and refinement.

This abstraction level is a gradual increase in the level of

abstraction of the system. The present system was created

by replacing a row of information is the information that is

more abstract. Abstractions make the description

emphasize the characteristics of the system. The upward

movement is called reverse engineering and related

accessories to the process, tools and techniques. The

amendment is to create one or more to convert a

representation of the system without changing the level of

abstraction in which additional, delete and modify

information. The refinement (Refinement) is the gradual

reduction in the level of abstraction of the system caused by

the continuous replacement information in existing systems

With more detailed information. It is technically forward

(Forward engineering) as software developers with the

code (code) but with some new screening process. To

change a feature of the system, the work is done at the level

of abstraction at which information about characteristics

that are clearly presented. To translate the code (code) is

languages aiming to reverse engineering are necessary,

changes made at the level of implementation.

Reverse Engineering:

Reverse engineering is the process of analyzing software

with the objective of recovering its design and

specification. The program itself is unchanged by the

reverse engineering process. The software source code is

usually available as the input to the reverse engineering

process. Sometimes, even this has been lost and the reverse

engineering must start with the executable code.

~ 383 ~

World Wide Journal of Multidisciplinary Research and Development

Reverse Engineering is the process of analyzing a subject

system with two main goals in mind:

 To identify the system’s components and their

interrelationships.

 To create representations of the system in another form

or at higher level of abstraction.

 The reverse engineering process:

Fig: illustrates a possible re-engineering process. The input to the Process is a legacy program and the output is structured, modularized

version of the same program

Data Re-Engineering

The process of analyzing and re- organizing the data

structure and sometimes the data values in a system to

make it more understandable is called data re-engineering.

In principle, data re-engineering should not be necessary if

the functionality of a system is unchanged.In practice,

however, there are a number of reasons why you may have

to modify the data as well as the programs in a legacy

system

1. Data degradation over the time, the quality of data

tends to decline.

2. Architectural evolution if a centralized system is

migrated to a distributed architecture it is essential that

the core of that architecture should be a data

management system that can be accessed from remote

clients. This may require a large data re-engineering

effort to move data separate files into the server

database management system.

Re-engineering a software system has two key advantages:

Reduced risk there is a high risk in re-developing software

that is necessary for an organization.

1. The cost of re-engineering is significantly less than the

costs of developing new software.

The Risks and challenges of system Re-engineering:

 Integration with business engineering.

 Targeting non -traditional users.

 Integrating heterogeneous tool sets.

Conclusion

Many new software design methodologies and tools have

been developed to improve reusability, maintainability and

to decrease the cost of development and maintenance. Most

companies have software systems that are out of date and

costly to maintain. So re-engineering is the best solution to

Replace the existing software systems. Data are also

needed during the re-engineering, but it is not clear exactly

how the concept can be considered and expected that the

actual data, evaluate what they are proposing to define

quantify. Paper is a summary of strategy in re-engineering,

to serve as a basis for future work.

References

1. Roger S. Pressman, Software Engineering, a

Practitioner's approach; Fifth edition, McGraw Hill,

2001

2. Institute of electrical and electronics engineers (IEEE)

www.ieee.org

3. https://arxiv.org/ftp/arxiv/papers/1112/1112.4016.pdf

4. https://pdfs.semanticscholar.org/bb45/6475ef1ec0e2aa

eafc47682dc3386c58f212.pdf

5. M. Solvin, and S. Malik. “Re-engineering to reduce

system maintenance: A case study”, Software

Engineering, pp.14-24, 2011.

